
*4823 Dundas Street

Burnaby, British Columbia V5C 1B8, Canada

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

© World Scientific Publishing Company

CALIBRATING FUNCTION POINT BACKFIRING CONVERSION RATIOS USING

NEURO-FUZZY TECHNIQUE

JUSTIN WONG*

Department of Electrical & Computer Engineering

University of Western Ontario

London, Ontario N6A 5B9, Canada

DANNY HO

NFA Estimation Inc., 32-538 Platt's Lane

London, Ontario N6G 3A8, Canada

LUIZ FERNANDO CAPRETZ

Department of Electrical & Computer Engineering

University of Western Ontario

London, Ontario N6A 5B9, Canada

Software size estimation is an important aspect in software development projects because poor

estimations can lead to late delivery, cost overruns and possibly project failure. Backfiring is a popular

technique for sizing and predicting the volume of source code by converting the function point metric into

source lines of code mathematically using conversion ratios. While this technique is popular and useful,

there is a high margin of error in backfiring. This research introduces a new method to reduce this margin

of error. Neural networks and fuzzy logic in software prediction models have been demonstrated in the

past to have improved performance over traditional techniques. For this reason, a neuro-fuzzy approach is

introduced to the backfiring technique to calibrate the conversion ratios. This paper presents the neuro-

fuzzy calibration solution and compares the calibrated model against the default conversion ratios

currently used by software practitioners.

Keywords: Backfiring, Software Estimation, Sizing, Function Point, Neuro-Fuzzy, Lines of Code

1. Introduction and Background

Software size estimation is important in delivering successful software. Project estimation,

used to determine the necessary development period and cost of projects, is vital to win

project bids and help to establish the extent of a project’s success. Many estimation

techniques have been developed such as: Constructive Cost Model (COCOMO), Putnam’s

Software Lifecycle Management (SLIM), and Function Point Analysis.
1
 Furthermore,

machine learning techniques, such as neural networks and fuzzy logic have been applied to

these estimation methods.

2 Justin Wong, Danny Ho, Luiz Fernando Capretz

In this study, neural network and fuzzy logic is used to predict the lines of code when the

function point and programming language are known. The fundamental concepts of function

point and backfiring estimation technique to predict the lines of code are explained. Fuzzy

logic and neural network concepts are illustrated because such methods will be applied to

improve the accuracy of backfiring size estimates. Furthermore, related work of existing

software estimation models that use neural networks and fuzzy logic are investigated.

The main objective of this study is to develop a prediction model that uses the backfiring

approach of estimating lines of code. The estimation model is tested and compared against

the original backfiring method. In addition, the threats to the validity of the approach and

experiment are investigated and discussed.

1.1. Function Point

First introduced in the 1970s by Albrecht
2
, function point is a unit of measurement for

determining the functional size of an information system. Function point analysis is a process

that involves identifying major system components and classifying them as ‘simple’,

‘average’ or ‘complex’. The unadjusted function points (UFP) are then calculated as shown in

Table 1. The UFP is then adjusted for application and environment complexity through

complexity adjustment factors (CAF), which can be found using the formula defined in (1).

Finally, the adjusted function point (AFP) is calculated by multiplying the UFP and CAF.
3

Table 1 – Calculating the UFP.

Complexity Function Type

Simple Average Complex Total

External Input ___ x 3 ___ x 4 ___ x 6 ___

External Output ___ x 4 ___ x 5 ___ x 7 ___

Logical internal file ___ x 7 ___ x 10 ___ x 15 ___

External Interface File ___ x 5 ___ x 7 ___ x 10 ___

External Inquiry ___ x 3 ___ x 4 ___ x 6 ___

Total Unadjusted function points ___

 NCAF 01.065.0 +=

 N is the total degree of influence of the 14 characteristics.

