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Abstract

Function Point (FP) is a useful software metric that was first proposed 25 years ago, since then, it has steadily evolved into a func-
tional size metric consolidated in the well-accepted Standardized International Function Point Users Group (IFPUG) Counting Practices
Manual – version 4.2. While software development industry has grown rapidly, the weight values assigned to count standard FP still
remain same, which raise critical questions about the validity of the weight values. In this paper, we discuss the concepts of calibrating
Function Point, whose aims are to estimate a more accurate software size that fits for specific software application, to reflect software
industry trend, and to improve the cost estimation of software projects. A FP calibration model called Neuro-Fuzzy Function Point Cal-
ibration Model (NFFPCM) that integrates the learning ability from neural network and the ability to capture human knowledge from
fuzzy logic is proposed. The empirical validation using International Software Benchmarking Standards Group (ISBSG) data repository
release 8 shows a 22% accuracy improvement of mean magnitude relative error (MMRE) in software effort estimation after calibration.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Software effort estimation is crucial in software engi-
neering. Accurate software estimation is critical for project
success. If done correctly, resources are allocated appropri-
ately, but on the other hand, an inaccurate estimation can
ruin even a small software company. Consequently, many
models for estimating software development effort have
been proposed and some of them are arguably the most
popular such as COCOMO [1], SLIM [2]. These models
can be considered algorithmic models. The pre-specified
formulas for estimating development efforts in those mod-
els are calibrated from historical data and all these models
utilize software size as a key factor to estimate effort. FP is

an ideal software size metric to estimate cost since it can be
used in the early development phase, such as requirement,
measures the software functional size from user’s view, and
is programming language independent [3].

Although software engineering has been influenced by a
number of ideas from different fields [4], software estima-
tion models combining algorithmic models with machine
learning approaches, such as neural networks and fuzzy
logic, have been viewed with scepticism by the majority
of software managers [5]. Briefly, neural network tech-
niques are based on the principle of learning from histori-
cal data, whereas fuzzy logic is a method used to make
rational decisions in an environment of uncertainty and
vagueness. However, fuzzy logic alone does not enable
learning from the historical database of software projects.
Once the concept of fuzzy logic is incorporated into the
neural network, the result is a neuro-fuzzy system that
combines the advantages of both techniques.

Nevertheless, the weight values of FPA method are said
to reflect the functional size of software. They have been
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introduced in 1979, and have been applied universally. In
contrast, software development methods have evolved stea-
dily for the last 20 years, and today’s software differs dras-
tically from what it was over two decades ago, for example
the object-oriented paradigm has incorporated into main-
stream of software development. These developments have
triggered the creation of Object-Oriented Function Points
(OOFP) [6], which substantially improved the accuracy of
estimation of object-oriented systems using FP [7]. Algo-
rithmic effort prediction models are limited by their inabil-
ity to cope with vagueness and imprecision in the early
stages of the software life cycle. Srinivasan and Fisher [8]
illustrate a neural network learning approach to estimate
software development effort known as Back-propagation.
They indicate possible advantages of the approach relative
to traditional models, but also point out limitations that
motivate continued research. Furthermore, MacDonell [9]
also considers the applicability of fuzzy logic modelling
methods to the task of software source code sizing, and
suggests that fuzzy predictive models can outperform their
traditional regression-based counterparts, particularly with
refinement using data and knowledge. The theory of fuzzy
sets [10] as been successfully applied to other models of
software cost estimation, such as f-COCOMO [11] and
NF-COCOMO [12], is sufficiently general to be extended
to the well-known FP method.

1.1. Survey of related work

Finnie et al. [13] reported research on the combination
of machine learning approach with FP, they compared
three estimation techniques using FP as an estimate of sys-
tem size. The models considered are based on regression
analysis, artificial neural networks and case-based reason-
ing. Although regression models performed poorly on the
given data set, the authors observed that both artificial
neural networks and case-based reasoning appeared to be
valuable for software estimation models. Hence, they con-
cluded that case-based reasoning is appealing because of its
similarity to the expert judgement approach and for its
potential in supporting human judgement.

Yau and Tsoi [14] introduce a fuzzified FP analysis
model to help software size estimators to express their judg-
ment and use fuzzy B-spline membership function to derive
their assessment values. The weak point of this work is that
they used limited in-house software to validate their model,
which brings a great limitation regarding the validation of
their model. Lima et al. [15] also propose the use of concepts
and properties from fuzzy set theory to extend FP analysis
into a fuzzy FP analysis, a prototype that automates the cal-
culation of FPs using the fuzzified model was created, but
the calibration was done using a small database comprised
of legacy systems developed mainly in Natural 2, Microsoft
Access and Microsoft Visual Basic, which compromises this
work’s generality. Al-Hajri et al. [16] establish a new FP
weight system using artificial neural network. Like our
work, in order to validate their model, they also used the

data set provided by the ISBSG. In their research, tables
gathered with the training methods from neural networks
replaced the original complexity table. Their results are
quite accurate, although the correlation is still unsatisfac-
tory with MMRE over 100%, which originates from the
wide variation of data points with many outliers.

Neural network technique is based on the principle of
learning from historical data. The neural network is trained
with a series of inputs and desired outputs from the train-
ing data set [17]. After the training is complete, new inputs
are presented to the neural network to predict the corre-
sponding outputs. Fuzzy logic is a technique to make
rational decisions in an environment of uncertainty and
imprecision [18,19]. It is rich in representing human linguis-
tic ability with the terms such as fuzzy logic and fuzzy rules
[20]. Once the concept of fuzzy logic is incorporated into
the neural network, the result is a neuro-fuzzy system with
learning capacity that combines the advantages of both
techniques [21].

