
  

 

Abstract  Advances in data science and wearable robotic 
devices present an opportunity to improve rehabilitation 
outcomes. Some of these devices incorporate electromyography 
(EMG) electrodes that sense physiological patient activity, 
making it possible to develop rehabilitation systems able to 
assess  progress when performing activities of daily 
living (ADLs). However, additional research is needed to 
improve the ability to interpret EMG signals. To address this 
issue, an off-line classification approach for the 26 upper-limb 
ADLs included in the KIN-MUS UJI dataset is presented in this 
paper. The ADLs were performed by 22 subjects, while seven 
EMG signals were recorded from their forearms. From 
variable-length EMG time windows, 18 features were 
computed, and 13 features more were extracted from frequency 
domain windows. The classification performance of five 
different machine learning techniques, including Support 
Vector Machines (SVM), Convolutional Neural Networks 
(CNN), Gated Recurrent Unit (GRU) network, XGBoost, and 
Random Forests, were compared. CNN performed best 
amongst individual models, with an accuracy above 80%, 
compared to SVM with 77%, GRU with 73.9%, and the tree-
based models below 64%. Ensemble learning with four CNN 
models achieved an even higher accuracy of 86%. These results 
suggest that the CNN ensemble model is capable of classifying 
EMG signals for most ADLs, which could be used in off-line 
quantitative assessment of robotic rehabilitation outcomes. 

I. INTRODUCTION 

Patients with musculoskeletal disorders or injuries often 
suffer from mobility limitations that affect their quality of 
life. Regardless of whether they recover their full mobility 
through physical rehabilitation, or end up with a permanent 
disability, it is physically and mentally debilitating to deal 
with a musculoskeletal disorder [1]. Upper limb disabilities 
are 
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the hands are used for almost every basic activity [2]. 
Incorporating a smart mechatronic device for example, a 
wearable exoskeleton to assist patients in rehabilitation 
therapies help them to improve the performance of activities 
of daily living (ADLs), thereby improving their quality of life 
[3]. Although the field of rehabilitation robotics is well-
established, there is potential to improve the use of these 
devices by employing data analytics techniques [3] [5].  

Intention recognition, real-time intelligent control, and 
off-line quantitative assessment analysis are the three main 
application areas of machine learning algorithms in robot-
assisted upper limb rehabilitation [5]. In off-line assessment, 
analysis is done after the completion of the rehab exercises. 
This means that there are fewer limitations on computing 
time and computing capacity, allowing for the use of large 
machine learning architectures. Off-line analyses could be 
used by clinicians and patients to monitor and improve the 
rehabilitation process. For instance, a tool that takes 
advantage of an accurate rehab exercise classification could 
help patients to keep track of the exercises that they need to 
complete and help clinicians to assess and adjust the progress 
of rehabilitation therapies. This is useful because one of the 
most challenging aspects of therapy is ensuring that the 
patient completes their exercises, which impacts the pa
ADL outcome [4]. Moreover, a robot-mediated therapy could 
use that tool to increase the effectiveness of rehabilitation 
interventions.  

This paper explores an off-line approach for classifying 
upper-limb ADL exercises using recordings of surface 
electromyography (sEMG) signals from the forearm. To 
achieve this goal, the KIN-MUS UJI dataset developed by 
Jarque-Bou et al. was used, which contains EMG data 
recordings of 22 subjects performing 26 ADLs [6]. These raw 
EMG signals were processed to extract features, and then 
train several classification models. Solving this time series 
classification (TSC) problem was attempted using both 
commonly used machine learning algorithms such as Support 
Vector Machines (SVM) and Random Forests, as well as 
deep learning approaches such as Convolutional Neural 
Networks (CNN) and Gated Recurrent Unit (GRU) network. 
Finally, three ensemble approaches were compared to further 
improve results.  

The comparison of machine learning techniques as well 
as their results in the classification of a wide set of ADLs, as 
presented in this paper, is done to aid development of 
techniques for off-line analysis of robotic rehabilitation 
exercises.  
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II. BACKGROUND 

A. Activities of Daily Living 

ADLs are fundamental skills required to care for oneself. 
The inability to perform ADLs may result in dependence on 
others or mechanical devices, and decreased quality of life 
[7]. This makes them particularly important in a clinical 
setting to determine the level of care and physical therapy 
needed for a patient. Upper-limb ADL representative 
exercises have been developed to assess patient abilities. 
These provide an effective way to study the hand functions 
required for ADLs. One of these is the SHFT (Sollerman 
Hand Function Test) protocol which was used to develop the 
KIN-MUS UJI dataset applied in our work [8]. 

