

Software Analytics to Software Practice:
A Systematic Literature Review

Tamer Mohamed Abdellatif, Luiz Fernando Capretz, and Danny Ho
Department of Electrical & Computer Engineering

Western University
London, Ontario, Canada

tmohame7@uwo.ca, lcapretz@uwo.ca, danny@nfa-estimation.com

Abstract—Software Analytics (SA) is a new branch of big data

analytics that has recently emerged (2011). What distinguishes
SA from direct software analysis is that it links data mined from
many different software artifacts to obtain valuable insights.
These insights are useful for the decision-making process
throughout the different phases of the software lifecycle. Since
SA is currently a hot and promising topic, we have conducted a
systematic literature review, presented in this paper, to identify
gaps in knowledge and open research areas in SA. Because many
researchers are still confused about the true potential of SA, we
had to filter out available research papers to obtain the most SA-
relevant work for our review. This filtration yielded 19 studies
out of 135. We have based our systematic review on four main
factors: which software practitioners SA targets, which domains
are covered by SA, which artifacts are extracted by SA, and
whether these artifacts are linked or not. The results of our
review have shown that much of the available SA research only
serves the needs of developers. Also, much of the available
research uses only one artifact which, in turn, means fewer links
between artifacts and fewer insights. This shows that the
available SA research work is still embryonic leaving plenty of
room for future research in the SA field.

Index Terms—Software analytics, software development
analytics, systematic literature review, big data analytics.

I. INTRODUCTION
Software analytics (SA) represents a branch of big data

analytics. SA is concerned with the analysis of all software
artifacts, not only source code. Its importance comes from the
need to extract support insights and facts from the available
software artifacts to facilitate decision making. Artifacts are
available from all software development life cycle steps,
beginning with the proposal and project initiation phases and
ending with the project closure and customer satisfaction
surveys. The dynamic nature of the software industry is
associated with decision-making needs through all software
business tiers. These tiers vary from the higher level of the
management board and setting the enterprise vision and
portfolio management, going through project management
planning and implementation by software developers. As
emphasized by some experts [1-4] in the SA domain, all of the
stakeholders involved deserve to be supported with decision-
making tools in order to facilitate the decision-making
process. SA can play the role of the tool provider by providing

suitable and supportive insights and facts to software industry
stakeholders to make their decision making easier, faster, more
precise, and more confident. The main difference between SA
and direct software analysis is that rather than just providing
straightforward insights extraction SA performs additional
advanced steps. As clarified by Hassan [1], SA must provide
visualization and useful interpretation of insights in order to
facilitate decision making.

This paper is organized as follows: In Section II, we will
illustrate our review methodology. Our review results are
illustrated in Section III. Section IV presents the limitation of
this review and, finally, we conclude our work in Section V.

II. METHOD
In systematic literature review (SLR), we followed

Kitchenham [5] approach for a software engineering literature
review. So we started with the planning phase in which we
developed the review protocol. We conducted our review in six
stages: defining research questions, designing the search
strategy, selecting the studies to use, assessing the quality,
extracting data, and synthesizing data.

A. Research Questions
In our SLR, we are trying to answer the following research

questions:
1. RQ1: Which software practitioners does the available SA

research target?
RQ1 aims to identify the beneficiary stakeholders from
available SA studies. It also aims to assess whether SA studies
target different levels of stakeholders or only focus on the
software development team in order to draw the attention of the
SA research community to improve the research plan.
2. RQ2: Which domains are covered by SA studies?
RQ2 tries to highlight the scope of the available SA studies.
The target domains, such as software maintainability and
incident management, will be determined. Practitioners can
interpret this information from two points of view. The first
point of view is to know SA hot topics and consider these for
their research plan, while the other view is to analyze any
research gap and take the lead to consider this as an original
research point.

2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering

978-1-4673-7025-7/15 $31.00 © 2015 IEEE

DOI 10.1109/BIGDSE.2015.14

30

3. RQ3: Which software artifacts are extracted?
The main difference between SA and direct software analysis is
making use of all of the available artifacts in order to come out
with strong decision support insights. Therefore, RQ3 aims to
verify that this idea is clear for the current research community.
4. RQ4: If different artifacts are used, are they linked

together?
RQ4 tries to evaluate if each study satisfies the SA main idea of
linking different software artifacts. This linkage aims to come
out with more advanced insights unlike direct software analysis
and metrics where researchers use each artifact separately
without linkage to other artifacts.

