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Abstract—Software Analytics (SA) is a new branch of big data 

analytics that has recently emerged (2011). What distinguishes 
SA from direct software analysis is that it links data mined from 
many different software artifacts to obtain valuable insights. 
These insights are useful for the decision-making process 
throughout the different phases of the software lifecycle. Since 
SA is currently a hot and promising topic, we have conducted a 
systematic literature review, presented in this paper, to identify 
gaps in knowledge and open research areas in SA. Because many 
researchers are still confused about the true potential of SA, we 
had to filter out available research papers to obtain the most SA-
relevant work for our review. This filtration yielded 19 studies 
out of 135. We have based our systematic review on four main 
factors: which software practitioners SA targets, which domains 
are covered by SA, which artifacts are extracted by SA, and 
whether these artifacts are linked or not. The results of our 
review have shown that much of the available SA research only 
serves the needs of developers. Also, much of the available 
research uses only one artifact which, in turn, means fewer links 
between artifacts and fewer insights. This shows that the 
available SA research work is still embryonic leaving plenty of 
room for future research in the SA field. 

Index Terms—Software analytics, software development 
analytics, systematic literature review, big data analytics. 

I. INTRODUCTION 
Software analytics (SA) represents a branch of big data 

analytics. SA is concerned with the analysis of all software 
artifacts, not only source code. Its importance comes from the 
need to extract support insights and facts from the available 
software artifacts to facilitate decision making. Artifacts are 
available from all software development life cycle steps, 
beginning with the proposal and project initiation phases and 
ending with the project closure and customer satisfaction 
surveys. The dynamic nature of the software industry is 
associated with decision-making needs through all software 
business tiers. These tiers vary from the higher level of the 
management board and setting the enterprise vision and 
portfolio management, going through project management 
planning and implementation by software developers. As 
emphasized by some experts [1-4] in the SA domain, all of the 
stakeholders involved deserve to be supported with decision-
making tools in order to facilitate the decision-making 
process. SA can play the role of the tool provider by providing 

suitable and supportive insights and facts to software industry 
stakeholders to make their decision making easier, faster, more 
precise, and more confident. The main difference between SA 
and direct software analysis is that rather than just providing 
straightforward insights extraction SA performs additional 
advanced steps. As clarified by Hassan [1], SA must provide 
visualization and useful interpretation of insights in order to 
facilitate decision making.  

This paper is organized as follows: In Section II, we will 
illustrate our review methodology. Our review results are 
illustrated in Section III. Section IV presents the limitation of 
this review and, finally, we conclude our work in Section V. 

II. METHOD 
In systematic literature review (SLR), we followed 

Kitchenham [5] approach for a software engineering literature 
review. So we started with the planning phase in which we 
developed the review protocol. We conducted our review in six 
stages: defining research questions, designing the search 
strategy, selecting the studies to use, assessing the quality, 
extracting data, and synthesizing data.  

A. Research Questions 
In our SLR, we are trying to answer the following research 

questions: 
1. RQ1: Which software practitioners does the available SA 

research target? 
RQ1 aims to identify the beneficiary stakeholders from 
available SA studies. It also aims to assess whether SA studies 
target different levels of stakeholders or only focus on the 
software development team in order to draw the attention of the 
SA research community to improve the research plan.  
2. RQ2: Which domains are covered by SA studies? 
RQ2 tries to highlight the scope of the available SA studies. 
The target domains, such as software maintainability and 
incident management, will be determined. Practitioners can 
interpret this information from two points of view. The first 
point of view is to know SA hot topics and consider these for 
their research plan, while the other view is to analyze any 
research gap and take the lead to consider this as an original 
research point.  
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3. RQ3: Which software artifacts are extracted? 
The main difference between SA and direct software analysis is 
making use of all of the available artifacts in order to come out 
with strong decision support insights. Therefore, RQ3 aims to 
verify that this idea is clear for the current research community.     
4. RQ4: If different artifacts are used, are they linked 

together? 
RQ4 tries to evaluate if each study satisfies the SA main idea of 
linking different software artifacts. This linkage aims to come 
out with more advanced insights unlike direct software analysis 
and metrics where researchers use each artifact separately 
without linkage to other artifacts. 

