
Abstract

It is an ongoing debate in parallel processing
whether shared- or distributed-memory computing
models are better, whether shared-data or message
passing is preferable. Recent research has shed some
more light on the debate, showing that many
applications can be supported well in either model
(though potentially with some special tuning for the
corresponding machine) but that for some applications
with more extreme behavior the corresponding machine
type and computing model are preferable or even the
only feasible solution. Otherwise, what does make
people choose one or the other? We investigate the
human factor and propose the model that the personality
type determines to a large extent personal preferences.
The paper discusses the relationship between certain
personality types and the programming model. To
determine these aspects, we applied the psychological
Myer-Briggs-Type-Indicator test on a group of students
for whom both programming models were mostly new
(i.e. who were not pre-occupied). The results give
reasonable evidence for the validity of our proposed
model and the relevance of the human factor in
technical choices, i.e. that choices are not only/always a
matter of which model is “better”.

Keywords: MPI, Multithreading, Personality Type,
MBTI, Programming Model, Personal Preferences

1 The Parallel-Programming Model 
Debate
The most appropriate programming model for

parallel processing is a topic of ongoing discussion. The
High-Performance-Computing community is basically

split in favoring either shared- or distributed-memory
machines, a shared-data or message-passing
programming model - if neglecting attempts to design a
higher-level model which potentially hides the details of
either approach and unifies them. The currently most
important representatives are OpenMP [16] for shared-
data programming and MPI [13] for message passing
(we are not discussing the extension MPI-2 here), both
being reasonable abstract and portable approaches to
mostly synchronous data-parallel programming. MPI is
clearly dominating in practical use. The basic model
supported in both is SPMD, meaning that the same
program is applied to different data sets. OpenMP
supports loop-oriented expression of parallelism and
synchronization on shared data. A more basic and more
flexible approach is Pthreads [10], a library supporting
the dynamic creation of individual threads and their
synchronization and allowing the expression of more
arbitrary and asynchronous parallelism. The individual
tasks may be heterogeneous and the approach thus is
meaningful for software modularization and I/O-latency
hiding on uniprocessor machines. MPI supports one-
way two-sided message-based communication via
copying between multiple processes with separate
address and data spaces and explicit send/receive. The
processes are set up at program startup, i.e. the number
is static. Messages may be either point-to-point or
collective communication. MPI basically supports
homogeneous parallelism. MPI also includes features to
enable a more arbitrary style of interaction and dispatch
between different heterogeneous activities. And
Pthreads can be used to formulate completely
synchronous programs. For a summary of Pthreads and
MPI features, see Table 1.

Table 1:  The different basic characteristics of shared-data and message passing via Pthreads and MPI. The 
approaches have also different characteristics with respect to scheduling and load balancing but these are not 
relevant for our case study.

Multithreading / Pthreads SPMD / MPI

dynamic creation of individual threads static number of processes

shared address/data space separate data spaces via multiple processes

individual explicit synchronization implicit synchronization via messages

data exchange via shared data data exchange via messages

task parallelism data parallelism

heterogeneous work possible homogeneous work

asynchronous execution possible mostly synchronous execution

Shared Data or Message-Passing - A Human Factor in Technical Choices?

A.C. Sodan L.F. Capretz
Computer Science Electrical and Computer Engineering

University of Windsor University of Western Ontario
Windsor, ON N9B 3P4, Canada London, ON N6G 1H1, Canada

acsodan@cs.uwindsor.ca lcapretz@engga.uwo.ca



Java - which is becoming increasingly important
as a parallel language, too - both threads and message
passing (via sockets or Remote Method Invocation) is
supported. Socket communication is one-way like MPI.
However, there is nothing such as an SPMD model but
processes are individually set up and potentially
communicate with each other.