B. Search Strategy
1) Search Terms
To guarantee that the review is closely relevant to SA, we

tried to limit our search to the most SA relevant search term.
So, we started with the term “software analytics” then we went
through the following steps:
1. Extracting the major distinct terms from our research

questions.
2. Using different spellings of the terms.
3. Updating our search term with keywords from relevant

papers.
4. Using the main alternatives and adding “OR operator” in

order to get the maximum amount of directly relevant
literature.

These steps yielded the following search term:
“Software analytics” OR “Software analytic” OR “Software
development analytics” OR “Software development analytic”.

2) Literature Resources
We included two electronic databases in order to search for

our primary review studies: IEEE – Xplore and ACM Digital
Library. The search term was constructed using the advanced
search features provided by each of these two databases. The
search covered metadata in the case of IEEE – Xplore, and
both metadata and body (content) of literatures in the case of
ACM Digital Library.

Our search included the period January 2000 to December
2014. As SA concept was initially introduced by Zhang et al. in
2011 [6], we expected that relevant literatures would be from
2011 and forward, but we made our search timeframe wider in
order to guarantee gathering all of the relevant papers.

C. Study Selection
The search results contained 135 unique candidate papers

(41 papers from IEEE Xplore, 102 from ACM Digital Library
and 8 duplicate papers between the two databases which were
removed). In order to eliminate any irrelevant papers which
would not add any significant information, we conducted the
following two filtration phases:

• Filtration phase 1: both inclusion and exclusion criteria
were defined and applied to the unique candidate
papers to eliminate any irrelevant papers so that only
relevant papers with useful information would result
from this phase.

• Filtration phase 2: the quality assessment criteria (as
defined in the next section) were used to assess
candidate papers that are output from phase 1. The
papers which satisfy the quality boundary will be used
in the data extraction stage.

The following were the inclusion and exclusion criteria:
Inclusion criteria

• SA concepts were applied to extract insights from
software project artifacts.

• Research was relevant to software project lifecycle
phases.

• Research was directly related to the software industry
and stakeholders.

• For duplicate publications of the same study, the
newest and most complete one was selected. This is
recorded for only one study whose related work
appeared in two conferences.

Exclusion criteria
• Studies that were irrelevant to software analytics. This

occurs due to misuse of the term “software analytics”
for describing traditional data mining, machine
learning, or statistical work.

• Studies that were irrelevant to software projects, such
as the automotive industry, that misuse the term
“software analytics” to refer to general “data
analytics.”

• Studies that are relevant to generic data analytics and
are not directly relevant to SA or software artifacts.
By applying both inclusion and exclusion criteria, the

relevant papers numbered 41. After applying phase 2 of
the filtration process, represented by the quality
assessment stage (see the next section), the relevant
papers were narrowed down to 19; these papers were used
for data extraction. The list of selected studies is shown in
Table I.

D. Review Quality Assessment
This step is important to ensure the accuracy of data

extraction from the studies reviewed and in order to be
confident about our results and conclusions. We defined the
following quality assessment criteria:
1. QA1: The study contribution is clearly stated.
2. QA2: Software artifacts that are used are clearly explained.
3. QA3: SA characteristics are clear, different from those of

direct statistics where advanced insights are provided.
4. QA4: The results and application(s) are described in detail.

Each of the quality assessment criteria has only three
optional answers: “Yes” = 1, “Partly” = 0.5 and “No” =0. For
each study, the quality score is the sum of the scores of each
quality assessment point and the overall score is adjusted to a
percentage scale. For our study, the quality assessment was
used mainly as a selection criteria, as previously mentioned,
based on the limitation that the papers considered are only
those which have a quality score of 50%. The quality scores
of the papers considered are shown in Table II.

31

E. Data Extraction
To obtain the data which is needed to address our research

questions, we used the data extraction card shown in Table III.

F. Data Synthesis
In this stage, the extracted data was aggregated in order to

answer the research questions. For our research questions, we
used the narrative synthesis method. Accordingly, we will use
tables and charts to present our results.