B. Search Strategy 
1) Search Terms 
To guarantee that the review is closely relevant to SA, we 

tried to limit our search to the most SA relevant search term. 
So, we started with the term “software analytics” then we went 
through the following steps: 
1. Extracting the major distinct terms from our research 

questions. 
2. Using different spellings of the terms. 
3. Updating our search term with keywords from relevant 

papers. 
4. Using the main alternatives and adding “OR operator” in 

order to get the maximum amount of directly relevant 
literature. 

These steps yielded the following search term: 
“Software analytics” OR “Software analytic” OR “Software 
development analytics” OR “Software development analytic”. 

2) Literature Resources 
We included two electronic databases in order to search for 

our primary review studies: IEEE – Xplore and ACM Digital 
Library. The search term was constructed using the advanced 
search features provided by each of these two databases. The 
search covered metadata in the case of IEEE – Xplore, and 
both metadata and body (content) of literatures in the case of 
ACM Digital Library. 

Our search included the period January 2000 to December 
2014. As SA concept was initially introduced by Zhang et al. in 
2011 [6], we expected that relevant literatures would be from 
2011 and forward, but we made our search timeframe wider in 
order to guarantee gathering all of the relevant papers. 

C. Study Selection 
The search results contained 135 unique candidate papers 

(41 papers from IEEE Xplore, 102 from ACM Digital Library 
and 8 duplicate papers between the two databases which were 
removed). In order to eliminate any irrelevant papers which 
would not add any significant information, we conducted the 
following two filtration phases: 

• Filtration phase 1: both inclusion and exclusion criteria 
were defined and applied to the unique candidate 
papers to eliminate any irrelevant papers so that only 
relevant papers with useful information would result 
from this phase. 

• Filtration phase 2: the quality assessment criteria (as 
defined in the next section) were used to assess 
candidate papers that are output from phase 1. The 
papers which satisfy the quality boundary will be used 
in the data extraction stage. 

The following were the inclusion and exclusion criteria: 
Inclusion criteria 

• SA concepts were applied to extract insights from 
software project artifacts. 

• Research was relevant to software project lifecycle 
phases. 

• Research was directly related to the software industry 
and stakeholders. 

• For duplicate publications of the same study, the 
newest and most complete one was selected. This is 
recorded for only one study whose related work 
appeared in two conferences. 

Exclusion criteria 
• Studies that were irrelevant to software analytics. This 

occurs due to misuse of the term “software analytics” 
for describing traditional data mining, machine 
learning, or statistical work. 

• Studies that were irrelevant to software projects, such 
as the automotive industry, that misuse the term 
“software analytics” to refer to general “data 
analytics.” 

• Studies that are relevant to generic data analytics and 
are not directly relevant to SA or software artifacts. 
By applying both inclusion and exclusion criteria, the 

relevant papers numbered 41. After applying phase 2 of 
the filtration process, represented by the quality 
assessment stage (see the next section), the relevant 
papers were narrowed down to 19; these papers were used 
for data extraction. The list of selected studies is shown in 
Table I. 

D. Review Quality Assessment 
This step is important to ensure the accuracy of data 

extraction from the studies reviewed and in order to be 
confident about our results and conclusions. We defined the 
following quality assessment criteria:  
1. QA1: The study contribution is clearly stated. 
2. QA2: Software artifacts that are used are clearly explained. 
3. QA3: SA characteristics are clear, different from those of 

direct statistics where advanced insights are provided. 
4. QA4: The results and application(s) are described in detail. 

Each of the quality assessment criteria has only three 
optional answers: “Yes” = 1, “Partly” = 0.5 and “No” =0. For 
each study, the quality score is the sum of the scores of each 
quality assessment point and the overall score is adjusted to a 
percentage scale. For our study, the quality assessment was 
used mainly as a selection criteria, as previously mentioned, 
based on the limitation that the papers considered are only 
those which have a quality score of  50%. The quality scores 
of the papers considered are shown in Table II. 
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E. Data Extraction 
To obtain the data which is needed to address our research 

questions, we used the data extraction card shown in Table III.  

F. Data Synthesis 
In this stage, the extracted data was aggregated in order to 

answer the research questions. For our research questions, we 
used the narrative synthesis method. Accordingly, we will use 
tables and charts to present our results. 