Previous research projects have indicated that the com-
bination of machine learning approaches and algorithmic
models yields a more accurate prediction of software costs
and effort, which is competitive with traditional algorith-
mic estimators. However, our proposed neuro-fuzzy model
goes even further: it is a unique combination of statistical
analysis, neural networks and fuzzy logic. Specifically, we
obtained an equation from statistical analysis, defined a
suite of fuzzy sets to represent human judgement, and used
a neural network to learn from a comprehensive historical
database of software projects. A Neuro-Fuzzy Function
Points Calibration model that incorporates the learning
ability from neural network and the ability to capture
human knowledge from fuzzy logic is proposed and further
validated in this paper. A similar Neuro-Fuzzy approach
was applied on COCOMO model [12] and the improve-
ment in software effort estimation proves this approach’s
validity. In Xishi et al. [12], the fuzzy logic part defines
the COCOMO cost driver’s membership function and neu-
ral network is used to train the weight values of the
COCOMO cost drivers.

Abran and Robillard’s empirical study [22] demon-
strates the clear relationship between FPA’s primary com-
ponent and Work-Effort. In our model, an equation
between Unadjusted Function Points and Work effort is
used to train the neural network and in estimating the
effort. Kralj et al. [23] identified the Function Point Analy-
sis method deficiency of upper boundaries in the rating
complexity process that carries the same essences of our
research questions. Kralj et al. proposed an improved
FPA method by plugging in a dividing process to resolve
this problem while we proposed a Neuro-Fuzzy calibration
approach.

1.2. Function Points: a short description

FP analysis is a process used to calculate software
functional size. Currently, the most pervasive version is
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regulated in the Counting Practices Manual – version 4.2,
which was released by the International Function Point
User Group (IFPUG) [3]. Counting FP requires the identi-
fication of five types of functional components: Internal
Logical Files (ILF), External Interface Files (EIF), Exter-
nal Inputs (EI), External Outputs (EO) and External Inqui-
ries (EQ). Each functional component is classified as a
certain complexity based on its associated file numbers
such as Data Element Types (DET), File Types Referenced
(FTR) and Record Element Types (RET). The complexity
matrix for the five components is shown in Table 1. Table 2
illustrates how each function component is then assigned a
weight according to its complexity. The Unadjusted Func-
tion Point (UFP) is calculated with Eq. 1, where Wij are the
complexity weights and Zij are the counts for each function
component.

UFP ¼
X5

i¼1

X3

j¼1

Zij � Wij ð1Þ

Once calculated, UFP is multiplied by a Value Adjustment
Factor (VAF), which takes into account the supposed con-
tribution of technical and quality requirements. The VAF
is calculated from 14 General System Characteristics
(GSC), using Eq. 2. The GSC includes the characteristics
used to evaluate the overall complexity of the software.

VAF ¼ 0:65þ 0:01
X14

i¼1

Ci ð2Þ

Ci is the Degree of Influence (DI) rating of each GSC.
Finally, a FP is calculated by the multiplication of UFP

and VAF, as expressed in Eq. 3.

FP ¼ UFP� VAF ð3Þ

2. Research motivation and problem description

The significant relationship between the software size
and cost has been recognized for a long time. In the classi-
cal view of cost estimation process, the outputs of effort

and duration are estimated from software size as the pri-
mary input and a number of cost factors as the secondary
inputs. There are mainly two types of software size metrics
such as Source Lines of Code (SLOC) and FP. SLOC is a
natural artifact that measures software physical size, but it
is usually not available until the coding phase and difficult
to have the same definition across different programming
languages. FP has gained popularity over time because it

can be used at an earlier stage of software development.
Calibrating FP incorporates the historical information
and gives a more accurate view of software size. Hence
more accurate cost estimation comes with a better software
size metric. The FPA method complexity weight system
refers to all the complexity calculations and weight values
expressed in FP. In other word, we have 15 parameters in
the complexity weight system to tune up, which are low,
average and high value of External Inputs, External Out-
puts, External Inquiries, Internal Logical Files, and Exter-
nal Interface Files, respectively. We summarized the
objectives of this work in the form of following research
questions:

RQ-1: ‘‘Does calibration of the function point weight
values further enhanced improvements in the software size
estimation process?’’

RQ-2: ‘‘Does a soft computing based approach to cali-
brate the function point weight values provides improve-
ment in the software size estimation process?’’

Regression analysis is the traditional mathematical
approach. Our aim is to calibrate the 15 parameter values
of FPA method complexity weight system. However, with
as many as 15 parameters at hand to calibrate, it is hard
to obtain a good equation for all 15 parameters using sta-
tistical analysis approach such as regression analysis. Neu-
ral network is a relatively new and appealing methodology
whose learning ability may lead to good result. However, it
has an infamous problem of falling into the black-box trap.
It is hard to explain how neural network is able to perform
so well, particularly for software engineers. Fuzzy logic is
also a hot topic since it can capture human’s judgment.
Instead of giving an exact number to all 15 Function Points
parameters, we could define fuzzy linguistic terms and
assign a fuzzy set within numeric range. This can overcome
some of the problems exposed in the paper in the next sub-
section. However, only adopting fuzzy logic cannot benefit
from historical project database. Our Neuro-Fuzzy
approach presented in this paper is a novel combination
of the above three approaches. It obtains a simple equation

Table 1
Complexity matrix for fp function components

ILF/EIF DET EI DET EO/EQ DET

RET 1–19 20–50 51+ FTR 1–4 5–15 16+ FTR 1–5 6–19 20+

1 Low Low Average 0–1 Low Low Average 0–1 Low Low Average
2–5 Low Average High 2 Low Average High 2–3 Low Average High
6+ Average High High 3+ Average High High 4+ Average High High

Table 2
Function component complexity weight assignment

Component Low Average High

External inputs 3 4 6
External outputs 4 5 7
External inquiries 3 4 6
Internal logical files 7 10 15
External interface files 5 7 10
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from statistical analysis, defines a suite of fuzzy sets to rep-
resent human judgment, and uses neural network to learn
the calibrated parameters from the historical project data-
base. The equation from statistical analysis is fed into neu-
ral network learning. The calibrated parameters from
neural network are then utilized in fuzzy sets and the users
can specify the upper and lower bounds from their human
judgment.