III. RESULTS AND DISCUSSION
The dominant observation of our review was that there is

not much relevant or mature research in the field of SA. This is
clear from the number of papers considered (19) after applying
both filtration phases as explained earlier. The number of
publications shown included all studies that were available and
reviewed. Results showed that about 79% of the considered
papers (15) were from conferences while the remaining 21%
(4) were from journals. Further, almost all journal papers (3)
were from IEEE software and were included in SA special
edition published in 2013. These statistics emphasize the fact of
the difficulty we faced in finding mature SA work for our
review. As mentioned in the quality assessment section, we
considered only the papers with a quality score of � 50% in
order to guarantee including the most relevant studies. Most of
the studies considered have a quality score of � 75% (15 out of
19 papers). Table IV shows the quality score levels considering
all papers that passed the first filtration phase.

The distribution of the studies selected in each publication
year is shown in Fig.1, which clearly shows that SA studies
became more active in the last two years, 2013 and 2014 only.

In the following subsections, we illustrate the review results
for each of our research questions, one by one, supported with
statistics from our data extraction.

A. Beneficiary Practitioners (RQ1)
RQ1: Which software practitioners does the available SA
research target?

From the studies selected, we identified the main
practitioners that the available SA studies support:

• Developer
• Tester

TABLE III. THE DATA EXTRACTION CARD

Study id
Authors
Study title
Source
Year of publication
RQ1: Beneficiary practitioners
RQ2: Domain
RQ3: Analyzed software artifacts
RQ4: Different linked artifacts

Fig. 1. Distribution of selected studies per year

TABLE II. QUALITY SCORES

Study
ID

QA1 QA2 QA3 QA4 Score

S1 1 1 0 1 75%
S2 1 1 0 1 75%
S3 1 1 1 1 100%
S4 1 1 0 1 75%
S5 1 1 0.5 0.5 75%
S6 1 1 1 0.5 87.5%
S7 0.5 1 0 0.5 50%
S8 1 1 1 0.5 87.5%
S9 1 1 0 1 75%
S10 1 1 1 0.5 87.5%
S11 1 1 1 1 100%
S12 1 1 1 1 100%
S13 1 1 1 1 100%
S14 0.5 1 0 0.5 50%
S15 1 1 0 0.5 62.5%
S16 0.5 1 0 0.5 50%
S17 1 1 0 1 75%
S18 1 1 0.5 1 87.5%
S19 1 1 1 1 100%

TABLE I. SELECTED PRIMARY STUDIES

ID Authors Addressed Research
Questions

Ref.

S1 M. van den Brand et al. 1 2 3 4 [7]
S2 A. Gonzalez-Torres et al. 1 2 3 [8]
S3 E. Stroulia et al. 1 2 3 4 [9]
S4 D. Reniers et al. 1 2 3 [10]
S5 R. Minelli and M. Lanza 1 2 3 4 [11]
S6 J. Lou et al. 1 2 3 4 [12]
S7 C. Klammer and J. Pichler 1 2 3 [13]
S8 T. Taipale et al. 1 2 3 4 [14]
S9 O.Baysal et al. 1 2 3 [15]
S10 P. Johnson et al. 1 2 3 4 [16]
S11 J. Czerwonka et al. 1 2 3 4 [17]
S12 J. Gong and H. Zhang 1 2 3 4 [18]

S13 A. Miranskyy et al. 1 2 3 4 [19]
S14 R. Wu et al. 1 2 3 [20]
S15 S. Han et al. 1 2 3 [21]
S16 Y. Dubinsky et al. 1 2 3 [22]
S17 N. Chen et al. 1 2 3 [23]
S18 M. Mittal and A. Sureka 1 2 3 [24]
S19 G. Robles et al. 1 2 3 4 [25]

32

• Project Manager (PM)
• Portfolio Manager and High Management
As shown in Fig. 2, 90% of all studies targeted developers