III. RESULTS AND DISCUSSION 
The dominant observation of our review was that there is 

not much relevant or mature research in the field of SA. This is 
clear from the number of papers considered (19) after applying 
both filtration phases as explained earlier. The number of 
publications shown included all studies that were available and 
reviewed. Results showed that about 79% of the considered 
papers (15) were from conferences while the remaining 21% 
(4) were from journals.  Further, almost all journal papers (3) 
were from IEEE software and were included in SA special 
edition published in 2013. These statistics emphasize the fact of 
the difficulty we faced in finding mature SA work for our 
review. As mentioned in the quality assessment section, we 
considered only the papers with a quality score of � 50% in 
order to guarantee including the most relevant studies. Most of 
the studies considered have a quality score of � 75% (15 out of 
19 papers). Table IV shows the quality score levels considering 
all papers that passed the first filtration phase. 

The distribution of the studies selected in each publication 
year is shown in Fig.1, which clearly shows that SA studies 
became more active in the last two years, 2013 and 2014 only. 

In the following subsections, we illustrate the review results 
for each of our research questions, one by one, supported with 
statistics from our data extraction. 

A. Beneficiary Practitioners (RQ1) 
RQ1: Which software practitioners does the available SA 
research target? 

From the studies selected, we identified the main 
practitioners that the available SA studies support: 

• Developer 
• Tester 

TABLE III.  THE DATA EXTRACTION CARD 

Study id 
Authors 
Study title 
Source 
Year of publication 
RQ1: Beneficiary practitioners 
RQ2: Domain 
RQ3: Analyzed software artifacts 
RQ4: Different linked artifacts 

 

Fig. 1. Distribution of selected studies per year 

TABLE II.  QUALITY SCORES 

Study 
ID 

QA1 QA2 QA3 QA4 Score 

S1 1 1 0 1 75% 
S2 1 1 0 1 75% 
S3 1 1 1 1 100% 
S4 1 1 0 1 75% 
S5 1 1 0.5 0.5 75% 
S6 1 1 1 0.5 87.5% 
S7 0.5 1 0 0.5 50% 
S8 1 1 1 0.5 87.5% 
S9 1 1 0 1 75% 
S10 1 1 1 0.5 87.5% 
S11 1 1 1 1 100% 
S12 1 1 1 1 100% 
S13 1 1 1 1 100% 
S14 0.5 1 0 0.5 50% 
S15 1 1 0 0.5 62.5% 
S16 0.5 1 0 0.5 50% 
S17 1 1 0 1 75% 
S18 1 1 0.5 1 87.5% 
S19 1 1 1 1 100% 

TABLE I.  SELECTED PRIMARY STUDIES 

ID Authors Addressed Research 
Questions 

Ref. 

S1 M. van den Brand et al. 1 2 3 4 [7] 
S2 A. Gonzalez-Torres et al. 1 2 3   [8] 
S3 E. Stroulia et al. 1 2 3 4 [9] 
S4 D. Reniers et al. 1 2 3   [10] 
S5 R. Minelli and M. Lanza 1 2 3 4 [11] 
S6 J. Lou et al. 1 2 3 4 [12] 
S7 C. Klammer and J. Pichler 1 2 3   [13] 
S8 T. Taipale et al. 1 2 3 4 [14] 
S9 O.Baysal et al. 1 2 3   [15] 
S10 P. Johnson et al. 1 2 3 4 [16] 
S11 J. Czerwonka et al. 1 2 3 4 [17] 
S12 J. Gong and H. Zhang 1 2 3 4 [18] 

S13 A. Miranskyy et al. 1 2 3 4 [19] 
S14 R. Wu et al. 1 2 3   [20] 
S15 S. Han et al. 1 2 3   [21] 
S16 Y. Dubinsky et al. 1 2 3   [22] 
S17 N. Chen et al. 1 2 3   [23] 
S18 M. Mittal and A. Sureka 1 2 3   [24] 
S19 G. Robles et al. 1 2 3 4 [25] 
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• Project Manager (PM) 
• Portfolio Manager and High Management 
As shown in Fig. 2, 90% of all studies targeted developers 

