
ORIGINAL PAPER

Xishi Huang Æ Danny Ho Æ Jing Ren Æ Luiz F. Capretz

A soft computing framework for software effort estimation

Published online: 20 April 2005
� Springer-Verlag 2005

Abstract Accurate software estimation such as cost esti-
mation, quality estimation and risk analysis is a major
issue in software project management. In this paper, we
present a soft computing framework to tackle this chal-
lenging problem. We first use a preprocessing neuro-
fuzzy inference system to handle the dependencies among
contributing factors and decouple the effects of the
contributing factors into individuals. Then we use a
neuro-fuzzy bank to calibrate the parameters of con-
tributing factors. In order to extend our framework into
fields that lack of an appropriate algorithmic model of
their own, we propose a default algorithmic model that
can be replaced when a better model is available. One
feature of this framework is that the architecture is
inherently independent of the choice of algorithmic
models or the nature of the estimation problems. By
integrating neural networks, fuzzy logic and algorithmic
models into one scheme, this framework has learning
ability, integration capability of both expert knowledge
and project data, good interpretability, and robustness to
imprecise and uncertain inputs. Validation using industry
project data shows that the framework produces good
results when used to predict software cost.

List of symbols
Aik Fuzzy set associated with the

kth rating level for contrib-
uting factor i

ARFi Adjusted rating value for
contributing factor i

E Total weighted squared rela-
tive errors for all projects

EMi Effort multiplier
FMi Numerical value for contrib-

uting factor i

FMPik Parameter value associated
with the kth rating level for
contributing factor i

IINC(F) Index set of increasing con-
tributing factors

IDEC(F) Index set of decreasing con-
tributing factors

Mo Software output metric
Mon Estimated value of Mo for

project n
Modn Desired (actual) value of Mo

for project n
N Number of contributing fac-

tors
NAM2 Number of non-rating vari-

ables in the algorithmic
model

Ni Number of rating levels for
contributing factor i

NN Total number of project data
points

NFB Neuro-fuzzy bank
NFBi ith element of the neuro-fuz-

zy bank
P=(PNFB,
PPNF, PAM2)

The parameter vector
including all adjustable
parameters in our soft com-
puting framework
The parameter vector in the
neuro-fuzzy bank

PPNF Parameter vector in the pre-
processing neuro-fuzzy sub-
system

PAM2 1· NAM2 parameter vector in
the algorithmic model

PFPik Parameter value associated
with the kth fuzzy if-then
rule in PNFIS

PNF, PNFIS Preprocessing neuro-fuzzy
inference system

RFi Rating value for contributing
factor i

SCF Soft computing framework

X. Huang Æ J. Ren Æ L. F. Capretz
Department of Electrical and Computer Engineering,
University of Western Ontario, London, ON, N6A 5B9, Canada

D. Ho (&)
Toronto Design Center, Motorola Canada Ltd., Markham,
ON, L6G 1B3, Canada
E-mail: dho27@uwo.ca

Soft Comput (2006) 10: 170–177
DOI 10.1007/s00500-004-0442-z

SFi Scale factor
Size The size of software project
wn Weight of project n

X ¼ ðRF1;RF2; . . . ;RFN;

V1;V2; . . . ;VNAM2
Þ

Input vector consisting of
contributing factors and
non-rating variables

Xn Vector value of X for
project n

1 Introduction

Software development is notorious for going over time
and budget and the development cost is difficult to esti-
mate beforehand. This problem lies in the fact that
software development is a complex process due to the
number of factors involved, including the human factor,
the complexity of the product that is developed, the
variety of development platforms, and the difficulty of
managing large projects. As software development has
become an essential investment for many organizations,
accurate software cost estimation models are needed to
effectively predict, monitor, control and assess software
development. Since estimation accuracy is largely af-
fected by modeling accuracy, finding good models for
software estimation is now one of the most important
objectives of the software engineering community.