(17 out of 19) with about 47% (9) exclusively supporting
developers (for details see Table V). These results show that
SA needs more elaboration regarding stakeholders other than
developers. Even available research work that supports other
stakeholders, like PMs, is still immature and is similar to the
direct statistics and dashboard work. For example, Stroulia et
al. (S3) proposed a framework called “Collaboratorium
Dashboard” in order to visualize insights extracted from
collaborative software development tools that included
information related to the team that has worked on a certain
project, project artifacts, communication between project
stakeholders, and the process followed. Also, the authors have
integrated their framework with IBM Jazz and WikiDev, which
already included integration with SVN, Bugzilla, email, and
wikis. Although the proposed dashboard provided useful
information for PMs in a visual form, such as the number of
emails sent by each team member and the number of files
checked in by each developer, this still formed a straight-
forward insight extraction or statistics from software artifacts.
More analytics are needed to link more than one artifact and
get more supportive and powerful decisions. This can be the
link between the source code of a certain feature, the emails
related to this feature, or the quality reports in order to
highlight the need for refactoring a certain part of this code.
Such advanced analytics are a major need for any future
research in SA.

B. Research Domain (RQ2)
RQ2: Which domains are covered by SA studies?

The aim of extracted data for RQ2 was the identification of

the main active SA research domains in order to support
practitioners in deciding both the hot topics and research
opportunities. Our review showed that most available SA
studies fell into one of the following domains:

• Maintainability and Reverse Engineering
• Team Collaboration and Dashboard
• Incident Management and Defect Prediction
• SA Platform
• Software Effort Estimation.
The distribution of the studies considered per domain can

be found in Fig. 3 (for details see Table VI).
In the following subsections, we will illustrate our findings

for the most significant studies in each domain.
1) SA for Software Maintenance and Reverse Engineering

Gonzalez-Torres et al. (S2) provided a visualization tool
(Maleku) which extracts facts and insights from large legacy
software and provides PMs and developers with useful
information in order to support their decisions related to
software maintenance. This tool extracts information from
software repositories and monitors the repository for any
updates in order to redo the analysis.

Although the proposed tool provided visualization features,
these features simply represent traditional statistical
information, like extracting the metrics related to inheritance
and interface implementation.

Another study by Van den Brand et al. (S1), presents
SQuAVisiT – a powerful visual software analytics tool. It has
been successfully applied to the maintainability assessment of
industry-sized software systems, combining analysis results of
metrics (such as quality analysis), and visualization of these
analysis results. The tool provides software design metrics such
as cyclomatic complexity and inheritance depth. The tool also
provides checking of code convention, duplication, and bad
practices. Although the visual tool provided is useful, the
introduced metrics analysis is traditional and appears in older

TABLE IV. QUALITY ASSESSMENT LEVELS STATISTICS

Quality Levels # Studies Percentage

Very high (85% � score � 100%) 9 22%
High (75% � score < 85%) 6 15%
Medium (50% � score < 75%) 4 9%
Low (0% � score < 50%) 22 54%

Fig. 2. Distribution of selected studies per practitioner

TABLE VI. RQ2 EXTRACTED DATA

Domain Studies
Maintainability and Reverse
Engineering

S1, S2, S4, S5, S7, S12, S13, S14,
S15, S16, S17

Team Collaboration and
 Dashboard

S3, S9, S10, S18

Incident Management and
Defect Prediction

S6, S8

Software Analytics Platform S11
Software Effort Estimation S19

TABLE V. RQ1 EXTRACTED DATA

Practitioner Supporting Studies
Developer S1, S4, S5, S6, S7, S8, S9, S10, S11, S13,

S14, S15, S16, S17, S19
Tester S2, S13
Project Manager S2, S3, S4, S8, S10, S11, S12, S13, S18,

S19
Portfolio Manager S10, S19

33

literature.
Minelli and Lanz (S5) are trying to figure out if the

traditional maintainability approaches are valid for mobile
applications (apps). They rely on the analytics of three artifacts:
source code, third party API invocation, and application
revision historical data. Minelli and Lanz implemented a
visualization software analytics tool for mobile apps called
“SAMOA” (Software Analytics for Mobile Applications). The
tool provides visual presentation for multiple software metrics,
apps versions, and the size of relative line of code between core
functionality and third party invocation.

Although, the visualization tool presented can support
project management, the metrics presented are very similar to
traditional metrics from literature. It was expected to use more
available artifacts such as user comments and ratings from app
stores (like iOS Apple store or Google apps store). Also,
Minelli and Lanz rely on only one dataset for their study.