Shared-data programming is perceived by many
people as the easier variant, because it does not require
to think about data ordering / layouts and about data
exchange for semantic correctness - and no
understanding of structural, e.g. geometric patterns.
Sharing data and memory space requires a complete
understanding of data accesses with respect to
synchronization only. However, this is not the whole
story when performance comes into play. The only thing
that really can be saved is data exchange. Data ordering
(and potentially reordering if the access pattern or the
data structure changes) is necessary to obtain good
cache locality on SMP and DSM machines [6,7] (which,
however, is due to the fact that the shared memory in the
end is not really homogeneous and a hierarchy). Indeed,
the study in [18] on a dynamic, irregular N-body
problem (including dynamic remeshing) program
showed that, on a DSM machine (Origin2000), the
shared-memory implementation was simpler, i.e., had
significantly less lines of code (with proper coding,
similar performance was obtained). However,
synchronization being necessary can easily be
overlooked and debugging be hard. The shared-data
model naturally fits to machines with shared memory
and exploits the performance benefits of these
machines. 

Message passing is the natural model on
distributed-memory machines such as clusters,
expressing that data being exchanged is to be send from
memory to memory. However, message passing
requires to carefully think about proper data ordering/
partitioning to exploit locality in memory and minimize
communication cost. Furthermore, it requires thinking
about which data has to be sent when and to organize
the exchange. However, it requires hardly any
additional synchronization and potential mistakes in the
data exchange usually become obvious pretty quickly.
Because of the separated address spaces, message
passing is the safer way to program. Since distributed-
memory machines scale better, message passing is the
only feasible model for massively parallel applications. 

The different arguments in favor of either model
have led to supporting shared-data-style programming
on distributed memory via VSM or DSM and message
passing on shared memory - with the additional
advantage of making programs portable between
different types of machines. However, even the
hardware-supported DSM has shown to require support
by proper algorithms and proper data ordering [6,7] and
the same applies to VSM. VSM was first perceived as a
very promising solution to create a uniform
programming approach for all machine types [9], but
has shown not to be efficient enough unless there is
hardly any sharing and accesses are pretty localized on
certain pages per processor. In other words, without
good locality, VSM can perform poorly. Conversely,
message passing on shared memory can be supported by
internal optimization to share data buffers and reduce

copying cost [23]. Still there are applications with very
tight data coupling, i.e. frequent or high-volume data
exchange (even nearest neighbor can become a problem
if too intensive) which perform better or are feasible
only with explicitly sharing data and avoiding any
copying. Despite these cases favoring either approach
for clear technical reasons, there is a wide range of
programs running well on either machine type and of
cases where the transfer of one model to the non-
corresponding machine type works well [15,23].
Furthermore, often different algorithms (more suitable
for one or the other machine type) exist - which extends
the range of choices. And actually the perception which
programming model really is the easier one differs.
Furthermore, currently we experience a more or less
friendly co-existence of different machine types and
programming models and partially a hybrid integration -
such as SMP/MPP machines and corresponding
OpenMP/MPI combinations [3]. A more detailed
discussion of the characteristics and merits of the two
approaches and their integration, can, e.g., be found in
[21].

2 The Human Factor and MBTI as a 
Way to Measure It

According to the above discussion, there is
clearly some room for personal preference. Moreover,
technical discussion appears to some extent be often
driven by the underlying personal preference. Though,
the human factor is usually overlooked in parallel
processing (with few exceptions like [17] investigating
the human factor in, e.g. tool development), the
discussion above pops up the question how the
preferences can be explained and whether there is some
correlation between the programming model and the
personality types. In [20], we have performed a
classification of personality types and their different
strengths based on dual characterizations inspired from
brain research [22]. MBTI (Myer-Briggs Type
Indicator) as discussed below confines the classification
to four pairs, based on Jung’s theory of psychological
types [8]. This provides a scheme that is easy enough to
handle and sufficiently complex to perform non-trivial
characterizations. Thus, we applied MBTI to
characterize personality types in software engineering
[5]. Furthermore, MBTI provides questionnaires
allowing to rate people’s preference in each pair and
thus supporting empirical tests to link both personality
type and computer-science approaches in a provable
manner. Evaluations of types consider preferences in
individual pairs and combinations of them in typically
sets of 2 or all 4 dimensions, the latter constituting the
so-called MBTI types. The latter options add the
interesting approach to consider patterns, expressing
colored/modified or enhanced personality
characteristics in addition to the mere linear discussion
of individual dimensions.