Various software cost estimation models (Boehm
1981; Boehm et al. 2000; Putnam and Myers 1992;
MacDonell and Gray 1997; Shepperd and Schofield
1997; Chulani 1999) have been developed over the last
decades. But because cost estimation problem is a com-
plex problem and has features such as highly complex
nonlinear relationships; imprecise and uncertain mea-
surement of software metrics and software processes
change rapidly, no model is proved to be the perfect
solution so far.

COCOMO (Boehm 1981; Boehm et al. 2000) is
arguably the most popular and widely used software
estimation model, which integrates valuable expert
knowledge. COCOMO, however, has some limitations.
It cannot effectively deal with imprecise and uncertain
information, and calibration of COCOMO is one of the
most important tasks that need to be done in order to get
accurate estimations. For example, the COCOMO model
can only take on discrete ratings such as six linguistic
terms: very low (VL), low (L), nominal (N), high (H),
very high (VH) and extra high (XH). This limitation
might cause a problem in that the model might produce
two quite different cost estimations for two similar pro-
jects (e.g. extreme cases: 203 staff-months vs. 2,886 staff-
months).

In recent years, some models have been proposed to
solve this problem based on neural network or fuzzy
logic techniques. Neural networks has learning ability
and is good at modeling complex nonlinear relation-
ships; fuzzy logic can deal with imprecise and uncertain

measurement of software metrics, provide more flexi-
bility to integrate expert knowledge into the model,
and can be easily understood and interpreted. Al-
though these efforts showed a promising research
direction in software cost estimation, the approaches
based on neural network or fuzzy logic are far from
mature.

Idri et al. (2000) introduced the fuzzy logic technique
to the COCOMO model. But this fuzzy COCOMO
model does not have learning ability, and the results are
not good in comparison with the original COCOMO
model. Ryder (1998) applied fuzzy modeling techniques
to the COCOMO model and the function points model.
The fuzzy expert systems are mentioned, but there is no
detailed description and no validation results. The fuzzy
logic technique is used for software cost estimation (Gray
and MacDonell 1997; Pedrycz 2002), but there are no
experiments or validation. Wittig and Finnie (1997)
developed a software estimation model using neural
networks and derived high prediction accuracies. Al-
though their model has high accuracies for its training
dataset, the model has not been well-accepted by the
community due to its lack of explanation. Neural net-
works operate as ‘black boxes’ and do not provide any
information or reasoning about how the outputs are
derived (Idri et al. 2002).

To help solving the software estimation problems,
we propose a soft computing framework based on the
‘‘divide and conquer’’ approach. By using a prepro-
cessing neuro-fuzzy inference system to deal with the
dependencies among contributing factors, we decouple
the effects of contributing factors into individuals, and
then we propose a neuro-fuzzy bank for calibrating the
factor parameters. The requirements for training pro-
ject data and computation are greatly reduced, and the
fuzzy if-then rules in the neuro-fuzzy bank can remain
unchanged for different applications. We validate our
soft computing framework with industry project data
from several sources and results show that our
framework consistently gives good and reasonable
performance.

2 A soft computing framework (SCF)

A general problem abstracted from different applications
can be formulated as follows: given some information
about a project such as ratings of contributing factors,
the soft computing framework captures the features of
the project, along with the built-in knowledge learned
from the historical project data and expert knowledge, to
output an accurate and reasonable estimation result. The
estimation can provide a powerful assistance to software
practice.

An intuitive attempt to solve that problem is to use a
five-layer neuro-fuzzy model for software estimation
(Gray and MacDonell 1997). In this model, the inputs
are the rating values or measurements of the contributing
factors and the output is the estimated software output
metric. That is, they use a neuro-fuzzy model to handle
the dependencies among contributing factors and to

171

calibrate all the parameters of fuzzy if-then rules.
Unfortunately, when it comes to a practical problem, the
rule base contains a great number of fuzzy rules that
result from all the combination of the rating levels of all
contributing factors. For example, COCOMO II is
arguably the most popular and widely used software
estimation model. COCOMO II has 22 cost drivers, and
each cost driver has four to six rating levels. If we use the
five-layer neuro-fuzzy model to estimate the software
cost, we need about 422 to 622 fuzzy rules to deal with all
combinations, in theory.