2.1. Problem description and analysis

2.1.1. Ambiguous classification and crisp boundary

In FP counting method, each component, such as
Internal Logical File (ILF) and External Interface File
(EIF), is classified to a complexity level determined by
the numbers of its associated files, such as Data Element
Types (DET), Record Element Types (RET) [3]. Table 3
lists the complexity matrix for ILF as an example. Such
complexity classification is easy to operate, but it may
not fully reflect the true color of the software complexity
under the specific software application. For example,
Table 4 shows a software project with three ILF, A, B
and C. According to the complexity matrix, A and B
are classified as having the same complexity and are
assigned the same weight value of 10. However, A has
30 more DET than B and is certainly more complex. They
are now assigned the same complexity, which is recorded
as Observation 1: ambiguous classification. Also, B is
classified as average and assigned a weight of 10 while
C is classified as low and assigned a weight of 7. B has
only one more DET than C and the same number of
RET as C. However, B has been assigned three more
weight units than C. This is recorded as Observation 2:
crisp boundary, because there is no smooth transition
boundary between two classifications. Processing the
number of FP component associated files such as DET,

RET using fuzzy logic can produce an exact complexity
degree.

2.1.2. Calibration to reflect industry trends

The weight values of Unadjusted Function Point (UFP)
in Table 2 are said to reflect the functional size of software
[24], Albrecht determined them in 1979 based on the study
of 22 IBM Data Processing projects. Since 1979, software
development has been growing steadily and is not limited
to one organization or one type of software. Thus, there
is need to calibrate these weight values to reflect the current
software industry trend. The ISBSG maintains an empiri-
cal project data repository. ISBSG data repository release
8 contains 2027 projects, which come from dozens of coun-
tries and cover a broad range project types from many
industries and business areas, with 75% of the projects
being less than 5 years old. Learning UFP weight values
from ISBSG data repository using neural network for cal-
ibration to reflect the current software industry trend is
detailed in the next section.

2.1.3. Calibration to improve cost estimation

The neuro-fuzzy FP model presented in this paper is a
unique approach that incorporates FP measurements with
the neural networks, fuzzy logic and statistical regression
techniques. A technical view of this model is depicted in
Fig. 1. The first component, statistical regression is a math-
ematical technique used to represent the relationship
between selected values and observed values from the sta-
tistical data. Secondly, the neural network technique is
based on the principle of learning from previous data. This
neural network is trained with a series of inputs and desired
outputs from the training data so as to minimize the predic-
tion error. Once the training is complete and the appropri-
ate weights for the network links are determined, new
inputs are presented to the neural network to predict the
corresponding estimation of the response variable. The
final component of our model, fuzzy logic, is a technique
used to make rational decisions in an environment of
uncertainty and imprecision. It is rich in its capability to
represent the human linguistic ability with the terms of
fuzzy set, fuzzy membership function, fuzzy rules, and
the fuzzy inference process. Once the concept of fuzzy logic
is incorporated into the neural network, the result is a

Table 3
ILF complexity matrix

ILF DET

RET 1–19 20–50 51+

1 Low Low Average
2–5 Low Average High
6+ Average High High

Table 4
Observations on FP complexity classification

ILF A ILF B ILF C

DET 50 20 19
RET 3 3 3
Complexity classification Average Average Low
Weight value 10 10 7
Observation 1 Ambiguous classification
Observation 2 Crisp boundary

Fig. 1. Neuro-fuzzy Function Points Calibration Model block diagram.
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neuro-fuzzy system that combines the advantages of both
techniques.

3. Neuro-Fuzzy Function Point Calibration Model

3.1. Model overview

The block diagram shown in Fig. 1 gives an overview of
the Neuro-Fuzzy Function Point Calibration Model. The
project data provided by ISBSG [25] is imported to extract
an estimation equation and to train the neural network. An
estimation equation in the form of Effort = A ÆUFPB, where
A, B are all coefficients calculated from the regression pro-
cess and extracted from the data set by using statistical
regression technique. Fuzzy logic is used to calibrate FP
complexity degree to fit specific application. Neural net-
work calibrates UFP weight values to reflect the current
software industry trend by learning from ISBSG data.
The validation results show that the calibrated Function
Points have better estimation ability than that of the
original.

3.2. Fuzzy logic calibration step

The five FPA elements (ILF, EIF, EI, EO, EQ) are clas-
sified according to the complexity matrices. The inputs in
the original complexity weight matrices are the numbers
of the files associated with each function component, and
the output is the component’s complexity classification.
We define three new linguistic terms: small, medium and
large, to express the inputs qualitatively. For example, if
an ILF has one Record Element Types (RET), we assume
that ILF’s RET input is small. Also, we use linguistic
terms: low, average and high for the output, which are
the same as in the original matrices. To fuzzify the inputs
and outputs, we define fuzzy sets to represent the linguistic
terms [26]. The fuzzy membership grade is captured
through the membership functions of each fuzzy set. The

inputs are of the trapezoidal type and the outputs are of
the triangular type, because these types of membership
functions are appropriate to use in preserving the values
in the complexity weight matrices. Fig. 2 shows an example
of fuzzy sets for ILF component. Table 5 illustrates the
nine fuzzy rules defined based on the original complexity
matrices. Each rule has two parts in its antecedent linked
with an ‘‘AND’’ operator and one part in its consequence.

Next, the fuzzy inference process using the Mamdani
approach [26] is applied to evaluate each component’s
complexity degree when the linguistic terms, the fuzzy sets,
and the fuzzy rules are defined. Once the input, such as
small DET or large RET is fuzzified, the degree to which
each part of the antecedent for each rule can be calculated.
We apply the min (minimum) method to evaluate the
‘‘AND’’ operation and obtain one number that represents
the result of the antecedent for that rule. The antecedent
result as a single number implies the consequence using
the min (minimum) implication method. Each rule is
applied in the implication process and produces one conse-
quence. The aggregation using the max (maximum)
method is processed to combine all the consequences from
all the rules and gives one fuzzy set as the output. Finally,
the output fuzzy set is defuzzified to a crisp single number
using the centroid calculation method.