 The degree of influence ranges from 0 to 5.
3
 (1)

1.2. Backfiring

Experts have been using the term “high-level language” and “low-level language” for many

years without precisely defining these phrases. Jones
4
 classified programming languages by

the number of statements they require for the implementation of one function point. Software

Productivity Research (SPR)
5
 annually publishes the conversion ratios of logical source-code

statements to function points for many programming languages. Figure 1 illustrates the

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 3

relationship of the conversion ratio, also known as source lines-of-code per function point

(SLOC/FP), to the language level; the graph shows that as the language level increases, the

conversion ratio decreases. “High-level language” is defined as having less than 50 source

lines-of-code per function point (SLOC/FP), while “low-level language” has over 100

SLOC/FP.
4

Figure 1 – Conversion ratios versus language level.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

Language Level

B
a
c
k
fi
re

 V
a
lu

e

Low

Mean

High

The concept of backfiring is the conversion of function points to logical source-code

statements to effectively sized source code. Source lines-of-code (SLOC) is still a very

common metric used by the software industry to measure the size of an application.

Backfiring can be accomplished by multiplying the function point with the conversion ratios

to obtain the SLOC. For example: An application written in JAVA (36 SLOC/FP) with 300

function points would have an estimated SLOC of 10800. The conversion ratios can be used

bilaterally mathematically; therefore, function points can be calculated from SLOC being

divided by the conversion ratios.
1

While backfiring is useful and simple, there is a high margin of error in converting SLOC

data into function points.
4
 This research introduces an approach to reducing this margin of

error; thus, making the conversion ratios more reliable.

4 Justin Wong, Danny Ho, Luiz Fernando Capretz

1.3. Fuzzy Logic

Fuzzy logic is derived from the fuzzy set theory, which uses linguistic terms or fuzzy set that

represents and processes uncertainty. In classical set theory, an element either belongs or does

not belong in a set. Fuzzy sets are an extension to the classical set theory because elements

can be partially in a set. It is used to generate a mapping between input and output spaces.
The amount an element is in a set is measured with a membership function. Membership

functions range from 0 to 1. Membership functions are used to describe linguistic terms such

as low, medium and high. There are various types of fuzzy membership functions such as

triangular, trapezoidal, and Gaussian.
6

In fuzzy logic, fuzzy rules are used to define a fuzzy operator and are usually expressed

using IF-THEN statements. An example of a fuzzy rule is shown in (2). The IF portion of the

statement is the antecedent and the THEN portion is called the consequent. The antecedent

statements can be linked with AND and OR.
6

RULE 1 : IF inputLevel IS f1 THEN conversion IS o1;

RULE 2 : IF inputLevel IS f2 THEN conversion IS o2;

…

RULE 19: IF inputLevel IS f1 THEN conversion IS o19; (2)

Fuzzy logic is used in many software estimation models because it is not possible to

develop a precise mathematical model of software development efforts and size.
7
 Fuzzy logic

was used to model the curve in Figure 1. The curve is modeled by breaking the curve into

fuzzy sets based on the programming language data.

1.4. Neural Network

Neural networks are a system of weighted interconnected neurons, which takes inputs into the

network and produces an output function. Inputs are fed into neurons. Afterwards, the inputs

are multiplied by their input weights and summed up. The summed result is then applied to an

activation function which produces an output from the summed results. The outputs may be

passed into another layer of neurons as inputs depending on the architecture of the neural

networks. These inputs may be passed through many layers of the network until it reaches the

output layer.
8
 Figure 2 shows the design of a neural network which has one hidden layer

containing four hidden nodes. In this neural network design, there are three inputs and it

produces three outputs.

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 5

Figure 2 – A neural network

A neural network can be trained to generate an appropriate output based on the input

patterns. During the training phase, an input and target output are fed into the network. The

resulting output is compared with the target output. A commonly used learning method is

back-propagation. Back-propagation reduces the error between the target output and actual

output by propagating the error from the output layer to the input layer and adjusting the

weights between the neurons. The neural network’s performance is affected by many

different factors such as the number of hidden nodes, stopping criteria, and initial weight.
8

In this research, a neural network was used to calibrate the fuzzy sets. By calibrating the

fuzzy sets, the programming language level versus statements per function point curve could

be accurately modeled. This technique of calibration was similar to the Huang et al.
9

proposed model of combining fuzzy logic and neural network for calibrating the COCOMO

estimation technique.