As a result, this approach causes the following prob-
lems: (1) First, it needs a very large historical project data
set to calibrate the model parameters because the number
of project data should be at least greater than the number
of fuzzy rules. Unfortunately software project data sets
are usually scarce and small. This approach is thus not
practical in many cases. (2) The computation will go very
high. (3) It is difficult for users, even experts, to check
and validate the calibrated fuzzy rules. (4) This approach
is not flexible for different applications because the
change of application will result in re-definition of all the
fuzzy rules. Therefore, this approach is not practical for
many software estimation problems, especially for high
dimension problems.

For many software estimation problems, the effects of
contributing factors on the estimated software output
metrics are usually not strongly coupled together, and
strong effect dependency exists only on a small number
of combinations of contributing factors. Most combi-
nations have no dependency or weak dependency. Con-
sequently, given a specific software estimation problem,
we can find the combinations of contributing factors with
strong effect dependency based on expert knowledge and
analysis of the characteristics of the problem, and then
only handle dependency on this small part of combina-
tions. This will greatly reduce the complexity of the
estimation problem and make the problem tractable.

The framework described in this paper is a general
form for software estimation. It is applicable to various
applications such as cost estimation, quality estimation,
risk analysis, etc. In this framework (see Fig. 1), we first
propose a preprocessing neuro-fuzzy inference system
(PNFIS) to handle the dependencies among contributing
factors. Then we use a neuro-fuzzy bank to map the
adjusted rating values of contributing factors into the
corresponding numerical multiplier values. Finally, we
output the estimation through an algorithmic model such
as COCOMO.

In the following sections, we introduce the architec-
ture of the framework and a detailed learning algorithm.
There are three major components in our soft computing
framework: preprocessing neuro-fuzzy inference system
(PNFIS), neuro-fuzzy bank (NFB) and algorithmic
model, as depicted in Fig. 1. The symbols used in this
paper are explained in list of symbols.

This architecture is applicable to various applications
and allows the utilization of more information from
different sources such as expert knowledge and project
data. The change of the application will only cause the
redefinition of the fuzzy if-then rules in the first part
(PNFIS) and the replacement of the algorithmic model in
the third part; the rest will remain the same. The expert
knowledge on contributing factor dependency is encoded
in the first part: preprocessing neuro-fuzzy inference
system. The conventional algorithmic model reflects
important knowledge on a specific software estimation
problem. We use the neuro-fuzzy bank to calibrate the
parameters of the algorithmic model through learning
from industry project data. Thus, we can integrate the
numerical project data, expert knowledge, and conven-
tional algorithmic model into one framework. According
to information theory, this process should yield more
accurate estimation results. Next, we will introduce the
three major components individually in detail.

2.1 Preprocessing neuro-fuzzy inference system (PNFIS)

In many model-based approaches, it is assumed that
the effects of contributing factors on the estimated
software output metric are independent, but this
assumption is often arguable. Even for some very
popular and widely used models such as COCOMO,
experts diverge from this assumption. However, there
is one thing we can claim: this assumption does not
hold for all models in all situations. When this
assumption breaks down, properly handling of the
dependencies among contributing factors becomes
essential to improve estimation accuracy. Unfortu-
nately, it is not an easy task in most cases; dependency
is inherently a very complex problem as we have to
consider the effect of any possible combinations. It is
common sense that when it comes to a very compli-
cated situation, experts usually have better under-
standings of the dependency than any of the advanced
computation machines invented so far. Therefore better
utilization of expert knowledge is the key to handle
this dependency problem. In this paper, we propose the

Fig. 1 A soft computing
framework for software
estimation

172

use of a preprocessing neuro-fuzzy inference system
(PNFIS) that encodes expert knowledge into fuzzy if-
then rules; PNFIS can effectively resolve the effect
dependencies among the contributing factors. The in-
puts of PNFIS are the ratings of the contributing
factors (RFis), and its output is the adjusted ratings of
contributing factors (ARFis), as shown in Figs. 2 and
3.