2.1 MBTI Types

Within the field of computer programming, there
is agreement that there are tremendous differences
among individuals’ performance. Teachers of computer
programming witness first hand the huge variety among



students in learning achievement and programming
assignments. In [19], it is reported that researchers have
found differences as high as 10 to 1 of programmers
(with similar background) regarding programming
performance, and in [2], it is stated that one of the
problems in studying introductory programming classes
is the tremendous variability in achievement. Cognitive
styles have been investigated as factors that may help
explain some of the variability; however, they have
failed to consistently explain individual differences in
achievement. MBTI offers the potential to provide a
suitable model.

MBTI is an instrument designed to measure four
dimensions (dichotomies, consisting of two poles) of an
individual’s personality [12]. Each of the poles
represents opposite preferences, and for every pair of
items an individual prefers one pole over the other.
MBTI’s four internal dimensions relate to characteristic
or preferred ways of becoming aware, reaching
conclusions, making decisions, and being oriented
either to a private inner world or external world of
actions. These four dimensions are called sensing(S)-
intuition(N), thinking(T)-feeling(F), perception(P)-
judgement(J) and introversion(I)-extroversion(E),
respectively.

Introversion/extraversion refers to a person’s
orientation toward the world. Extraversion describes an

attitude where attention is drawn out towards objects
and people. Introversion describes an attitude where
attention is drawn toward the inner world of ideas. The
second category (sensing/intuitive) refers to ways in
which a person perceives information. A sensing person
tends to perceive observable facts through the five
senses. An intuitive person perceives information based
on the meaning, relationships, and possibilities beyond
the information gathered from the senses. 

The thinking/feeling dimension relates to ways in
which a person makes decisions. Individuals with high
scores on the feeling pole make decisions based on their
own feelings and the feelings of others. Those on the
opposite end (thinking) base their decisions on
objective, impersonal, and logical analysis of a
situation. The last dimension refers to a person’s
orientation toward life. Judgers prefer to work in a
linear, orderly manner, whereas, perceptives would
rather live a flexible, spontaneous life. 

To sum up, MBTI provides a measure of
personality by looking at the various ways we prefer to
receive information and perceive our surroundings. It
describes preferences, it does not measure skills or
abilities. Of course, people can and do use all eight
preferences. In each of the four pairs, however, we all
have one preference that is stronger than the other, one
that works better for us than its complement. 

Table 2 shows the 16 types resulting from the
different combinations of variables together with their
distribution. We find a cluster of TJs in our sample.
Especially, we can see the distribution for computer-
science students to be even more biased toward TJ (20
out of 31 Windsor students). I.e. 64% fall into this
category in comparison to 24.2 % of the general
population (statistical significance of bias both vs. equal
distribution and distribution in general polulation is p
value < 0.001). TJs experience a compulsion to identify
principles early so that they can be applied in an
organized, orderly fashion, pushing for closure
(judging). Individuals with the combination TJ are
described as realistic, tough-minded people with a
greater aptitude for technical as opposed to

interpersonal skills. Thus, TJs appear to have the special
skills required for most computer-science tasks This
corresponds to results in [4] showing that certain types
are indeed superior to others in accuracy of problem
solving and decision making. Excep to TJ, the sample
sizes are too small to draw further detailed conclusions.
Note that MBTI says that all types are valuable and
necessary, but each with its own special gifts and
strengths. Thus, many NFs and SFs may be drawn to
fields like psychology and school teaching because of
their concern for others or find their niche in the more
people-oriented aspects of software development.

Table 2:  The 16 MBTI types and their distribution (and the concrete number in each class in parenthesis) among 
the general population (G) [12] and among 68 computer science students in Brazil (CSB) [5] and 31 computer 
science students at University of Windsor, Canada (CSW).