1.5. Benchmark

Foss et al.
10

 showed that when evaluating and comparing prediction models, Magnitude of

Relative Error (MRE) should not be used. It has been demonstrated that using MRE does not

prove that one model is particularly better than another because the results were misleading.

MRE favored underestimation and performed worse in small sized projects. The equation is

defined in (3). However, this method of evaluation is still popular and is commonly used in

industry; for that reason, it was used to evaluate the experimental model.

| |

Actual

PredictedActual
MRE

−
= . (3)

Another method that was proposed for evaluating and comparing prediction models was

Magnitude of error Relative to the Estimate (MER).
11

 The equation for calculating MER is

6 Justin Wong, Danny Ho, Luiz Fernando Capretz

defined in (4). MER was encouraged to be used for evaluation, yet it favors overestimation

because the estimation is a divisor. Larger estimates tend to perform much better than small

estimates.

| |

Predicted

PredictedActual
MER

−
= . (4)

Foss et al. concluded that Standard Deviation (SD), Residual Error Standard Deviation

(RSD) and Logarithmic Standard Deviation (LSD) were good, consistent criteria.
10

 The

equation for SD is shown in (5). In the equation, yi represents the actual result, ŷi represents

the predicted result, and n was the total number of projects. The equation for RSD is defined

in (6). In the equation yi represents the actual result, ŷi represents the predicted result, xi

represents the input, and n was the total number of projects. The equation for LSD is defined

in (7). In the equation, yi represents the actual result, ŷi represents the predicted result, n was

the total number of projects, and the s
2
 was an estimator of the variance of ln yi – ln ŷi. In

addition to MRE and MER, SD, RSD and LSD were used for evaluation.

1

2

−









−

=

∑
∧

n

yy

SD
ii

 where yi is actual, ŷi is predicted and n is number of projects. (5)

1

2

−














−

=

∑
∧

n

x

yy

RSD
i

ii

 where yi is actual, ŷi is predicted, xi is input and n is number of projects. (6)

1

2
lnln

2
2

−



















−−








−

=

∑
∧

n

s
yy

LSD

ii

 where yi is actual, ŷi is predicted, n is number of projects and s
2
 is an estimator of the

variance. (7)

Another criterion that was used to evaluate the prediction model was Prediction at Level

(PRED). MRE less than 25%, and 50% were utilized for PRED because other models have

used these criteria for evaluation.
11

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 7

2. Related Work

The literature in software estimation models was extensive. The papers reviewed are neural

network software estimation models.

Aggarwal et al.
12

 presented using neural networks to estimate the lines of code when

given the function points as input. Their estimation model used Bayesian Regularization to

train the neural network. They investigated on various training algorithm to find the best

results. Furthermore, the network took into account the maximum team size, function point

standard and language (3
rd

 generation language and 4
th

 generation language). The

shortcoming of the neural network was that it had a black-box design. In addition, the

research only took the generation language into account instead of the programming

languages. The averages SLOC/FP between the 3rd and 4th generation languages are very

large in range. The 3
rd

 generation default language has 80 SLOC/FP, while the 4
th

 generation

default language has 20 SLOC/FP.

Jeffery et al.
13

 investigated an algorithm-based effort and management tool. They looked

at the accuracy of lines of code as input, accuracy of the backfiring and comparison of the

organization’s delivery rate. The paper proposed that generic tools need to be calibrated for

individual organizations to increase accuracy. It was shown that the SLOC/FP was not

consistent across organizations for the same programming language. In this research, a neural

network is used for calibrating the generic conversion ratios. The generic backfiring method

was calibrated to improve the performance for a specific dataset.

Idri et al.
14

 discussed shortcomings of the “black-box” models and investigated them. The

paper used a standard feed-forward neural network with error propagation. The network was

trained and the fuzzy rules were obtained. The authors discussed the interpretation of the

“black-box” neural network. The paper influenced the experimental model’s neural network

design to be easily interpreted and understood for the calibrations of each language level.