Fig. 2. Neuro-fuzzy Function Points Calibration Model fuzzy sets for ILF. (a) Inputs fuzzy sets (Trapezoidal) (b) Output fuzzy sets (Triangular).

Table 5
Truth table of fuzzy logic rule set

Rule # Input 1 Input 2 Output

1 Small Small Low
2 Small Medium Low
3 Small Large Average
4 Medium Small Low
5 Medium Medium Average
6 Medium Large High
7 Large Small Average
8 Large Medium High
9 Large Large High
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An example of the complete fuzzy inference process is
shown in Fig. 3. Input values are set to DET: 50 and
RET: 3. The antecedent parts of the fuzzy rules whose
degrees are not equal to zero are activated and represented
by the light gray shades. Here, rules 4, 5, 6, 7, 8, 9 are acti-
vated for the antecedent part one and the rules 2, 5, 8 are
activated for the antecedent part two. The implication is
processed using the min method, and generates the conse-
quence part of each rule as shown by the dark gray shad-
ings in the right part of the Fig. 3. The aggregation
process combines all the consequent fuzzy sets using the
max method and produces one output fuzzy set, shown
by solid dark gray shade at the bottom right of the
Fig. 3. Finally, the consequent fuzzy set is defuzzified,
using the centroid calculation method, and the output is
achieved as a single value of 11.4, the bold black line in
the output fuzzy set located in the bottom right of the
Fig. 3. Now we can construct a fuzzy logic system for each
FPA element (ILF, EIF, EI, EO, EQ). Fig. 4 shows the
two-input-one-output fuzzy logic system for ILF as an

example. This approach is applicable to all five FPA ele-
ments. Afterwards, a fuzzy complexity measurement sys-
tem that takes into account all five Unadjusted Function
Points function components is built after the fuzzy logic
system for each function component is established, as
shown in Fig. 5. Each FPA element is into a Fuzzy Logic
System (FLS). The outputs of all five FLS are summed
up and become the fuzzy Unadjusted Function Points.
The new fuzzy Unadjusted Function Points count is the
result of the fuzzy complexity measurement system. Table
6 shows the original and the calibrated weight values of
ILF using the same example in Section 3.2. We can find
that the three different weight values are appropriately
weighted.

3.3. Neural network calibration step

The neural network step is aiming at calibrating Func-
tion Points to reflect the current software industry trend.
By learning from ISBSG data repository, a project data
repository which meets the requirement of reflecting the
industry trend, this part is achieved by the calibration goal.

3.3.1. Data preparation

In order to reach a reasonable conclusion, the raw
ISBSG data set is filtered by several criteria. Recommended
by the ISBSG [27], only the data points whose quality rat-
ings is ‘‘A’’ or ‘‘B’’ is considered. Function Point has sev-
eral variations of counting methods such as IFPUG [3],
COSMIC FFP [28] and Mark II [29], of which the IFPUG
method is the most popular (used by 90% of the projects).
The work efforts are recorded at different resource levels

and the projects recorded at the resource level one (devel-
opment team), a level that covers 70% projects, are chosen.

Fig. 3. Fuzzy inference process of neuro-fuzzy Function Points Model.

Fig. 4. Fuzzy logic system for ILF.

ILF FLS 1

EQ

EO

EI

EIF FLS 2 

FLS 3 Fuzzy UFP

FLS 5

FLS 4

Fig. 5. Fuzzy complexity measurement system of neuro-fuzzy Function
Points Model.

Table 6
Calibration using fuzzy logic

ILF A ILF B ILF C

DET 50 20 19
RET 3 3 3
Original weight value 10 10 7
Calibrated weight value 11.4 10.4 10.2
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There are three major development types of the projects: the
new development and redevelopment projects are calcu-
lated by the original FP equation, thus they are grouped
into one type and are selected; whereas the enhancement
projects are calculated by another different equation and
are excluded.

The calibration requires the 15 breakdowns of UFP, that
is, the associated file numbers of low, average and high for
five function components. Also, 14 GSC rating values are
chosen to add model’s extendibility.2 Application of all
these criteria results in a significant decrease in the number
of data points. A subset of 409 projects is obtained of
which the quality rating is ‘‘A’’ or ‘‘B’’, the counting
method is IFPUG, the effort resource level is one, and
the development type is new development or re-develop-
ment. Further selection of the projects that provide the
15 Unadjusted Function Point breakdowns and 14 GSC
rating values results in a 184 projects data set. Angelis
et al. [30] conducted research on ISBSG data repository
and suffered from the same problem. They use ISBSG

Release 6, which contains 789 projects but only 63 projects
are left after applying filtering criteria.

An effort estimation equation is extracted based on the
data subset using statistical regression analysis. The regres-
sion process includes logarithmic transformation, correla-
tion analysis, statistical regression, and post-regression
validity analysis. The statistical regression analysis assumes
that the underlying data are normally distributed. How-
ever, the histograms of effort and size (Figs. 6(a) and (b))
show that they are not distributed normally but are highly
skewed. To approximate a normal distribution, we apply a
logarithmic transformation on these variables to make the
large values smaller and to bring the data closer together. It
is observed in the histograms of ln UFP and ln Work Effort
(Figs. 6(c) and (d)) that the transformed variables are
approximately normally distributed. The relationship
between the work effort and size is visualized, using two-
dimensional graphs as shown in Figs. 7(a) and 7(b), before
and after logarithmic transformation, respectively.