ISTJ
G=11.6%

CSB=19.1% (13)
CSW=25.8% (8)

ISFJ
G=13.8%

CSB=3.0% (2)
CSW=3.2% (1)

INFJ
G=1.5%

CSB=1.5%(1)
CSW=0% (0)

INTJ
G=2.1%

CSB=7.3% (5)
CSW=9.7% (3)

ISTP
G=5.4%

CSB=4.4% (3)
CSW=9.7% (3)

ISFP
G=8.8%

CSB=4.4% (3)
CSW=0% (0)

INFP
G=4.4%

CSB=3.0% (2)
CSW=0% (0)

INTP
G=3.3%

CSB=13.2% (9)
CSW=3.2% (1)

ESTP
G=4.3%

CSB=11.7% (8)
CSW=3.2% (1)

ESFP
G=8.5%

CSB=1.5% (1)
CSW=0% (0)

ENFP
G=8.1%

CSB=3.0% (2)
CSW=9.7% (3)

ENTP
G=3.2%

CSB=7.3% (5)
CSW=3.2% (1)

ESTJ
G=8.7%

CSB=11.7% (8)
CSW=16.2% (5)

ESFJ
G=12.3%

CSB=3.0% (2)
CSW=3.2% (1)

ENFJ
G=2.5%

CSB=1.5%(1)
CSW=0% (0)

ENTJ
G=1.8%

CSB=4.4% (3)
CSW=12.9%(4)



2.2 Relating MBTI and MPI/Pthreads

The consistency of positive relationship among
different types clearly reveals that tasks involved in
programming have been associated with certain MBTI
variables (dimension poles) (e.g., in [11]). For instance,
Es prefer to work interactively with a succession of
people, whereas Is prefer work that permit some
solitude for concentration. Ss like details more than Ns;
additionally, Ns like creativity, working in a succession
of new problems and feeling more satisfied with
complex problems than Ss. Ts prefer to analyze logical
and objective data and, e.g., perform quantitative
evaluations; Ts want work that requires logical thinking,
whereas Fs want work that provides service to people. Js
prefer work that imposes a need for order, whereas Ps
prefer work that requires adapting to changing
situations. This investigation provides empirical results
to reach conclusions regarding the MBTI types and
preferences related to programming.

The findings that Ss are twice as accurate than Ns
in solving problems supports the expectations that Ss
would be better in work requiring detail and precision.
Ns prefer to pay more attention to the meaning behind
the facts rather than to the facts themselves. ST and NT
are similar to each other regarding accuracy of problem
solving. Ns and Js took less time than their opposites to
solve problems. Similarly, NTs took the least amount of
time, while STs were less good as far as efficiency of
problem solving is concerned. However, because being

more precise, STs are expected to dominate in the field
of parallel programming which is much about careful
algorithm design and performance considerations.

STs like activities that require the use of well-
learned knowledge, not the development of new
solutions. They are very good observers and like details.
NTs are creative and enjoy abstract symbolic relations,
finding patterns rather than dealing with details. They
like to create new knowledge rather than applying or
fixing existing techniques. The NTs are more creative
than STs because Ns see possibilities beyond the given
facts, and look for patterns and relationships. They are
more adept at identifying underlying principles than at
memorizing specific data. Thus, NTs couple a
theoretical framework and the tendency to extrapolate
beyond the details, so that new principles can be seen.

Therefore, it is expected that STs would prefer a
logical and scheduled approach as used in MPI, whereas
NTs would prefer choosing Pthreads because it supports
and demands more creativity and innovation.
Furthermore, NTs are better in dealing with complexity.
In addition, stronger boundaries between the conscious
and the unconscious as an indicator for separateness
were found for Ss, Ts, and Js [1]. This corresponds to
the separation of data spaces performed in MPI.
Correspondly, N, F, P are stronger in relatedness. For a
summary of the expected preferences of certain MBTI
types for either programming model, see Table 3.