(17 out of 19) with about 47% (9) exclusively supporting 
developers (for details see Table V). These results show that 
SA needs more elaboration regarding stakeholders other than 
developers. Even available research work that supports other 
stakeholders, like PMs, is still immature and is similar to the 
direct statistics and dashboard work. For example, Stroulia et 
al. (S3) proposed a framework called “Collaboratorium 
Dashboard” in order to visualize insights extracted from 
collaborative software development tools that included 
information related to the team that has worked on a certain 
project, project artifacts, communication between project 
stakeholders, and the process followed. Also, the authors have 
integrated their framework with IBM Jazz and WikiDev, which 
already included integration with SVN, Bugzilla, email, and 
wikis. Although the proposed dashboard provided useful 
information for PMs in a visual form, such as the number of 
emails sent by each team member and the number of files 
checked in by each developer, this still formed a straight-
forward insight extraction or statistics from software artifacts. 
More analytics are needed to link more than one artifact and 
get more supportive and powerful decisions. This can be the 
link between the source code of a certain feature, the emails 
related to this feature, or the quality reports in order to 
highlight the need for refactoring a certain part of this code. 
Such advanced analytics are a major need for any future 
research in SA. 

B. Research Domain (RQ2) 
RQ2: Which domains are covered by SA studies? 

The aim of extracted data for RQ2 was the identification of 

the main active SA research domains in order to support 
practitioners in deciding both the hot topics and research 
opportunities. Our review showed that most available SA 
studies fell into one of the following domains: 

• Maintainability and Reverse Engineering 
• Team Collaboration and Dashboard  
• Incident Management and Defect Prediction 
• SA Platform 
• Software Effort Estimation. 
The distribution of the studies considered per domain can 

be found in Fig. 3 (for details see Table VI). 
In the following subsections, we will illustrate our findings 

for the most significant studies in each domain. 
1) SA for Software Maintenance and Reverse Engineering 

Gonzalez-Torres et al. (S2) provided a visualization tool 
(Maleku) which extracts facts and insights from large legacy 
software and provides PMs and developers with useful 
information in order to support their decisions related to 
software maintenance. This tool extracts information from 
software repositories and monitors the repository for any 
updates in order to redo the analysis. 

Although the proposed tool provided visualization features, 
these features simply represent traditional statistical 
information, like extracting the metrics related to inheritance 
and interface implementation.  

Another study by Van den Brand et al. (S1), presents 
SQuAVisiT – a powerful visual software analytics tool. It has 
been successfully applied to the maintainability assessment of 
industry-sized software systems, combining analysis results of 
metrics (such as quality analysis), and visualization of these 
analysis results. The tool provides software design metrics such 
as cyclomatic complexity and inheritance depth. The tool also 
provides checking of code convention, duplication, and bad 
practices. Although the visual tool provided is useful, the 
introduced metrics analysis is traditional and appears in older 

TABLE IV.  QUALITY ASSESSMENT LEVELS STATISTICS 

Quality Levels # Studies Percentage 

Very high (85% � score � 100%) 9 22% 
High (75% � score < 85%) 6 15% 
Medium (50% � score < 75%) 4 9% 
Low (0% � score < 50%) 22 54% 

 

Fig. 2. Distribution of selected studies per practitioner 

TABLE VI.  RQ2 EXTRACTED DATA 

Domain Studies 
Maintainability and Reverse
Engineering 

S1, S2, S4, S5, S7, S12, S13, S14, 
S15, S16, S17 

Team Collaboration and 
 Dashboard  

S3, S9, S10, S18 

Incident Management and  
Defect Prediction 

S6, S8 

Software Analytics Platform S11 
Software Effort Estimation S19 

TABLE V.  RQ1 EXTRACTED DATA 

Practitioner Supporting Studies 
Developer S1, S4, S5, S6, S7, S8, S9, S10, S11, S13, 

S14, S15, S16, S17, S19 
Tester S2, S13 
Project Manager S2, S3, S4, S8, S10, S11, S12, S13, S18, 

S19 
Portfolio Manager S10, S19 
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literature.  
Minelli and Lanz (S5) are trying to figure out if the 

traditional maintainability approaches are valid for mobile 
applications (apps). They rely on the analytics of three artifacts: 
source code, third party API invocation, and application 
revision historical data. Minelli and Lanz implemented a 
visualization software analytics tool for mobile apps called 
“SAMOA” (Software Analytics for Mobile Applications). The 
tool provides visual presentation for multiple software metrics, 
apps versions, and the size of relative line of code between core 
functionality and third party invocation.  