Srinivasan et al.
15

 compare between the CartX and Backpropagation learning methods to

the traditional approaches of SLIM, COCOMO and function point. The paper showed the

sensitivity of learning based on the data selection and representation. Because of the

importance of data selection, all the mild outlier points from the experiment dataset were

removed and the neural network’s learning sensitivity was adjusted to avoid large changes

when calibrating. Mild outliers are data values, which lie between 1.5 to 3.0 times the

interquartile range below the first quartile or above the third quartile.

Huang et al.
9
 introduced a neuro-fuzzy framework and applied it to COCOMO II. The

neuro-fuzzy technique showed it could be used to improve software effort estimation

techniques by calibrating its parameters. In this study, it was demonstrated that a neural

network could be used to calibrate fuzzy sets to improve performances for many different

applications. Based on the flexibility of the technique, the neuro-fuzzy framework was

applied to the backfiring technique.

8 Justin Wong, Danny Ho, Luiz Fernando Capretz

3. Research Questions

In this study, the focus was to attempt to improve the precision of converting between the

lines of source code and function point metric. The following set of research questions are to

be answered:

(i) How can the inverse curve relationship between lines of source statements per function

point and programming language level be modeled precisely?

(ii) How can the conversion ratio be calibrated to a specific data set to improve the accuracy?

(iii) How can we develop a system that can update the calibrated the conversion ratios when

new data is available?

(iv) How are missing data for certain programming languages addressed?

The model was trained and evaluated with International Software Benchmark Standards

Group's (ISBSG) Repository Data (release 10).
16

 The model's estimate was measured against

SPR's programming language table.
5

4. Experimental approach

4.1. Fuzzy Parameters

The programming languages were broken into language levels, which translated to the

number of SLOC/FP. The relation between the language levels to the mean SLOC/FP was an

inverse curve shown in Figure 1. The equation of the inverse curve found is defined in (8).

997.04.319 −

= xy

 where y is the SLOC/FP and x is the language level. (8)

The approach was to group the language levels into various fuzzy levels to approximate

the inverse curve. This was done by grouping all the programming languages together based

on similar SLOC/FP. The number of fuzzy levels depends on the number of data points

available. For example: In Table 2, levels 2.5 and 3.5 contain a lot of data points, therefore

fuzzy levels 2.5 and level 3.5 can be created. There was no data available for many of the

language levels therefore those programming language levels were skipped. Table 2 shows

the language levels being grouped into fuzzy levels to approximate the curve. The fuzzy

levels were obtained based on the programming languages and data points available from

ISBSG
16

. The average SLOC/FP was obtained from the average of all the backfiring

conversion values within a fuzzy level. Moreover, this average value was used as the initial

weight in the neural network and the initial peak of the fuzzy membership functions. This

approach answered research question 1 by breaking down the curve into smaller pieces.

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 9

Table 2 – Fuzzy level based on ISBSG Research Suite

Release 10.

Fuzzy Level Programming Language Level Average SLOC/FP

1 2.5 128

2 3 107

3 3.5 91

4 4 81

5 6 53

6 7 46

7 8 40

8 8.5 38

9 9 36

10 9.5 34

11 11 29

12 14 23

13 16 20

14 20 16

15 23 14

16 25 13

17 27 12

18 38 8

The fuzzy levels would change based on the data available. If more programming

languages were to become available, more fuzzy levels could be added to model the curve

more accurately. The fuzzy levels were flexible and can be added and modified, therefore it

address research question 3.

4.2 Fuzzy Membership Functions

Figure 3 and Figure 4 illustrate the input and output fuzzy membership functions. A

triangular function was used for both the input and output membership functions. The peak of

the input triangle of each fuzzy level was the programming language level. The average

SLOC/FP was the peak of the output membership functions. The peaks were obtained from

Table 2. Each fuzzy level was directly referenced to a fuzzy output. For example: f1

referenced o1, f2 referenced o2 and so on. The “AND” and “activation function” used the

minimum function for the rules. For defuzzifying, the maximum accumulation method and

“Center of Gravity” method were used to convert the fuzzy sets into crisp numbers. The

“Center of Gravity” method is used in this research because of its simplicity and popularity.

Furthermore, the method allows generating a compromised value between the triangular

functions to fill in the missing input SLOC/FP for certain language levels. The input

membership functions would cover missing language levels which solved the 4
th

 research

question.