3 Experimental Test Setting and Results

We have performed two tests. One on a group of
4th-year Honors and  Graduate students (in a course on
distributed and parallel programming), using Pthreads
and MPI (referred to below as Test 1). The other one on
a group of 3rd-year students (in a course on operating
system principles), using Java threads and socket (Test

2). Most of the students met parallel programming
models the first time. For the first group, the course was
not a mandatory but elective one, i.e. we can assume
that students having chosen the course are interested in
this kind of programming. In their final project, they had
to program a simple numeric grid problem (as used to
model heat transfer on a metal sheet, for details see, e.g.,
[24]) in two different versions, one with MPI and one

Table 3:  The different skill-requirements of shared-data and message passing via Pthreads and MPI and the 
corresponding MBTI variables.

Multithreading MBTI relation Message Passing MBTI relation

requires understanding of data 
accesses with respect to prin-
ciple sharing and data 
exchange only

N is more interested 
in patterns and less 
good in details

requires an understanding of 
data accesses with respect to 
data exchange, ordering and 
distribution and thus a more 
geometric thinking

S is more accurate 
than N

supports the formulation of 
algorithms with stronger 
relatedness

N,F,P apply a view 
with stronger relat-
edness

supports the formulation of 
programs with maximum sep-
aration of concerns

S,T,J are stronger in 
separation

allows programmers the for-
mulation of more arbitrary, 
dynamic, irregular, heteroge-
neous and asynchronous pro-
grams, i.e. more complex 
control flows

Ns are more biased 
toward non-standard 
and innovative solu-
tions, NTs can better 
deal with complexity

MPI: provides programmers a 
simple synchronous model 
with mostly uniform and stati-
cally determined control flow 
and fixed procedures/rules

Ss are more oriented 
toward fixed and 
standard guidelines, 
STs like the conven-
tional

debugging requires dealing 
with complexity of control 
flow and a more creative 
approach

NTs can better deal 
with complexity and 
more easily invent 
specific testing pro-
cedures

safe and relatively easy to 
debug (especially if a mostly 
synchronous SPMD model) 
according to fixed proce-
dures/rules

STs are more ori-
ented toward fixed 
procedures/rules



with Pthreads. The problem is described below in more
detail. 10 students participated voluntarily in the
questionnaire which included the basic MBTI test (form
G) and additional questions related to the numeric-grid
project. The second test was about using a simple
program with two to three Java threads for I/O-latency
hiding and parallel processing and a simple program
with Java sockets for client-server interaction. 21
students participated in this test voluntarily (out of 195
students in the course) for a small payment,
acknowledging the time which they invested for this
test. The participating students can be considered to be
the more serious students with some understanding of
science. The distribution of all the 31 participating
students among the MBTI classes is shown in Table 2
for completeness.

Test 1: For the numeric grid, we work with a
simple regular and rectangular grid, solving an
equational system via iterative approximation. The
application partitions well, i.e. processors can work
mostly on their own data. However, the neighboring
cells are shared. On distributed memory this means that
the neighboring cells need to be exchanged between
iteration steps and that so-called ghostcells are
necessary to keep the neighbors’ last-step data (see
Figure 1). On shared memory, neither data copying nor
ghostcells are necessary, but explicit synchronization is
required on the availability of the neighboring-cell data
to perform the next iteration step - which with message
passing is performed implicitly. However, the MPI
version works with separate uniform subgrids and the
Pthreads version with one global grid. Both variants
scale well because there is only nearest-neighbor data
exchange. Absolute runtime is still reasonable when
using MPI, especially if making the grid-size larger and
more realistic than our example. Furthermore, worth to
note is that the basic problem structure in both variants
is similar, i.e. regular and static. The full capacity of
Pthreads to formulize arbitrary parallelism is thus not
exploited. Still there are significant differences.
Furthermore, it is important to note that this application
does not involve much potential for creative design, but
mainly requires accuracy in formulation.

FIGURE 1. Data partitioning and organization of a 300x300
grid with ghostcells (left) using 4 MPI processes with equally
structured subgrids. Arrows indicate the data exchange to be
performed between iteration steps. The dark grey cells at the
outside border represent initial values not being changed
during the processing. Note that with the organization shown,
the structure is very uniform, only requiring extra checks for
each side whether there is a neighbor with whom to exchange
data. The shared-memory version (small graphic right) uses a
single 300x300 grid without any ghostcells but semaphores
between neighbors to synchronize access to neighboring cells.
s indicates semaphores.