Although, the visualization tool presented can support 
project management, the metrics presented are very similar to 
traditional metrics from literature. It was expected to use more 
available artifacts such as user comments and ratings from app 
stores (like iOS Apple store or Google apps store). Also, 
Minelli and Lanz rely on only one dataset for their study.  

Klammer and Pichler (S7) introduced a reverse engineering 
tool and applied it to electrical engineering software programs. 
The tool analyzes only the software source code in order to 
provide some insights related to source code structure and to 
locate features within source code. Multiple languages are 
supported such as C++ and Python. This work is similar to 
traditional work, and it needs to consider other software 
artifacts in order to apply software analytics concepts. 

2) SA for Team Collaboration and Dashboard 
Baysal et al. (S9) provided the Mozilla development team 

with a new qualitative dashboard as a complementary tool for 
the traditional quantitative reports of the Bugzilla issue tracking 
system. The qualitative dashboard provided improves 
development team awareness of the project situation and future 
directions. New features were provided, such as guiding 
developers to new information regarding their patches since the 
last check, highlighting new comments and reassigned patch 
reviewers. This research is promising since the trend toward 
qualitative analysis is powerful, and it can facilitate and speed 
up the decision-making process instead of relying on a deep 
statistical analysis as in traditional quantitative methodologies.  
However, the features provided are very direct and can be 

easily achieved by reviewing the bug history on the issue 
tracking system. In order to make this work more mature, new 
features such as team productivity trend charts can be provided.  

3) SA for Incident Management and Defect Prediction 
Lou et al. (S6) introduce a software analytics tool called 

Service Analysis Studio (SAS). SAS supports engineers in 
improving incident management by facilitating and automating 
the extraction of supportive insights. SAS has the ability to use 
multiple data sources – such as performance counters, 
operating system logs, and service transaction logs – to provide 
insights.  

What makes this study important is that it applies the SA 
concept by linking multiple artifacts.  Also, it presents a new 
algorithm to analyze system metrics data and suggests what 
abnormal metric is suspected of being the root cause of the 
incident. In addition, it introduces a mining technique to find 
the suspicious execution patterns, which are the sequence of 
actions that led to the incident, within the huge number of 
transaction logs.  

4) SA Platform 
Czerwonka et al. at Microsoft (S11) provide a software 

analytics common platform called CODEMINE. The need for 
CODEMINE came from the observation of the commonality 
between the input, outputs, and processing needs of multiple 
analytics team tools. CODEMINE acts as the common 
analytics framework for multiple client SA applications at 
Microsoft. The CODEMINE ability to provide data from 
different software artifacts (such as source code, project 
schedule, milestones, and defect reports) opens the opportunity 
for new research areas at Microsoft. In turn, this will enrich the 
insights by extracting information from cross-products which 
will boost team collaboration. 

5) SA for Software Effort Estimation 
G. Robles et al. (S19) present a study on the effort 

estimation of the OpenStack open-source project. Effort 
estimation of open source projects is challenging, as such 
projects have both a collaborative and distributed nature, and it 
is difficult to track the development effort. As a result, the 
authors offer a model that extracts data related to developer 
activities from the source code management repository and 
then guess the effort roughly based on these activities (like the 
time between two commits). Then the model calibrates the 
rough estimates based on other estimates collected from the 
developers in a survey. This study is promising, especially 
since it links artifacts to obtain insights that are useful to tackle 
such a hard-to-track topic as effort estimation of open source 
software projects. 

C. Analyzed Software Artifacts  (RQ3) 
RQ3: Which software artifacts are extracted? 

In order to address RQ3, we extracted the types of artifacts 
analyzed. This is very important for our study to evaluate the 
alignment of the studies with the goal of SA in analyzing more 
than one software artifact and providing more advanced 
insights.  