In PNFIS, fuzzy rules take the form of:

Fuzzy Rule k: IF (RF1 is A1jk) AND (RF2 is A2jk) AND
... AND (RFN is ANjk) THEN ARFi=PFPik · RFi where
PFPik is an adjustable parameter.

The output ARFi can be expressed as:

ARFi ¼ fPNFiðRF1;RF2; . . . ;RFN ; PPNFÞ;
i ¼ 1; 2; . . . ;N :

2.2 The neuro-fuzzy bank (NFB)

In the neuro-fuzzy bank, element i is a neuro-fuzzy
subsystem (NFBi), which is associated with contributing
factor i. Each contributing factor has several qualitative
rating levels, for example, the COCOMO II model uses
six rating levels: very low (VL), low (L), nominal (N),
high (H), very high (VH) and extra high (XH) for most
cost drivers. For a software estimation program, we

usually have to define each contributing factor and the
corresponding rating criteria for each rating level. But
when we use the algorithmic model to estimate the
software output metric, we need to use a numerical value
corresponding to the rating value of each factor in the
mathematical formula. So for every contributing factor,
each rating level relates to a quantitative value called
parameter value, which is used in the algorithmic model.
That is, there is a mapping from rating values to
numerical values for each contributing factor. One goal
of building a software estimation model is to calibrate its
parameter values based on the expert knowledge and
project data.

Based on the above features of contributing factors,
the structure of each neuro-fuzzy subsystem (NFBi) is
chosen as a simplified version of adaptive neuro-fuzzy
inference system (ANFIS) (Jang 1993), as shown in
Fig. 3. The input of element i is the adjusted rating value
ARFi of contributing factor i; the output is the corre-
sponding numerical value FMi that is used as the input of
the algorithmic model (mathematical formula). For ele-
ment i of NFB, which is functionally equivalent to a
Takaki and Sugeno’s type (1985) of the fuzzy system
consisting of the following fuzzy rules:

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik,
k=1,2,...,Ni,

Fig. 2 The structure of PNFi in
PNFIS

Fig. 3 Element NFB i in the
neuro-fuzzy bank

173

where Ni is the number of rating levels for factor i, Aik

is a fuzzy set associated with the kth rating level of factor
i, and FMPik is the corresponding parameter value
associated with the kth rating level. For example, if the
contributing factor i has the six rating levels, NFBi is
composed of the following six fuzzy if-then rules:

Fuzzy Rule (i,1): If ARFi is Ai1 (very low), then
FMi=FMPi1,
Fuzzy Rule (i,2): If ARFi is Ai2 (low), then
FMi=FMPi2,
Fuzzy Rule (i,3): If ARFi is Ai3 (nominal), then
FMi=FMPi3,
Fuzzy Rule (i,4): If ARFi is Ai4 (high), then
FMi=FMPi4,
Fuzzy Rule (i,5): If ARFi is Ai5 (very high), then
FMi=FMPi5,
Fuzzy Rule (i,6): If ARFi is Ai6 (extra high), then
FMi=FMPi6.