Test 2: The programs for the second test are
fairly simple. The thread program uses one thread to
read input data and another one to consume it. Data
exchange is via a bounded buffer. This program requires
an understanding of data sharing, synchronization,
thread execution, and the indeterministic execution
order. The socket program requires to setup a socket
connection and to communicate between a client and a
server to let the server perform certain tasks for the
client.  The thread assignment was a slightly more
difficult and took the students more time to implement.
Conversely to Test 1, both programs are asynchronous.

Both groups of students were asked 
• whether they preferred the variant using

messages or threads (1)
• which problems they encountered when they for-

mulated programs in either style (2)
The detailed raw results are shown in Table 5,

differentiated per MBTI type and per the two tests. Note
that the sample size per type is too small to be of
statistical significance. We therefore group into larger
classes below  (each grouping uses the whole sample set
and divides into only two subclasses).

Table 4 shows the evaluation along pairs of
MBTI variables. Overall, we can conclude that the
majority of students (19 vs. 12) prefers threads though
the corresponding assignment in Test 2 costed them
more time to complete. This is a bias with a clear
significance (p value is < 0.035). As is stressed by the
bold numbers, in some cases there are strong
preferences for  threads (N and P strongly prefer
threads), but we cannot observe any preferences for

1,1 300,1

0,0 301,01,1 1,150

0,0 0,151

150,1 150,150
151,0

151,151

1,1 1,150

150,1 150,150

0,0 0,151

151,151
151,00,00,0 0,1510,151

151,0
151,151

151,151
151,0

1,1 1,300

300,1 300,300

s1,2
s2,1

s1,3

s3,1

s2,4

s4,2
s3,4

s4,3



messages in the converse MBTI variable. Grouping TJ
and NOT TJ (Table 6), leads to a clear preference
toward threads for NOT TJ (p value < 0.035), but no
specific preference in TJ. However, if we compare ST
and NT (Table 6), it suggests a slight preference toward
messages for ST (Table 7). Both classes, however, have
not enough statistical significance (p value is not <
0.05).

Clearer results are obtained if classifying STJ vs.
NOT STJ (Table 8), i.e. here we find a slightly clearer
bias of STJ toward preferring messages - which,
however, is still  not statistical significant, though for
the converse choice of threads by STJ it is (p value <
0.025). Note that STJ’s preference for messages would
confirm the expectation of being stronger in separation.
But all three S, T and J may have to apply together to
establish a  preference. Considering the distribution,
42% of students are STJ and 54.9% are ST. Thus, this

distribution and the tendency of these groups to prefer
message passing, may contribute to the fact that MPI is
currently the dominating approach to parallel
processing. Since the results in this direction still lack a
bit more statistical significance, this suggests future
work to obtain a larger sample set. However, we can
now conclude with clear significance that NOT STJ and
NOT TJ have a very strong bias toward threads, whereas
their converse class is at least more balanced if not
showing a bias toward messages.

As regards the answers to Question 2, students
mention mostly the synchronization problem as a
difficulty in using threads - which conforms to the
standard opinion about thread programming.

4 Summary and Conclusion

Shared-data processing via threads is mainly
concerned with synchronizing accesses, message
passing via MPI or sockets with partitioning and data
distribution. Furthermore, thread programming provides
more flexibility and variability, whereas message
passing via MPI is more restrictive and uniform. Both
MPI and Java sockets support a clear separation of data
and protected address spaces. Thus, the focus is

Table 5:  Raw data of evaluation per MBTI type. In 
each box, the type, the number of students falling into 
this category and the number preferring either MPI or 
Pthreads (no. MPI / no. Pthreads) are shown.