Klammer and Pichler (S7) introduced a reverse engineering
tool and applied it to electrical engineering software programs.
The tool analyzes only the software source code in order to
provide some insights related to source code structure and to
locate features within source code. Multiple languages are
supported such as C++ and Python. This work is similar to
traditional work, and it needs to consider other software
artifacts in order to apply software analytics concepts.

2) SA for Team Collaboration and Dashboard
Baysal et al. (S9) provided the Mozilla development team

with a new qualitative dashboard as a complementary tool for
the traditional quantitative reports of the Bugzilla issue tracking
system. The qualitative dashboard provided improves
development team awareness of the project situation and future
directions. New features were provided, such as guiding
developers to new information regarding their patches since the
last check, highlighting new comments and reassigned patch
reviewers. This research is promising since the trend toward
qualitative analysis is powerful, and it can facilitate and speed
up the decision-making process instead of relying on a deep
statistical analysis as in traditional quantitative methodologies.
However, the features provided are very direct and can be

easily achieved by reviewing the bug history on the issue
tracking system. In order to make this work more mature, new
features such as team productivity trend charts can be provided.

3) SA for Incident Management and Defect Prediction
Lou et al. (S6) introduce a software analytics tool called

Service Analysis Studio (SAS). SAS supports engineers in
improving incident management by facilitating and automating
the extraction of supportive insights. SAS has the ability to use
multiple data sources – such as performance counters,
operating system logs, and service transaction logs – to provide
insights.

What makes this study important is that it applies the SA
concept by linking multiple artifacts. Also, it presents a new
algorithm to analyze system metrics data and suggests what
abnormal metric is suspected of being the root cause of the
incident. In addition, it introduces a mining technique to find
the suspicious execution patterns, which are the sequence of
actions that led to the incident, within the huge number of
transaction logs.

4) SA Platform
Czerwonka et al. at Microsoft (S11) provide a software

analytics common platform called CODEMINE. The need for
CODEMINE came from the observation of the commonality
between the input, outputs, and processing needs of multiple
analytics team tools. CODEMINE acts as the common
analytics framework for multiple client SA applications at
Microsoft. The CODEMINE ability to provide data from
different software artifacts (such as source code, project
schedule, milestones, and defect reports) opens the opportunity
for new research areas at Microsoft. In turn, this will enrich the
insights by extracting information from cross-products which
will boost team collaboration.

5) SA for Software Effort Estimation
G. Robles et al. (S19) present a study on the effort

estimation of the OpenStack open-source project. Effort
estimation of open source projects is challenging, as such
projects have both a collaborative and distributed nature, and it
is difficult to track the development effort. As a result, the
authors offer a model that extracts data related to developer
activities from the source code management repository and
then guess the effort roughly based on these activities (like the
time between two commits). Then the model calibrates the
rough estimates based on other estimates collected from the
developers in a survey. This study is promising, especially
since it links artifacts to obtain insights that are useful to tackle
such a hard-to-track topic as effort estimation of open source
software projects.

C. Analyzed Software Artifacts (RQ3)
RQ3: Which software artifacts are extracted?

In order to address RQ3, we extracted the types of artifacts
analyzed. This is very important for our study to evaluate the
alignment of the studies with the goal of SA in analyzing more
than one software artifact and providing more advanced
insights.

Fig. 3. Distribution of selected studies per domain

34

The results of our review show that around 47% of the
studies are still using only one artifact (9 studies), and many of
these studies only analyze source code as in the case of
traditional software analysis and metrics studies (4 studies).
These results support our conclusion that most of the currently
available SA studies are still immature and confused about the
difference between the direct software analysis and the new
SA. The results summary is shown in Fig. 4; more details can
be found in Table VII.

D. Checking Artifacts Linkage before Analysis (RQ4)
RQ4: If different artifacts are used, are they linked together?

In order to address our last research question, RQ4, we
evaluated the analysis of the artifacts used. Our main goal was
to make sure that the artifacts were linked together in order to
get more complex insights that could support software
practitioners in making their decisions. It is worthwhile to
highlight that this analysis was valid for only 10 studies when
more than one artifact was used. This was achieved by
reviewing the study scores for the third quality assessment
criteria (QA3). The results showed that eight studies scored
100%. This shows that these studies link multiple artifacts to
get insights that can support decision making. Therefore, these
studies comply with the SA concept and can be considered as
good references for practitioners to understand the SA concept.
For more details, see quality scores in Table II.