10 Justin Wong, Danny Ho, Luiz Fernando Capretz

Figure 3 – Fuzzy membership of the language levels.

Figure 4 – Fuzzy membership functions of the output SLOC for each fuzzy level.

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 11

4.3. Calibrating Fuzzy Sets with Neural Network

The neural network was used to calibrate the average source statements per function point for

each fuzzy level. The input to the neural network was the SLOC, the UFP and the language

level. The SLOC was used as the target during training and the UFP was used for both

training and simulation. The language level inputs were initially processed into fuzzy

language levels. Figure 5 shows the layout of the neural network. The neural network was

designed to be easily interpreted so that it avoids being a “black-box” model.

The L1 to Ln were the fuzzy language levels input. The fuzzy language level inputs were

binary. When a language level was fed into the network, the input was in a form of a matrix

and only contains one 1 entry. For example: For language level 4, it would be represented as

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] based on the proposed fuzzy levels.

The activation function was simply multiplying the UFP with the weight of the fuzzy

language. The weights were initialized with the values in Table 1. During training, once the

output was obtained, it was compared with the target result. The difference between the actual

result and predicted result was propagated back to the input layer. The weights were then

adjusted based on the error.

The neural network approach solved the 1
st
 and 3

rd
 research questions because it

attempted to minimize the error of each fuzzy level to accurately model the curve. The neural

network could be used again to calibrate the weights when more data becomes available.

Figure 5 – Neural network design.

UFP

L1

L2

Ln

Target

Output

1

W1

W2

Wn

Z

Z=(W1+W2+Wn)xUFP

SLOC

(For training)

12 Justin Wong, Danny Ho, Luiz Fernando Capretz

4.4. Constraints

Every language level contained a low, median and high conversion value; therefore, each

fuzzy level was constrained between lowest and highest conversion value. In cases where the

fuzzy level contained more than one language level, the largest conversion value among the

languages would be the upper limit of the SLOC/FP value. For the lower limit, the smallest

conversion value would be used. A monotonic constraint was not used because the

programming languages could overlap depending on the low and high range of the

conversion value.

5. Results and Evaluation

287 data points were used to compare the calibrated and the original conversion ratios. The

data points contained the parameters required in the ISBSG
16

 repository data. Furthermore,

the mild outlier points were removed. Eight experiments were conducted for the original and

calibrated model. In each experiment, half of the data was used for training and the other half

was used for simulation. The data for training and simulation were randomly selected from

the dataset for each experiment. Experiment 1’s training data was separated into two batches

of training data to solve research question 3.

Table 3 shows the initial and final calibrated values obtained for the fuzzy language levels

when the network was trained in Experiment 1. Initially, 91 training points were used to

generate the initial calibrated values. Afterwards, 54 more data points were added and the

initial calibrated values were again recalibrated. The output triangular membership function’s

peaks were changed to the new calibrated values in Table 3. The results showed that the

programming language levels 2.5 had a higher SLOC/FP. The language levels 8 and 9 have a

higher than mean SLOC/FP and this was due to the data in those areas are not in the mean

range of the original language level. Figure 6 shows the surface view of the fuzzy rules and

membership functions.

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 13

Table 3 – Calibrated values in Experiment 1.

Fuzzy Level Initial Calibrated Values

(91 training points)

Final Calibrated Values

(145 training points)

1 128.11 137.78

2 106.80 104.60

3 90.19 89.72

4 68.31 95.12

5 52.90 53.12

6 47.00 47.82

7 48.98 48.98

8 37.92 37.81

9 38.22 42.39

10 34.28 34.28

11 41.40 41.91

12 23.39 23.37

13 20.03 20.05

14 18.38 18.38

15 14.05 14.06

16 17.0 17.00

17 12.04 12.05

18 19.71 19.71

Figure 6 – Surface view.

5.1. Results

Table 4 shows the Mean Magnitude of Relative Error (MMRE) and Mean Magnitude of error

Relative to Estimate (MMER) comparison between calibrated and non-calibrated values.