MBTI type ISTJ ISFJ INFJ INTJ

Test 1: no. in type
MPI / Pthreads
Test 2: no. in type
Java sockets / 
Threads

3
2 / 1

5
3 / 2

0
-
1

0 / 1

0
-
0
-

1
0 / 1

2
0 / 2

MBTI type ISTP ISFP INFP INTP

Test 1: no. in type
MPI / Pthreads
Test 2: no. in type
Java sockets / 
Threads

1
0 / 1

2
1 / 1

0
-
0
-

0
-
0
-

0
-
1

0 / 1

MBTI type ESTP ESFP ENFP ENTP

Test 1: no. in type
MPI / Pthreads
Test 2: no. in type
Java sockets / 
Threads

0
-
1

0 / 1

0
-
0
-

1
0 / 1

2
1 / 1

0
-
1

0 / 1

MBTI type ESTJ ESFJ ENFJ ENTJ

Test 1: no. in type
   MPI / Pthreads
Test 2: no. in type
   Java sockets /
   Threads

2
1 / 1

3
2 / 1

0
-
1

0 / 1

0
-
0
-

2
1 / 1

2
1 / 1

Table 4:  Evaluation per each individual MBTI variable. The number of students are shown for each variable 
and the distribution among messages and threads. Note that for each pair (e.g. E/I), the whole sample set 
applies and divides into two possibilities (like E and I).

S 19 N 12 T 26 F 5 J 22 P 9 E 15 I 16 no. in 
style

Threads 10 9 15 4 12 7 9 10 19

Messages 9 3 11 1 10 2 6 6 12

Table 6:  Distribution of preferences for threads and 
messages among TJ and not TJ.

TJ  20 not TJ 11

Threads 10 (6+4) 9 (7+2)

Messages 10 (6+4) 2 (2+0)

Table 7:  Distribution of preferences for threads and 
messages among ST and NT. Numbers in parenthesis 
are for Test 2 and Test 1.

ST 16 NT 9

Threads 7 (5+2) 7 (5+2)

Messages 9 (6+3) 2 (1+1)

Table 8:  Distribution of preferences for threads and 
messages among STJ and not STJ. Numbers in 
parenthesis are for Test 2 and Test 1.

STJ 13 not STJ 18

Threads 5 (3+2) 14 (10+4)

Messages 8 (5+3) 4 (3+1)



different as well as the machine types for which they
were designed. We have shown that correlations to
certain MBTI personality type classes can be
established and have given some evidence for the
validity of our claims by an empirical study with a
number of students implementing programming
assignments with different languages. This would also
explain why certain groups of people argue for one or
the other programming model and prefer to purchase
one or the other machine type. In other words, the
decision is not made by which approach is “better” (for
a certain problem or machine type) but also by what
people like better. However, our test was confined to
students who first met parallel processing and
concurrency. In the future, we intend to increase the
sample set to confirm our initial results and enable more
detailed classification of MBTI types and problem
formulations (especially toward both synchronous and
asynchronous execution), to extend our tests toward
people experienced in parallel processins, and to include
higher-level programming models to explore their gain
in productivity for certain personality types.

5 Acknowledgements
Thanks to Karen Y. Fung for explanations of

statistical sampling. Furthermore, we thank all students
at the University of Windsor who kindly participated in
our test.

6 References

[1] J.E. Barbuto and B.A. Plummer. Mental Boundaries
and Jung’s Psychological Types: A Profile Analysis.
Journal of Psychological Type, Vol. 54, 2000, pp. 17-
21.

[2] R. Brooks. Studying Programmer Behaviors
Experimentally: The Problems of Proper
Methodology. Communications of the ACM, 23, 1980,
pp. 207-213.

[3] F. Cappello and D. Etiemble. MPI versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks. Proc. IEEE/ACM Supercomputing Conf.
(SC2000), Dallas/TX, USA, Nov. 2000.

[4] D.E. Campbell and J.M. Kain. Personality Type and
Mode of Information Presentation: Preference,
Accuracy, and Efficiency in Problem Solving. Journal
of Psychological Type, Vol. 20, 1990.

[5] L.F. Capretz. Making Sense of Software Engineering
and Personality Types. Submitted.

[6] Y.C. Hu, A. Cox and W. Zwaenepoel. Improving Fine-
Grained Irregular Shared-Memory Benchmarks by
Data Reordering. Proc. IEEE/ACM Supercomputing
Conf. , Dallas/TX, USA, November 2000.