For each element NFBi, we also propose a monotonic
constraint on the corresponding contributing factor i to
guarantee that calibrated results are reasonable. Mono-
tonic constraints reflect the expert knowledge about ef-
fects of contributing factors on the estimated software
output metric. For most contributing factors, when the
rating value of a contributing factor goes high, the esti-
mated software output metric should change monotoni-
cally, in other words, it increases or decreases along only
one direction, it cannot increase and then decrease or vice
versa. Therefore, we can formulate monotonic con-
straints as follows:

FMPi16FMPi26 . . .6FMPiNi ; i 2 IINCðF Þ
FMPi1>FMPi2> . . .>FMPiNi ; i 2 IDECðF Þ

where IINC(F) is the index set of increasing contributing
factors whose higher rating value corresponds to the
higher value of the estimated software output metric, and
IDEC(F) is the index set of decreasing contributing factors
whose higher rating value corresponds to the lower value
of the estimated software output metric. If we do not put
monotonic constraints on the neuro-fuzzy bank during
the learning process, we might get counterintuitive cali-
brated results. One advantage of the neuro-fuzzy bank is
that we can easily integrate monotonic constraints of
contributing factors into our soft computing framework,
thus avoid counterintuitive calibrated results. It is much
more difficult to place monotonic constraints on a stan-
dard five-layer neuro-fuzzy system.

We can look at the functionality of NFBi from two
perspectives. From the learning perspective, we can treat
NFBi as a neural network so that we can use available
learning algorithms for neural networks to calibrate the
corresponding parameters, and NFBi has learning and
adaptation capability. From the reasoning perspective,
NFBi can be considered as a fuzzy logic system. Its
output is derived using fuzzy if-then rules and the rea-
soning process is transparent in the way similar to the
decision-making process of human beings. Therefore, the
neuro-fuzzy subsystem NFBi is not a black box. The
whole reasoning process is clear to the user and can be
traced and validated by users/experts. Consequently, our

neuro-fuzzy model is more easily accepted for project
management.

Remark 1: In the neuro-fuzzy bank, each element is
a ‘‘standard’’ neuro-fuzzy subsystem. The number of
elements is equal to the number of rating contributing
factors. In each element, the number of fuzzy rules
equals the number of rating levels of the corresponding
factor.

Remark 2: For a given problem, once the number of
rating contributing factors and the number of rating levels
of each factor are determined, the structure and fuzzy rules
of the neuro-fuzzy bank are determined. Only the fuzzy
rule parameters are needed to fine-tune through the
learning process from numerical project data.

Remark 3: Guideline for determining rating levels:
how to determine the appropriate number of rating
levels. On the one hand, fewer rating levels imply coarse
and less accurate description of contributing factors,
but the system is easy to use since users can give more
accurate rating values. On the other hand, too many
rating levels for one factor indicate more accurate
descriptions of contributing factors, but the definition
and rating criteria of each level are more complicated.
Users usually have difficulty rating the factors. That is,
the rating errors tend to be larger. Therefore, there is a
balance between the number of rating levels and ease of
use.

2.3 Algorithmic models

The use of algorithmic models to predict software output
metrics is one of the most popular and traditional soft-
ware estimation techniques. An algorithmic estimation
model can be built by analyzing a software output
metric and attributes of completed projects, and used to
predict the software output metric based on the attri-
butes of software product and development process.
Many algorithmic models have been proposed to esti-
mate different software metrics, such as software devel-
opment cost, software maintenance cost, software
quality, and software development productivity. For
example, the COCOMO II post architecture model
(Boehm et al. 2000) is widely used to predict the software
development effort:

Effort ¼ A� (Size)
Bþ0:01�

P5

i¼1
SFi

�
Y17

i¼1
EMi

where A and B are constants, size refers to the size of
software product, scale factors SFi’s and effort multipli-
ers EMi’s are the attributes of software product, plat-
form, personnel and project.

Software development productivity is estimated by the
productivity-benchmarking equations (Maxwell 2002):

productivity ¼ A
YNb

i¼1
FMi

where A is a constant, FMi’s are the contributing factors,
Nb is the number of contributing factors, A, FMi’s, Nb

are different for different business sectors.

174

In order to predict the software maintenance effort,
Maxwell proposed an algorithmic model of the form
(Maxwell 2002):

Maintenance Effort ¼ AðSizeÞB
Y4

i¼1
FMi

where A and B are constants, FMi’s are the contributing
factors.