An obvious positive linear relationship between effort
and size after logarithmic transformation is observed and
an equation in the form of Eq. 3 is achieved. Its equivalent
form: Eq. 4 is used to estimate cost in work effort and

2 Almost all the projects that provide 15 UFP breakdowns fields provide
14 GSC rating values.

Fig. 6. (a) UFP; (b) work effort; (c) ln UFP; (d) ln work effort.
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serves to be an activation function of neural network. Eqs.
3 and 4 are shown below, where a, b, A, B are all coeffi-
cients calculated from the regression. Though of simple
form, Eq. 4 is derived from the reliable filtered data set
and analyzed by reliable statistical procedure. It does not
include any special ISBSG repository parameters; thus it
can estimate any Function Points oriented project and
can be extended to include cost drivers for future works.

ln Effort ¼ a � ln UFPþ b ð4Þ
Effort ¼ A �UFPB ð5Þ

3.3.2. Neural network structure

The neural network structure used in the Neuro-Fuzzy
Function Points Calibration model is shown in Fig. 8.
There are 16 input neurons, denoted as Xi, i from 1 to
16. Among these, neurons X1 to X15 represent the three
complexity ratings of five UFP components. The inputs
of these 15 neurons are the numbers of their respective
components denoted as NINLOW (number of low Exter-
nal Inputs), NINAVG (number of average External

Inputs), etc. These 15 neurons are all connected to neuron
Y associated with the weights of wi, i from 1 to 15. Neuron
X16 is a bias node with a constant input of one and is con-
nected to the output neuron Z with an associated weight of
v2, which represents the coefficient A in Eq. 2. Neuron Y
receives the outputs from the 15 neurons in the input layer
and is then connected to neuron Z. The output of neuron Y

is Y ¼
P15

i¼1X i � W i which is functionally equivalent to the
UFP calculation formulae (UFP ¼

P5
i¼1

P3
j¼1Zij � W ij).

The activation function of neuron Z is Z = v2 Æ Yv1 which
is of the same form as Eq. 4 (Effort = A Æ UFPB). Thus,
neuron Z can be used to estimate the software cost in work
effort from software size in UFP. The underlying reason of
using work effort as the output to train the UFP weight val-
ues is that they are supposed to reflect the software compo-
nent complexity and the complexity should be proportional
to the project work effort which is based on common sense
that the more complex the software, the more effort should
be put in.

3.3.3. Learning procedure

The goal of the learning procedure of the neural net-
work is to minimize the prediction difference between the
estimated and actual efforts. Given NN projects, the predic-
tion difference can be expressed as the error signal defined
in Eq. 5:

E ¼
XNN

n¼1

1

2
Wn

Zn� Zdn
Zdn

� �2

ð6Þ

E is the error signal; Zn is the estimated effort of the nth
project; Zdn is the actual effort of the nth project, the de-
sired output; and Wn is the training weight given to the
nth project whose default value equals to one.

Learning procedure flowchart (Fig. 9) illustrates the
complete neural network learning procedure. Each neu-
ron’s associated weight is initialized to a certain value.
The associated weights of all neurons Xi (i from 1 to 15)

Fig. 7. (a) Work effort and UFP; (b) ln Work Effort and ln UFP.

Fig. 8. Neural network structure.
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are initialized to the original Function Points weight values
as suggested by Albrecht [24], and the weights v1 and v2 are
initialized to the coefficient values obtained in the estima-
tion equation extracted. Certain steps are then repeated
until the learning process goal is achieved or the stop crite-
ria are met. The learning process goal is to reduce the error
signal E until it has fallen within a desired range. The stop
criteria may be that the learning loop is found to diverge or
the error signal is found to decrease insignificantly as the
iteration continues. The corrective adjustments are applied
on the weights to bring the output neuron Z closer to the
desired response after iteration. Thus, the error signal E

is minimized in a step-by-step manner.
The back-propagation mechanism [21] is adopted in the

learning procedure. In the iterations of the learning proce-
dure, the estimated output and the error signal is calculated
from the input layer toward the output layer through the
feed-forward path. Then the error signal propagates from
the output layer to the input layer through the backward
path. Adjustment of each neuron’s associated weight is
obtained when the error signal is back propagated. The
learning algorithm is also subject to monotonic constraints
in order to be consistent with the definition of Function
Points. Monotonic constraints are identified in the defini-
tion of the weight values of Unadjusted Function Points.
That is, the low weight value must be less than that of
the average, and the average weight value must be less than
that of the high, i.e., Low < Average < High. The learning
rate is updated from time to time during the learning pro-
cess when the error signal is not on the right trend. The

weights w1 to w15 associated with neurons X1 to X15 are
assigned new values when the learning procedure is com-
pleted. These new weight values are the calibrated weight
values for the Unadjusted Function Points function
components.

4. Experimental methodology and evaluation

A neuro-fuzzy FP calibration tool, named NFFPCT,
has been implemented in Matlab 6.5. The training data
set is loaded from a text file and the associated weights
of the neurons are initialized to the original FP weight val-
ues. The outliers whose Relative Errors (RE) are larger
than the threshold specified by the user are identified and
excluded from the training data set. Next, the user inputs
the neural network training parameters, such as the learn-
ing rate and the epoch number, and then clicks the ‘‘Start
Training’’ button to launch the training process. Once the
training finishes, the calibrated weight values are shown
on the right side of the screen. The user can press the ‘‘Plot
Results’’ button to depict a training trend graph at the bot-
tom right of the screen. The goal of neural network train-
ing is achieved gradually as plotted in the bottom right of
the screenshot: MMRE decreases as the training iteration
epoch proceeds (MMRE is the Mean Magnitude Relative
Error, a performance criterion that measures the estima-
tion accuracy explained below). All of the training results
can be saved in text files or in a Microsoft Excel
spreadsheet.

In order to evaluate our neuro-fuzzy model, we con-
ducted five experiments. For each experiment, we ran-
domly separated the original data set of 184 projects into
100 training data points and 84 test data points. We
selected the number of training data points (100) and test
data points (84) in order to balance the numbers relatively
evenly between the training and testing points. On the one
hand, the number of training data points should be as high
as possible to provide accurate learning results. On the
other hand, these data points should not be too large so
that the neural network functions effectively for the train-
ing data but performs poorly for the testing data. The out-
liers are the abnormal project data points with large noise
that may distort the training result; an outlier is defined as
a project whose Relative Error is larger than a threshold of
400%, where the threshold excludes less than 10% of data
points as outliers.3 Thus, we exclude the outliers in order
to calibrate UFP weight values, but we include them in
testing the model.