[7] Dongming Jiang and Jaswinder Pal Singh. Scaling
Application Performance on a Cache-coherent
Multiprocessor. Proc. 26th Int. Symp. on Computer
Architecture (ISCA), Atlanta/GE, USA, May, 1999.

[8] C.G. Jung. Psychological Types (H.G. Baynes,
translation revised by R.F.C. Hull), Vol. 6 of the
collected works of C.G. Jung. University Press,
Princeton, NJ/USA,1971 (original work published
1921).

[9] K. Kennedy, C.F. Bender, J.W.D. Connolly, J.L.
Hennessy, M.K. Vernon, and L. Smarr. A Nationwide
Parallel Computing Environment. Communications of
the ACM, Vol. 40, No. 11, 1997, pp. 63--72.

[10] B. Lewis and D.J. Berg. Threads Primer-A Guide to
Multithreaded Programming. SunSoft Press, Prentice
Hall, Mountain View, CA/USA1996.

[11] M.L. Lyons. The DP Psyche. Datamation, 31(16),
August 1985, pp. 103-110.

[12] I.B. Myers and M.H. McCaulley. Manual: A Guide to
the development and Use of the Myers-Briggs Type
Indicator. Palo Alto, CA/USA, Consulting
Psychologists Press, 1985.

[13] MPI web page. http://www-unix.mcs.anl.gov/mpi/,
August 2001.

[14] I.B. Myers, M.H. McCaulley, N.L. Quenk, and A.L.
Hammer. MBTI Manual: A guide to the development
and use of the Myers-Briggs Type Indicator (3rd

Edition). Consulting Psychologists Press, Palo Alto,
CA/USA, 1998.

[15] D.S. Nikolopoulos, T. S. Papatheodorou, C.D.
Polychronopoulos, and E. Ayguarde. Is Data
Distribution Necessary in OpenMP. Proc. IEEE/ACM
Conf. on Supercomputing Dallas/TX, USA, 2000.

[16] OpenMP web page. http://www.OpenMP.org/, August
2001.

[17] C.M. Pancake. Can Users Play an Effective Role in
Parallel Tools Research? Int. Journal of
Supercomputing and HPC, Vol. 11, No. 1, 1997, pp.
84-94. 

[18] H. Shan, J.P. Singh, L. Oliker and R. Biswas. A
Comparison of Three Programming Models for
Adaptive Applications for the Origin2000. Proc. IEEE/
ACM Supercomputing Conf., Nov. 2000.

[19] D. Shneiderman. Psychology: Human Factors in
Computer and Information Systems. Cambridge, MA,
Winthrop Publishers, 1980.

[20] A.C. Sodan. Toward Successful Personal Work and
Relations - Applying a Yin/Yang Model for
Classification and Synthesis. Social Behavior and
Personality -An International Journal. Vol. 27, No. 1,
Jan. 1999. 

[21] A.C. Sodan. Survey of Runtime-Implementation
Strategies for Parallel Systems. Technical Reports 01-
01 and 01-11, University of Windsor, Computer
Science, Jan. and Nov. 2001. Submitted. 

[22] S.P. Springer and G. Deutsch. Left Brain, Right Brain.
W.H. Freeman and Company, New York, 1981.

[23] K. Shen, H. Tang and T. Yang. Adaptive Two-level
Thread Management for Fast MPI Execution on
Shared Memory Machines. Proc. IEEE/ACM
Supercomputing Conf. , Seattle/WA, USA, 1999.

[24] B. Wilkinson and M. Allen: Parallel Programming,
Prentice Hall, 1999.



    Brief Bio

     Dr. Angela Sodan has worked many years in a research lab which was focused on parallel processing,
     has been a Visiting Professor at the University of New Mexico and worked with Sandia Labs and is now
     an Associate Professor at the University of Windsor. Her research interest is runtime
     support in parallel processing, especially multithreading and dynamic scheduling in
     cluster and grid environments. 