By analyzing many algorithmic models, we find that
many software output metrics take the following forms:

Software output metric ¼ A
YNb

i¼1
FMi

or

Software output metric ¼ A
XN

i¼1
FMi

where A is a constant, FMi’s are the major factors that
contribute to the software output metric.

For convenience, we call the above models the default
algorithmic models in our soft computing framework. If
there is no algorithmic model for a given software esti-
mation problem, we suggest to select one of the above
default models or its variant as the algorithmic model
based on the characteristics of the problem.

Although many algorithmic models are usually
not very accurate, they reflect a lot of useful expert
knowledge in this field. In order to make the best use of
this kind of expert knowledge, it is worthwhile to inte-
grate the algorithmic model into our soft computing
framework. Calibrating the parameters of algorithmic
models is usually a very challenging task. In our soft
computing framework, parameters of the algorithmic
model are calibrated by the neuro-fuzzy bank through
learning.

3 Software estimation process

The whole estimation process consists of two major
steps. In the first step, we calibrate the framework
through learning based on historical project data. In the
second step, we use the calibrated framework to predict
the software output metric of the software product under
development and to analyze calibrated parameters for
decision-making.

3.1 Reasoning process

Because we adopt the same type of neuro-fuzzy inference
system (ANFIS) in both the preprocessing neuro-fuzzy
inference subsystem and the neuro-fuzzy bank, for con-
venience to illustrate the concepts and reasoning process,
we consider only the ith element NFBi in the neuro-fuzzy
bank having the rule base:

Fuzzy Rule (i,k): If ARFi is Aik, then FMi=FMPik,
k=1,2,...,Ni

Now we describe the functions of the neuro-fuzzy
subsystem layer by layer.

Layer 1: This layer is used to calculate the member-
ship values for each rule. The activation function of a
node in this layer is defined as the corresponding mem-
bership function:

O1
k ¼ likðARFiÞ

where ARFi is the adjusted rating value of the ith con-
tributing factor, lik(ARFi) is the membership function of
fuzzy set Aik, which is associated with the kth rating level
such as low, high.

Layer 2: This layer calculates the firing strength for
each rule. The inputs are the membership values in the
premise of the fuzzy rule. The output is the product of all
input membership values, which is called the firing
strength of the corresponding fuzzy rule. Because there is
only one condition in the premise of each fuzzy rule, the
firing strength is the same as the membership value ob-
tained from layer 1.

wk ¼ O1
k

Layer 3: This layer is used to normalize the firing
strength for each fuzzy rule. The output of the kth node is
called the normalized firing strength, which is defined as:

�wk ¼
wk

PNi

j = 1
wj
; k ¼ 1; 2; . . . ;Ni

Layer 4: In this layer, the reasoning result of a rule is
calculated as follows:

O4
k ¼ �wkFMPik

Parameters {FMPik} in this layer are called consequent
parameters.

Layer 5: This layer sums up all the reasoning results of
fuzzy rules we get from layer 4, i.e.,

O5
k ¼

X

k

O4
k :

In summary, the overall output of the ith element NFBi

in the neuro-fuzzy bank is

FMi ¼
X

k

�wkFMPik ¼
XNi

k¼1

likðARFiÞP
j lijðARFiÞ

FMPik:

3.2 Learning algorithms

Given NN project data points ðXn;ModnÞ; n ¼ 1; 2; . . . ;
NN the learning problem of parameters P in our soft
computing framework can be formulated as the follow-
ing optimizing problem:

E ¼
XNN

n¼1
wn

Mon �Modn

Modn

� �2

ð1Þ

175

subject to the following monotonic constraints:

FMPi16FMPi26 . . .6FMPiNi ; i 2 IINCðF Þ ð2Þ

FMPi1>FMPi2> . . .>FMPiNi ; i 2 IDECðF Þ ð3Þ

where E the total weighted squared relative errors for all
projects, wn the weight of project n, Mod n the desired
(actual) value of the software output metric for project n,
Xn the vector value of X for project n.