4.1. Criteria for performance evaluation

Several performance evaluation criteria used to assess
the neuro-fuzzy FP model are described below.

Fig. 9. Learning procedure flowchart.

3 The numbers of outliers for Experiments 1–5 are 8, 8, 7, 7, 7 out of 100
training data set.
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1. Relative Error (RE). For project i, Relative Error (RE)
measures the estimation deviation and is defined as
follows:

REi ¼
Estimatedi �Actuali

Actuali
ð7Þ

2. Magnitude of Relative Error (MRE). For project i, the
Magnitude of Relative Error (MRE) measures the abso-
lute estimation accuracy and is defined as follows:

MREi ¼
jEstimatedi �Actualij

Actuali
ð8Þ

3. Mean Magnitude of Relative Error (MMRE). For n pro-
jects, the Mean Magnitude of Relative Error (MMRE) is
expressed as follows:

MMRE ¼ 1

n

Xn

i¼1

jEstimatedi �Actualij
Actuali

¼ 1

n

Xn

i¼1

MREi

ð9Þ
MREi is the Magnitude of Relative Error (MRE) for
project i.

4. Prediction at level p (PRED). For n projects, the predic-
tion at level p is defined as follows:

PREDðpÞ ¼ k
n

ð10Þ

k is the number of projects wherein the MRE is less than
or equal to p.

4.2. Discussion of results

The calibrated UFP weight values obtained from
Experiments 1–5 are listed in Table 7. The original weight
values are listed in the first column, and the average
weight values from the five experiments are shown in
the last column of the table. In most cases, the calibrated
values are smaller than the original ones. The weight val-
ues are initialized to the original FP values assigned in

1979 and are then tuned by learning from the ISBSG
Data Repository – release 8, which is an updated project
data repository. This result accords with the fact that the
overall productivity of the software industry has been
continuously increasing since FP was invented in 1979.
As stated in a report from QSM, for example, the soft-
ware development productivity trend for a business appli-
cation company is found to increase one unit on the
Productivity Index (PI) every 1.4 years from 1990 to
2000, and the trend is expected to continue [31]. Numer-
ous factors result in productivity improvement, such as
improved developer capability, process model adoption
like CMM, availability of CASE tools, and the advance-
ment of computer technology. Therefore, lower weight
values of FP result because productivity has increased
in the last 25 years. In order to accomplish the same
number of tasks, less effort is needed today than was
the case in 1979, when FP was introduced.

The evaluation results of the five experiments, assessed
by the Mean Magnitude Relative Error (MMRE), are
listed in Table 8. ‘‘Improvement’’ refers to the MMRE dif-
ference between the original and the calibrated weight val-
ues. Fig. 10 plots the MMRE with the original weight
values, the MMRE with the calibrated weight values,
improvement over all five experiments and the average.
The neuro-fuzzy calibration model has resulted in an aver-
age of 22% improvement of MMRE in estimating effort
from calibrated Function Points compared with the origi-
nal Function Points. After calibration, the MMRE is
around 100%, which is still a relatively large percentage,
due to the absence of well-defined cost drivers such as
COCOMO [1] factors. Unfortunately, the ISBSG – release
8 does not have data on similar types of cost drivers.

The five experiments were assessed by PRED criteria,
the evaluation results of which are listed in Table 9. Four
PRED criteria are used here, specifically Pred 25, Pred
50, Pred 75 and Pred 100. Fig. 11 plots the comparison
of the average original and the calibrated PRED results
where overall improvement is observed.

Table 7
Calibrated UFP weights values

Component Original Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 New average

EI Low 3 0.65 1.63 0.40 1.06 0.94 0.94
Average 4 2.11 2.74 1.89 1.97 2.06 2.15
High 6 4.88 4.51 4.83 4.66 4.60 4.70

EO Low 4 2.95 3.68 3.00 3.49 3.36 3.30
Average 5 4.75 4.61 4.54 4.36 4.56 4.56
High 7 5.97 6.39 6.15 6.51 5.87 6.18

EQ Low 3 1.63 2.13 1.46 2.08 1.54 1.77
Average 4 3.06 2.94 2.69 2.89 3.12 2.94
High 6 5.48 5.21 5.42 5.18 5.45 5.35

ILF Low 7 5.23 5.72 5.24 5.46 5.36 5.40
Average 10 9.87 9.68 9.72 9.77 9.85 9.78
High 15 14.94 14.90 14.88 14.92 14.94 14.92

EIF Low 5 4.77 4.48 4.58 4.65 4.60 4.62
Average 7 6.92 6.94 6.92 6.88 6.94 6.92
High 10 10.00 9.99 10.00 10.00 10.00 10.00
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The evaluation results from 15 sample projects are listed
in Table 10. There are three projects for each experiment.
First of all, there is one mini project, where the work effort
is less than 3000 staff-hours or 20 staff-months). Also, there
is one small project, where the work effort involves approx-
imately 4500–7500 staff-hours or 30–50 staff-months.
Finally, there is one medium to large project; a medium
project is defined as one where the work effort is around
15,000 to 22,500 staff-hours or 100–150 staff-months, and
a large project where the work effort is more than 30,000
staff-hours or 200 staff-months.4 In Table 9, other catego-
ries include ‘‘Actual’’, which is the actual work efforts mea-
sured by staff-hours; ‘‘UFP’’, which is the unadjusted FP;
‘‘WE’’, which is estimated work efforts; ‘‘RE’’, which is
the Relative Error; and ‘‘Percentage Improvement’’, which
is the percentage of improvement in the Magnitude Rela-
tive Error (MRE). The whole data set is unbalanced in
terms of the project size distribution: only around 10% of
the projects are medium or large projects and the remain-
ing 90% are mini or small; the unbalanced training data
leads to uneven results. Although the evaluation of the
neuro-fuzzy FP model provides better estimation results
for small or mini projects than it does for medium and
large ones, the overall estimation is improved. Moreover,
ISBSG does not provide data for well-defined cost drivers.
Since cost drivers play an important role in estimation,
especially for medium and large projects some of the results

regarding the medium and large projects are not
impressive.