 

Fig. 3. Distribution of selected studies per domain 
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The results of our review show that around 47% of the 
studies are still using only one artifact (9 studies), and many of 
these studies only analyze source code as in the case of 
traditional software analysis and metrics studies (4 studies). 
These results support our conclusion that most of the currently 
available SA studies are still immature and confused about the 
difference between the direct software analysis and the new 
SA. The results summary is shown in Fig. 4; more details can 
be found in Table VII. 

D. Checking Artifacts Linkage before Analysis (RQ4) 
RQ4: If different artifacts are used, are they linked together? 

In order to address our last research question, RQ4, we 
evaluated the analysis of the artifacts used. Our main goal was 
to make sure that the artifacts were linked together in order to 
get more complex insights that could support software 
practitioners in making their decisions. It is worthwhile to 
highlight that this analysis was valid for only 10 studies when 
more than one artifact was used. This was achieved by 
reviewing the study scores for the third quality assessment 
criteria (QA3). The results showed that eight studies scored 
100%. This shows that these studies link multiple artifacts to 
get insights that can support decision making. Therefore, these 
studies comply with the SA concept and can be considered as 
good references for practitioners to understand the SA concept. 
For more details, see quality scores in Table II. 

IV. LIMITATIONS OF THIS REVIEW 
In our review, we considered both journal and conference 

papers without evaluating their rankings. This can be attributed 
to the difficulty that we faced when trying to find mature and 
relevant papers, and it was due to two reasons. The first reason 
is that the SA field is a new field of less than four years at the 
time of this review. The second reason is misuse of the term 
SA and the confusion of the researchers about its correct 
indication. This was shown by the number of papers considered 
after applying the filtration phases as previously mentioned.  

V. CONCLUSION AND FUTURE WORK 
In this review, the available SA studies were investigated in 

order to understand the current research status of this new 
research topic. We conducted a literature review searching for 
the relevant studies available from 2000 - 2014. Our review 
considered 19 primary studies that supported us in addressing 
our four defined research questions. Our results can be 
summarized as follows: 

• RQ1: The practitioners who benefit from the current 
SA studies are developers, testers, project managers 
(PM), portfolio managers, and higher management; 
about 47% of the considered studies supported only 
developers. 

• RQ2: The studies considered showed that SA research 
covered the domains of maintainability and reverse 
engineering, team collaboration and dashboards, 
incident management and defect prediction, the SA 
platform, and software effort estimation.  

• RQ3: Most of the studies considered (around 47%) are 
still analyzing only one artifact for their study.  

• RQ4: Most of the studies considered analyze more than 
one artifact providing more complex insights, but there 
is still room for improvement of these studies. The 
review results showed that most of the available SA 
research introduces direct software statistics like design 
metrics and change history, simply decorated with 
some new analytics contributions such as linking team 
members to the classes they update. Also, most of the 
research addresses the low-level analytics of source 
code.  

Based on our analysis, this review provides a 
recommendation for researchers that more research and 
elaboration need to be done, such as considering more artifacts 
in order to add value to traditional work and using more 
datasets to achieve higher confidence level in the results. In 
addition, there is a lack of research targeting higher-level 
business decision making like portfolio management, 
marketing strategy, and sales directions.   

 

Fig. 4. Number of analyzed artifacts versus number of studies 

TABLE VII.  RQ3 EXTRACTED DATA 

Study ID Analyzed Artifacts 
S1, S4, S7, S16 Source code 
S2 Code repository 
S3 Source code repository, issue tracking system, 

email, wikis 
S5 Source code, version control system 
S6 Performance counters, operating system logs, 

service transaction logs 
S8 Issue management system, version control 

system, code reviewing system, source code, 
organizational data, testing data 

S9 Issue tracker 
S10 Process data, product data 
S11 Source code, project schedule, milestones, 

defect reports 
S12 Source code, bug reports 
S13 Source code, version control system, bug 

reports 
S14, S15 Call stack 
S17 Mobile apps users reviews 
S18 Team wiki, version control system, issue 

tracking system 
S19 Version control system, developers survey 
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As future work, our study can be extended by considering 
more data sources such as ScienceDirect, SpringerLink, 
Scopus, INSPEC, following the references in the studies 
considered in this review, relevant journals and conferences. 
Also, we can widen our search term to include SA relevant 
terms such as mining software repositories. 
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