Mon ¼ fSCFðXn; PÞ ð4Þ

Mo ¼ fSCFðX ; PÞ ð5Þ

ARFi ¼ fPNFiðRF1;RF2; . . . ;RFN ; PPNFÞ;
i ¼ 1; 2; . . . ;N

ð6Þ

FMi ¼ fNFBiðARFi; PNFBÞ

¼
PNi

k¼1

likðARFiÞP
j
lijðARFiÞ

FMPik; i ¼ 1; 2; . . . ;N
ð7Þ

Mo ¼ fAMðFM1;FM2; . . . ;FMN ; V1; V2; . . . ; VNAM2
; PAM2Þ

ð8Þ

The learning algorithm for our soft computing frame-
work is as follows:

P lþ1
i ¼ P l

i � a
@E
@Pi

; ð9Þ

where a > 0 is the learning rate, l is the current iteration
index,

@E
@Pi
¼
XNN

n¼1

2wn

M2
odn

ðMon �ModnÞ
@Mon

@Pi
ð10Þ

@Mon

@Pi
¼ @fSCF

@Pi
; i.e.; ð11Þ

@Mon

@PNFBi

¼ @fAM

@FMi
� @fNFBi

@PNFBi

ð12Þ

@Mon

@PAM2i

¼ @fAM

@PAM2i

ð13Þ

@Mon

@PPNFi

¼ @fAM

@FMi
� @fNFBi

@ARFi
� @fPNFi

@PPNFi

ð14Þ

Remark: Although we derive the learning algorithm
for all parameters P, we can calibrate only a part of
parameters at one time for a specific software estimation
problem.

4 Case studies

In this section, we use data from the software industry to
validate our soft computing framework and discuss two
case studies.

4.1 Case I. Software cost estimation with the COCOMO
model

In this case study, there is a total of 69 project data
available, including six project data from the industry
(Ho 1996; Panlilio-Yap and Ho 1994) and 63 project
data from the original COCOMO’81 database (Boehm
1981). Because most of these project data are compatible
only with the intermediate COCOMO’81 model, the
algorithmic model employs the COCOMO’81 interme-
diate model, described by:

Mo ¼ Effort ¼ Ak � ðSizeÞBk �
Y15

i¼1
EMi

where Ak and Bk are constants specific to each project
mode (k=1: organic, k=2: semi-detached or k=3:
embedded), EMis are the cost drivers. In this case, the
estimated software output metric Mo is software devel-
opment effort, FMi=EMi, V1=Size, N=15, NAM2=1,
that is, the neuro-fuzzy bank has 15 elements, and each
element has four to six rating levels. The experiment re-
sults (see Table 1) show that our soft computing frame-
work can greatly improve cost estimation accuracy when
compared with the standard COCOMO model. Because
the COCOMO II model is the more advanced version
and has a similar structure to COCOMO’81, we will
further validate our soft computing framework when
COCOMO II project data become available.

4.2 Case II. Software development effort estimation

With data from 63 projects, Maxwell and Forselius
(2000) used the analysis of variance (ANOVA) approach
to build multi-variable models to predict the software
development effort. In our soft computing framework,
we select the 1993 Model B as the algorithmic model, i.e.,

Mo ¼ Effort ¼ A� ðSizeÞB �
Y4

i¼1
FMi

where A and B are constants, FMis are the four con-
tributing factors. In this case, the estimated software

Table 1 Effort estimation for
all 69 project data points Predict

(%)
COCOMO81 model Soft computing framework Improvement

(%)
Projects Accuracy (%) # Projects Accuracy (%)

20 49 71 62 89 18
30 56 81 64 92 11
50 65 94 67 97 3
100 69 100 69 100 0

176

output metric Mo is software development effort, N=4,
NAM2=1, that is, the neuro-fuzzy bank has four ele-
ments, and each element has five or two rating levels.
The experiment results are shown in Table 2. Estimation
accuracy is not very high due to the low quality of this
dataset with many outliers (project data with large noise)
in this dataset, however, our soft computing framework
improves estimation accuracy a lot when compared with
the stepwise ANOVA model.