5. Validity analysis of model

The two most important aspects of precision in experi-
ment-based studies are reliability and validity. Reliability
refers to the reproducibility of a measurement, whereas
validity refers to the correspondence between the experi-
mental value of a measurement and its true value. Subse-
quently, this section discusses the reliability and validity
of the results observed during and after the calibration of
weights for the five FP elements. After applying the average
calibrated weights, the reliability of the five FP elements
was evaluated by internal-consistency analysis, which was
performed using the coefficient alpha. This coefficient of
EI, EO, EQ, ILF and EIF was 0.59, 0.53, 0.66, 0.38 and
0.66, respectively; with the original weights, the respective
values for coefficient alpha of EI, EO, EQ, ILF and EIF
were 0.53, 0.50, 0.63, 0.35 and 0.63. In comparing these
two sets of data, it is evident that using the calibrated
weights produces a slight improvement in the reliability
coefficient.

According to Hunter and Schmidt [32], construct valid-
ity is a quantitative question rather than a qualitative dis-
tinction between ‘‘valid’’ or ‘‘invalid’’; it is a matter of
degree. The construct validity of the five FP elements was
evaluated using principal component analysis with VARI-
MAX rotation. In this study, we used eigen-value and scree
plot as reference points to observe the construct validity.
More specifically, we utilized eigen-value-one-criterion,
also known as the Kaiser criterion, which means that any
component having an eigen-value greater than one was
retained. Eigen-value analysis revealed that the FP ele-
ments formed a single factor with an eigen-value of 1.87,
whereas a second factor was also formed with a value that
was slightly higher than the threshold of 1.0 and with an
EIF factor loading range of 0.98. The scree plot clearly
showed a division at the first component. EI and ILF
showed the strongest factor loading range of 0.95 and
0.92, respectively, hence supporting the conclusion of prior
research [33,34,35], which maintains that EI and ILF have
a strong correlation and that EIF is rarely correlated with
other FP elements.

The second type of validity, criterion validity, is con-
cerned with the degree to which the scales under study4 Each staff-month translates to roughly 150 staff-hours.

Table 8
MMRE evaluation results

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

MMRE original 1.38 1.58 1.57 1.39 1.42
MMRE calibrated 1.10 1.28 1.17 1.03 1.11
Improvement 0.28 0.30 0.40 0.36 0.31
Average improvement 0.33
Percentage improvement 20% 19% 25% 26% 22%
Average percentage improvement 22%
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Fig. 10. MMRE evaluation results comparison.
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are related to an independent measure of the relevant crite-
rion [36]. We used multiple regression analysis to determine
the criterion validity of the five FP elements and the UFP;
the FP elements were used as predictor variables and the
UFP was used as a criterion variable. Subsequently, the
multiple correlation coefficients measured was 0.54 and
the F-ratio of 70.92 was at P < 0.001. Cohen [37] reported

that a multiple correlation coefficient higher than 0.51 cor-
responds to a large effect size. Therefore, we can conclude
that the criterion validity of the five FP elements is
sufficient.

Table 11 illustrates the regression analysis of the sam-
ples utilized in all five experiments and can be used to
explain the shape of the data and its variability. The
adjusted multiple R2 measures the proportion of the vari-
ability in the dependent variable (work effort), which has
been explained by the relationship with the independent
variable (function points). The F-ratio statistics were used
to estimate the probability that the independent variable
does not improve the prediction of the dependent variable;
the accompanying p-value indicates this probability. Cohen
[37] suggested that a multiple correlation coefficient of 0.14
corresponds to a small effect size, coefficients of 0.36 corre-
spond to a medium effect size, and coefficients above 0.51
correspond to a large effect size. Table 11 shows the ‘‘post
hoc’’ power analysis of the five experiments’ sample sub-
datasets based on regression analysis. In power analysis,
we can specify any three of four quantities: alpha, power,
sample size and effect size, and then estimate the missing
one. In ‘‘post hoc’’ power analysis, we specified everything

Table 10
Evaluation results from sample projects

Experiment Project type Actual Original estimates Calibrated estimates Percentage improvement

UFP WE RE UFP WE RE

1 Mini 1155 519 3297.4 1.85 371.3 2479.8 1.15 38%
Small 5525 1828 9625.7 0.74 1331.5 7350.5 0.33 55%
Medium/large 65513 1200 6728.2 �0.90 924.9 5391.1 �0.92 �2%

2 Mini 1691 432 2719.4 0.61 334.7 2133.7 0.26 57%
Small 7505 1255 9348.6 0.25 1010.1 7757.8 0.03 88%
Medium/large 54620 13580 72326.8 0.32 10545.9 58204.5 0.07 78%

3 Mini 2041 582 3714.6 0.82 441.3 2885.3 0.41 50%
Small 5800 1164 6994.6 0.21 819.9 5079.2 �0.12 43%
Medium/large 21014 4943 26192.5 0.25 3350.3 18363.5 �0.13 48%

4 Mini 1367 383 2577.8 0.89 275.5 1852.9 0.36 60%
Small 5320 1300 8775.5 0.65 1083 7307.5 0.37 43%
Medium/large 51527 981 6617.6 �0.87 702.6 4735.7 �0.91 �5%

5 Mini 1367 383 2105 0.54 266.6 1545.6 0.13 76%
Small 5864 796 7294.2 0.24 508.3 4799.9 �0.18 25%
Medium/large 13083 1956 16875.1 0.29 1559.4 13659.1 0.04 86%

Table 9
PRED evaluation results

Experiment1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average

Pred 25 Original 13% 13% 14% 13% 11% 13%
Calibrated 14% 11% 14% 10% 13% 12%
Improvement 1% �2% 0% �3% 2% 0%