IV. LIMITATIONS OF THIS REVIEW
In our review, we considered both journal and conference

papers without evaluating their rankings. This can be attributed
to the difficulty that we faced when trying to find mature and
relevant papers, and it was due to two reasons. The first reason
is that the SA field is a new field of less than four years at the
time of this review. The second reason is misuse of the term
SA and the confusion of the researchers about its correct
indication. This was shown by the number of papers considered
after applying the filtration phases as previously mentioned.

V. CONCLUSION AND FUTURE WORK
In this review, the available SA studies were investigated in

order to understand the current research status of this new
research topic. We conducted a literature review searching for
the relevant studies available from 2000 - 2014. Our review
considered 19 primary studies that supported us in addressing
our four defined research questions. Our results can be
summarized as follows:

• RQ1: The practitioners who benefit from the current
SA studies are developers, testers, project managers
(PM), portfolio managers, and higher management;
about 47% of the considered studies supported only
developers.

• RQ2: The studies considered showed that SA research
covered the domains of maintainability and reverse
engineering, team collaboration and dashboards,
incident management and defect prediction, the SA
platform, and software effort estimation.

• RQ3: Most of the studies considered (around 47%) are
still analyzing only one artifact for their study.

• RQ4: Most of the studies considered analyze more than
one artifact providing more complex insights, but there
is still room for improvement of these studies. The
review results showed that most of the available SA
research introduces direct software statistics like design
metrics and change history, simply decorated with
some new analytics contributions such as linking team
members to the classes they update. Also, most of the
research addresses the low-level analytics of source
code.

Based on our analysis, this review provides a
recommendation for researchers that more research and
elaboration need to be done, such as considering more artifacts
in order to add value to traditional work and using more
datasets to achieve higher confidence level in the results. In
addition, there is a lack of research targeting higher-level
business decision making like portfolio management,
marketing strategy, and sales directions.

Fig. 4. Number of analyzed artifacts versus number of studies

TABLE VII. RQ3 EXTRACTED DATA

Study ID Analyzed Artifacts
S1, S4, S7, S16 Source code
S2 Code repository
S3 Source code repository, issue tracking system,

email, wikis
S5 Source code, version control system
S6 Performance counters, operating system logs,

service transaction logs
S8 Issue management system, version control

system, code reviewing system, source code,
organizational data, testing data

S9 Issue tracker
S10 Process data, product data
S11 Source code, project schedule, milestones,

defect reports
S12 Source code, bug reports
S13 Source code, version control system, bug

reports
S14, S15 Call stack
S17 Mobile apps users reviews
S18 Team wiki, version control system, issue

tracking system
S19 Version control system, developers survey

35

As future work, our study can be extended by considering
more data sources such as ScienceDirect, SpringerLink,
Scopus, INSPEC, following the references in the studies
considered in this review, relevant journals and conferences.
Also, we can widen our search term to include SA relevant
terms such as mining software repositories.

REFERENCES
[1] A. E. Hassan et al., "Roundtable: what’s next in software

analytic," IEEE Software, Vol. 30, Issue 4, pp. 53-56, 2013.
[2] T. Menzies and T. Zimmermann, "Software analytics: so what?,"

IEEE Software, Vol. 30, Issue 4, pp. 31-37, 2013.
[3] T. Menzies and T. Zimmermann, "The many faces of software

analytics," IEEE Software, Vol. 30, Issue 5, pp. 28-29, 2013.
[4] T. Menzies and T. Zimmermann, "Goldfish bowl panel:

Software development analytics," Proc. of the 34th International
Conference on Software Engineering (ICSE), pp. 1032-1033,
2012.

[5] B. Kitchenham and S. Charters, "Guidelines for performing
systematic literature reviews in software engineering," Technical
Report EBSE-2007-01, Ver. 2.3, Keele University and
University of Durham, UK, 2007.

[6] D. Zhang et al., “Software Analytics as a Learning Case in
Practice: Approaches and Experiences,” Proc. of International
Workshop on Machine Learning Technologies in Software
Engineering (MALETS), pp.55-58, 2011.