5 Conclusions

This paper has presented a general framework for
software estimation. The framework concentrates on
the preprocessing neuro-fuzzy inference system, the
neuro-fuzzy bank and the algorithmic model. We con-
sider the rating values of contributing factors as input
and produce software metric as output. This framework
has been validated with project data from the industry.

The main benefit of this approach is its good inter-
pretability, that is, by using the fuzzy rules, the approach
tries to simulate people’s line of thought in software
estimation. Another great advantage of this research is
that we could put together expert knowledge (fuzzy
rules), project data and the traditional algorithmic model
into one general framework that can have a wide range of
applicability in software cost estimation, software quality
estimation and risk analysis.

References

Boehm BW (1981) Software engineering economics. Prentice Hall,
Englewood Cliffs

Boehm BW et al (2000) Software cost estimation with COCOMO
II. Prentice Hall, Englewood Cliffs

Chulani S (1999) Bayesian analysis of software cost and quality
models. Doctoral dissertation, Department Computer Science,
University of Southern California

Gray A, MacDonell S (1997) A comparison of techniques for
developing predictive models of software metrics. Inf Softw
Technol 39(6):425–437

Ho D (1996) Experience report on COCOMO and the costar tool
from Nortel’s Toronto laboratory. In: 11th international forum
on COCOMO and software cost modeling, Los Angeles

Idri A, Abran A, Kjiri L (2000) COCOMO cost model using fuzzy
logic. In: 7th international conference on fuzzy theory and
technology

Idri A, Khoshgoftaar TM, Abran A (2002) Can neural networks be
easily interpreted in software cost estimation? In: IEEE inter-
national conference on fuzzy systems. pp 1162–1167

Jang RJS (1993) ANFIS: adaptive-network-based fuzzy inference
system. IEEE Trans Syst Man Cybern 23:665–685

MacDonell S, Gray A (1997) A comparison of modeling techniques
for software development effort prediction. In: International
conference on neural information processing and intelligent
information systems. Springer, pp 869–872

Maxwell KD (2002) Applied statistics for software engineers.
Prentice Hall, Englewood cliffs

Maxwell KD, Forselius P (2000) Benchmarking software devel-
opment productivity. IEEE Softw 17(1):80–88

Panlilio-Yap N, Ho D (1994) Deploying software estimation
technology and tools: the IBM SWS Toronto Lab experience.
In: 9th international forum on COCOMO and software cost
modeling, Los Angeles

Pedrycz W (2002) Computational intelligence and visual comput-
ing: an emerging technology for software engineering. Soft
Comput 7:33–44

Putnam L, Myers W (1992) Measures for excellence. Yourdon
Press, Englewood Cliffs

Ryder J (1998) Fuzzy modeling of software effort prediction. In:
IEEE conference on information technology. pp 53–56

Shepperd M, Schofield M (1997) Estimating software project effort
using analogies. IEEE Trans Softw Eng 23(12):736–743

Takaki T, Sugeno M (1985) Fuzzy identification of systems and its
application to modeling and control. IEEE Trans Syst Man
Cybern 15:116–132

Wittig G, Finnie G (1997) Estimating software development effort
with connectionist models. Inf Softw Technol 39:469–476

Table 2 Effort estimation for
all 63 project data points Predict (%) Stepwise ANOVA model Soft computing framework Improvement

(%)
Projects Accuracy (%) # Projects Accuracy (%)

20 21 33 28 44 11
25 25 39 33 52 13
30 33 52 37 58 6
50 50 79 52 82 3
100 63 100 63 100 0

177

	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Fig2
	Fig3
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Tab1
	Sec12
	Bib
	CR1
	CR2
	CR3
	CR4
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	Tab2