Pred 50 Original 29% 21% 29% 20% 18% 23%
Calibrated 30% 25% 30% 26% 24% 27%
Improvement 1% 4% 1% 6% 6% 4%

Pred 75 Original 45% 36% 43% 37% 37% 40%
Calibrated 54% 37% 45% 50% 42% 46%
Improvement 9% 1% 2% 13% 5% 6%

Pred 100 Original 66% 57% 66% 57% 51% 60%
Calibrated 77% 62% 70% 67% 60% 67%
Improvement 11% 5% 4% 10% 9% 8%
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Fig. 11. PRED evaluation results comparison.
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but expected power and subsequently estimated this miss-
ing variable. First, we calculated the effect size by using
the adjusted R2, and then we used the quantities of alpha
as 0.05, the sample size as 84, and the respective effect size
of experiments in order to calculate the power of the test.
The effect size ranges from 0.56 to 0.75, which is considered
to be a large effect size.

Another aspect of validity is concerned with whether or
not the study reports results that correspond to previous
findings. Prior investigations [33,34,35] that study the cor-
relation between the five elements of function points con-
cluded that EI and ILF are always correlated, and that
EIF is rarely correlated with another FP element; the gen-
eral findings of these investigations agreed that although
most of the correlations are weak, there are still some
strong ones. We applied the average calibrated weights
proposed by our model to the 184 projects, and then calcu-
lated the correlation coefficients among the five FP ele-
ments with the purpose of analyzing whether they are
inline with previous findings. EI and ILF showed a strong
correlation of 0.90 at P < 0.001, whereas EIF did not cor-
relate with EI and EQ at P < 0.05. Thus, the analysis we
obtained is in agreement with previous studies, therefore
verifying its validity.

5.1. Threats to external validity

Threats to external validity are conditions that limit the
researcher’s ability to generalize the results of his/her
experiment to industrial practice [38], which was the case
with this study. Specific measures were taken to support
external validity; for example, a random sampling tech-
nique was used to draw samples from the population in
order to conduct experiments, and filtering was applied
to the ISBSG data set. Five experiments were conducted
by drawing five different random samples in order to gen-
eralize the results. ‘‘Post hoc’’ analysis of effect size and
power reinforced the external validity of the experiments
by yielding a large effect size. Furthermore, the correlation
among the five FP elements was found to correspond with
previous studies, thus, also supporting the external validity
of the experiments in the context of previous studies.

The proposed calibration of the FP element’s weights
were applied to the ISBSG data set to monitor the effective-
ness of the approach; a potential threat to the external

validity of this study involved the question of whether or
not similar results would be obtained with an entirely dif-
ferent sample. In this investigation, we calibrated the
weights of the five FP elements using only the ISBSG data
set, which has raised a threat to the external validity of the
calibration process. The ISBSG data set contains projects
using different function point counting techniques, such
as IFPUG, COSMIC and MARK II; since 90% of the sam-
ple used the IFPUG counting method; we therefore
restricted our experiments to IFPUG projects. This deci-
sion may lead to the question as to whether the proposed
model’s outcome will be valid if the model is used with a
type of FP counting technique besides IFPUG.

Our study is a data-driven type of research where we
extracted a model based on known facts. The proposed
model is more meaningful for small projects, which are
actually the most common type of projects in the software
industry. This limitation is due to the ISBSG data sets’
characteristics used in this study, and it has raised threats
to external validity, specifically in the case of large projects.
In reality, there are more small projects than large ones,
and even the large projects tend to be subdivided into smal-
ler projects so that they become easier to manage.
Although the proposed approach has some potential to
threaten external validity, we followed appropriate
research procedures by conducting and reporting tests to
guarantee the reliability and validity of the study, and cer-
tain measures were also taken to ensure the external
validity.

6. Conclusion

The neuro-fuzzy FP calibration model presented in this
paper aimed at finding answers to the research questions
RQ-1 and RQ-2 of this study and improved the Function
Points Analysis Method. The experimental results show a
22% accuracy improvement of MMRE in software effort
estimation from Function Points and demonstrate that
Function Points need calibration and can be calibrated.
This finding provides an answer to research question RQ-
1 of this investigation. The fuzzy logic part of the model
calibrates the Function Points complexity degree to fit
the specific application context. The neural network part
of the model calibrates the UFP weight values to reflect
the current software industry trend. This part of the model

Table 11
Regression and power analysis of experiment’s sample

Experiment # N Regression analysisa Power analysisb

Adjusted R2 F-ratio Effect size Lambda Critical F Power

1 84 0.41 58.73 0.694 58.37 3.10 1.000
2 84 0.43 64.92 0.754 63.36 3.10 1.000
3 84 0.42 62.33 0.724 60.82 3.10 1.000
4 84 0.41 59.54 0.694 58.37 3.10 1.000
5 84 0.36 48.36 0.562 47.25 3.10 1.000

a Regression analysis: p-value < 0.0001.
b Power analysis: a = 0.05.
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overcomes three problems with the unadjusted FP com-
plexity weight values: obsolete weight values, weight values
defined subjectively, and weight values defined locally. We
demonstrated in this paper that the use of fuzzy logic and
neural network techniques to calibrate FP further improves
the cost estimation process of software projects. Thus, this
observation provides answer to the research question RQ-2
of this study.

FP as a software size metric is an important topic in the
software engineering domain. A practical suggestion for
future endeavors in this area could be recalibration of
FP. ISBSG – release 8 is a large, new and wide-range pro-
ject data repository, so the calibrated FP weight values
learned from this repository reflect the maturity level of
today’s software industry. However, software development
is a rapidly growing industry and these calibrated weight
values will not reflect tomorrow’s software. In the future,
when modern project data is available, the FP weight val-
ues will again need to be re-calibrated to reflect the latest
software industry trend. The neuro-fuzzy FP model is a
framework for calibration and the neuro-fuzzy FP calibra-
tion tool can automate the calibration process when data
becomes available.
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