Overall, the MMER improves by 13.72% when calibrated and MMRE improved by 4.92%.

For MMRE, experiment 1 had a negative improvement, and experiments 1, 2, 3, 4 and 6

showed small improvements.

14 Justin Wong, Danny Ho, Luiz Fernando Capretz

Table 4 – MMER and MMRE.

 Original Calibrated Improvement (%)

Experiment MMER MMRE MMER MMRE MMER MMRE

1 1.88 1.45 1.44 1.51 23.28 -4.66

2 2.02 3.63 1.70 3.60 15.58 0.80

3 1.58 1.83 1.48 1.78 6.70 2.96

4 2.09 3.32 1.56 3.27 25.51 1.60

5 1.77 3.37 1.46 3.08 17.50 8.66

6 1.30 1.26 1.20 1.21 7.89 4.29

7 1.07 0.92 0.99 0.82 7.30 10.77

8 1.34 4.71 1.28 4.56 6.00 15.00

Overall 13.72 4.92

Standard Deviation (SD), Residual Error Standard Deviation (RSD) and Logarithmic

Standard Deviation (LSD) were shown to be good criteria to evaluate prediction models.
10

Table 5 shows the comparison of SD, RSD and LSD between the original and calibrated

model. The calibration model had a small improvement for LSD. For the RSD and SD

criteria, the results did not show any improvement and consistent result. Overall, there was no

conclusive evidence that the calibration model had a SD, RSD and LSD improvement over

the original model.

The PRED results, in table 6, showed inconsistent results. The improvements were more

consistent for MER with PRED < 50%. Overall, the PRED results do not show that the

calibrated model outperforms the original model because of the inconsistency.

The results for MMRE and MMER validated the experimental approach in solving the

research questions and showed a small improvement the backfiring process, however there

are still risks as the solution failed to show consistent improvements in the SD, RSD, and

PRED criteria. Low improvements for MMRE, SD, RSD, and PRED could be caused

because of limited training data for certain language levels. Another reason for the small and

inconsistent improvements is the model tried to satisfy all the criteria, which resulted in only

obtaining local minimum error points for each criteria.

Table 5 – SD, RSD, LSD.

 Improvement (%)

Experiment SD RSD LSD

1 -0.79 -0.11 3.87

2 -0.96 -4.57 2.38

3 -1.10 -3.34 3.93

4 0.68 1.21 4.50

5 4.38 -0.04 3.39

6 0.65 2.80 1.46

7 2.22 5.43 2.46

8 -3.44 -10.00 0.04

Overall Average 0.21 -1.08 2.75

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 15

Table 6 – PRED Validation Results.

 MRE (%) MER (%)

Experiment PRED < 25% PRED < 50% PRED < 25% PRED < 50%

1 -18.18 -8.20 -9.52 -1.47

2 15.00 -9.80 16.67 5.77

3 3.57 -7.84 24.00 9.80

4 0.00 -1.64 -5.71 2.90

5 13.79 -12.96 3.45 1.67

6 0.00 1.82 0.00 3.39

7 -2.78 3.70 -5.88 3.33

8 2.86 1.61 -3.13 -1.54

Overall Average 1.78 -4.16 2.49 2.98

6. Threats to Validity

There were threats to validity in this experiment. Certain language levels contained limited

project data. If there were more data points available in those language levels, the results may

have been different. However, other languages that contained sufficient data points show

improvement and have similar behavior.

In the experiments, there were no data points for certain language levels which may not

have accurately modeled the SLOC/FP versus language level curve. For example: There was

no project data for the assembly programming language and high programming language

levels between 27 and 38.

Another threat to validity was that other parameters may exist, which could affect the

programming language's SLOC/FP. For example: Specific general characteristics in function

point analysis may affect the final estimate on lines of code. It was shown by Reifer
17

 that in

different application domain, the size and cost of the applications differ. Angelis et al.
18

showed a software cost estimation model based on attributes such as organization type,

business type, development platform and development type. Furthermore, Jones
19

 suggested

that factors, such as the development environment, affect productivity. Therefore, these

factors may have also affected the source lines of code per function point.