[7] M. van den Brand, S. Roubtsov, and A. Serebrenik,
"SQuAVisiT: a flexible tool for visual software analytics," Proc.
of the European 13th Conference on Software Maintenance and
Reengineering (CSMR '09), pp. 331-332, 2009.

[8] A. Gonzalez-Torres, R. Theron, F.J. Garcia-Penalvo, M.
Wermelinger, and Y. Yu, "Maleku: an evolutionary visual
software analysis tool for providing insights into software
evolution," Proc. of the IEEE 27th Conference on Software
Maintenance (ICSM), pp. 594-597, 2011.

[9] E. Stroulia, I. Matichuk, F. Rocha, and K. Bauer, "Interactive
exploration of collaborative software-development data," Proc.
of the IEEE 29th International Conference on Software
Maintenance (ICSM), pp. 504-507, 2013.

[10] D. Reniers, L. Voineaa, O. Ersoyb, and A. Teleab, "The Solid*
toolset for software visual analytics of program structure and
metrics comprehension: from research prototype to product,"
Science of Computer Programming archive, Vol. 79, pp. 224-
240, 2014.

[11] R. Minelli and M. Lanza, “Software analytics for mobile
applications – insights & lessons learned,” Proc. of the European
17th Conference on Software Maintenance and Reengineering
(CSMR), pp. 144-153, 2013.

[12] J. Lou et al., "Software analytics for incident management of
online services: an experience report," Proc. of the IEEE/ACM

28th International Conference on Automated Software
Engineering (ASE), pp. 475-485, 2013.

[13] C. Klammer and J. Pichler, "Towards tool support for analyzing
legacy systems in technical domains," Proc. of the IEEE
Conference on Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), pp. 371-374, 2014.

[14] T. Taipale, M. Qvist, and B. Turhan, “Constructing defect
predictors and communicating the outcomes to practitioners,”
Proc. of the IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 357-362, 2013.

[15] O. Baysal, R. Holmes, and M. Godfrey, "Developer dashboards:
the need for qualitative analytics,” IEEE Software, Vol. 30,
Issue 4, pp. 46-52, 2013.

[16] P. Johnson, "Searching under the streetlight for useful software
analytics," IEEE Software, Vol. 30, Issue 4, pp. 57-63, 2013.

[17] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy,
"CODEMINE: building a software development data analytics
platform at Microsoft," IEEE Software, Vol. 30, Issue 4, pp. 64-
71, 2013.

[18] J. Gong and H. Zhang, “BugMap: a topographic map of bugs,”
Proc. of the 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 647-650, 2013.

[19] A. Miranskyy, B. Caglayan, A. Bener, and E. Cialini, “Effect of
temporal collaboration network, maintenance activity, and
experience on defect exposure,” Proc. of the ACM/IEEE 8th
International Symposium on Empirical Software Engineering
and Measurement (ESEM '14), Article No. 27, 2014.

[20] R. Wu, R. Wu, H. Zhang, S. Cheung, and S. Kim,
“CrashLocator: locating crashing faults based on crash stacks,”
Proc. of the International Symposium on Software Testing and
Analysis (ISSTA), pp. 204-214, 2014.

[21] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance
debugging in the large via mining millions of stack traces,”
Proc. of the 34th International Conference on Software
Engineering (ICSE '12), pp. 145-155, 2012.

[22] Y. Dubinsky, Y. Feldman and M. Goldstein, “Where is the
business logic?,” Proc. of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), pp. 667-670, 2013.

[23] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang, “AR-Miner:
mining informative reviews for developers from mobile app
marketplace,” Proc. of the 36th International Conference on
Software Engineering (ICSE), pp. 767-778, 2014.

[24] M. Mittal and A. Sureka, “Process mining software repositories
from student projects in an undergraduate software engineering
course,” Proc. of the 36th International Conference on Software
Engineering (ICSE), pp. 344-353, 2014.

[25] G. Robles, J. González-Barahona, C. Cervigón, A. Capiluppi,
and D. Izquierdo-Cortázar, “Estimating development effort in
free/open source software projects by mining software
repositories: a case study of OpenStack,” Proc. of the 11th
Working Conference on Mining Software Repositories (MSR),
pp.222-231,2014

36