7. Conclusion

Backfiring had been used for many years for sizing projects which use the function point

metric. However, backfiring had a high margin of error. A neuro-fuzzy approach was used to

calibrate the conversion ratios to reduce the margin of error. The following conclusions were

drawn from the empirical results:

• After calibrating the conversion ratios, the ratios still reflected the inverse curve

relationship of the programming language level and the SLOC/FP.

16 Justin Wong, Danny Ho, Luiz Fernando Capretz

• The model overall showed small improvements in MRE and MER when tested against

the ISBSG data set, however, there was no clear and consistent evidence that it improved

for SD, RSD and PRED criteria.

• The models had no bias towards underestimating (MRE bias) and overestimating (MER

bias).

• As new data became available, the model was flexible in training and modifying fuzzy

sets.

The calibration of backfiring conversion ratios would improve the accuracy of estimating

the size of information systems and may result in more successful projects; however, there

are still risks as the conversion ratios failed to improve size estimates that are already

accurate.

Acknowledgements

Justin Wong would like to thank his supervisors and referees for their helpful comments.

Furthermore, he would also like to thank SPR and ISBSG for providing research data.

References

1. R. D. Stutzke, Estimating Software-Intensive Systems – Projects, Products, and Processes,

(Addison-Wesley, Upper Saddle River NJ, 2005).

2. A. J. Albrecht, J. E. Jr. Gaffney, Software Function, Source Lines of Code, and Development

Effort Prediction: A Software Science Validation, IEEE Transactions on Software

Engineering 9 (1983) 639-648.

3. Function Point Counting Practices Manual 4.2.1, International Function Point Users Group

(2005) www.ifpug.org.

4. C. Jones, Backfiring: converting lines of code to function points, Computer 28 (1995) 87-8.

5. SPR, Programming Languages Table (PLT2006b), Software Productivity Research

Incorporated (2006) http://www.spr.com.

6. J. M. Mendel, Fuzzy Logic Systems for Engineering: a Tutorial, Proceedings of the IEEE 83

(1995) 345-347.

7. J. P. Lewis, Large Limits to Software Estimation, ACM Software Engineering Notes 26

(2001) 54-59.

8. R. P. Lippmann, Introduction to Computing Neural Nets, IEEE ASSP Magazine 4 (1987) 4-

22.

9. X. Huang, D. Ho, J. Ren, and L.F. Capretz, A Soft Computing Framework for Software Effort

Estimation, Soft Computing 10 (2006) 170-177.

10. T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit. A simulation study of the model evaluation

criterion MMRE, IEEE Transactions on Software Engineering 29 (2003) 985-995.

11. B. A. Kitchenham, S. G. MacDonell, L.M. Pickad, M. J. Shepperd, What Accuracy Statistics

Really Measure, IEE Proceedings: Software 148 (2001) 81-85.

12. K. K Aggarwal, Y. Singh, P. Chandra, M. Puri, Bayesian regularization in a neural network

model to estimate lines of code using function points, Journal of Computer Sciences 1 (2005)

505-509.

 Calibrating Function Point Backfiring Conversion Ratios using Neuro-Fuzzy Technique 17

13. D. R. Jeffery, G. Low, Calibrating estimation tools for software development, Software

Engineering Journal 5 (1990) 215-221.

14. A. Idri, T. M. Khoshgoftaar, A. Abran, Can Neural Networks be easily Interpreted in

Software Cost Estimation?, IEEE International Conference on Plasma Science 2 (Honolulu,

2002) 1162-1167.

15. K. Srinivasan, D. Fisher, Machine learning approaches to estimating software development

effort, IEEE Transactions on Software Engineering 21 (1995) 126-136.

16. Data CD R10 Demographics, International Software Benchmarking Standards Group (2004)

www.isbsg.org.

17. D. J. Reifer, Let the Numbers Do the Talking, CrossTalk (Mar. 2002) 4-8.

18. L. Angelis, I. Stamelos, M. Morisio, Building a software cost estimation model based on

categorical data, Proceedings Seventh International Software Metrics Symposium (London,

2001) 4-15.

19. C. Jones, Programming Productivity, (McGraw-Hill, New York, 1986).