B. Machine Learning Techniques 

To compare both classical algorithms and deep learning 
techniques, SVM, Random Forests, XGBoost, GRU, CNN, 
and an ensemble approach were selected to be applied to the 
TSC problem, as described below:   

 SVM, as a classifier, searches for one or more 
hyperplanes that separate classes and maximize the 
distance between the support vectors that define the 
boundaries between classes [9], [10]. This algorithm uses 
kernel functions to map nonlinear data to a feature space 
where the classes are linearly separable [10]. In this 
paper, the Radial Basis Function (RBF), polynomial, 
linear, and sigmoid kernels were considered.  

 Random Forest is a decision-tree-based algorithm. It is 
helpful for obtaining predictions using the bagging 
method. Those predictions are made using the mean of 
the decision trees outputs. The hyperparameters used are 
the number of estimators, max depth, random state, and 
bootstrap [11]. 

 XGBoost is also a decision-tree-based ensemble 
algorithm that uses a gradient boosting framework and 
parallel processing. The hyperparameters are the number 
of decision trees in the model, the maximum size of each 
decision tree, the learning rate, the minimum sum of 
weights of all observations required in a child tree, the 
fraction of observations to be randomly sampled for each 
tree, and the subsamples ratio of columns when 
constructing each tree [12]. 

 CNN is a deep learning technique in which the network 
architecture is typically constructed by stacking 
convolutional blocks. Each convolutional block consists 
of a convolution layer that produces a feature map then a 
pooling layer that down samples the feature map. To 
implement classification, the output from the stacked 
convolutional blocks is flattened into one dimension, and 
a softmax layer is applied to make predictions [13].  

 GRU network is a deep learning technique based on 
Recurrent Neural Networks (RNN). The GRU has an 
update gate and a reset gate that dictate whether the 
hidden state of each unit should be changed or forgotten. 
These gates prevent the vanishing gradient problem, 
allowing the network to identify longer patterns in the 
signal than an RNN [13]. A GRU network is structured 
with one or more GRU layers, followed by a dense layer 
and a softmax layer. 

An ensemble learning approach provides a means of 
combining several models to improve performance. 
Various techniques for combining model exist [14], 
including the hard voting method, where the class that has 
been selected by most models is selected; the soft voting 
method, where the class with the maximum summation of 
models expected probabilities is selected; and the 
stacking technique that adds a layer to learn on the 
predictions of the best models to produce the final 
predictions [15], as shown in Fig. 1. 

III. RELATED WORK 

Many approaches have been proposed to classify hand 
gestures through different machine learning algorithms. 
These gestures are basic movements such as close and open 
hands, rest, diverse types of grips, as well as wrist flexion, 
extension, abduction, adduction, pronation, and supination 
[16] [19]. Those approaches are helpful for controlling 
electromechanical devices to help people with neurological 
disabilities [17]. However, patients need to perform more 
complex movements in their daily living such as eating, 
drinking, pouring, or dressing. Therefore, an ADL classifier 
could help with the patient's rehabilitation through an 
assessment of the patient's progress. In recent years, research 
on the classification of ADLs have increased [20].  

Commonly, EMG signals are used to classify ADLs 
because those biological signals have a direct relationship 
with the movement, velocity, and forces applied by the 
patient while performing an activity. For example, in 2015, 
Azaripasand et al. [21] published a classification of five 
upper-limb ADL movements. They used 14 features 
extracted from the EMG signals to compare five algorithms: 
SVM, Decision Tree
Discriminant Analysis, and Bayes. With a hierarchical 
classification, they obtained a final accuracy between 52% 
and 100%, depending on the algorithm tested. In 2016, the 
same algorithms, except for the Bayes one, were compared 
with a CNN architecture to classify around 50 classes of hand 
movements [22]. From EMG signals, the authors calculated 
the following features: marginal Discrete Wavelet Transform, 
histogram, waveform length, and the Root Mean Square 
(RMS). The CNN accuracy obtained was similar to the 
results from the average reference methods, but CNN 
performance was not as good as the Random Forests result. 
 

 
Fig. 1. The architecture of stacking based on four models. 



  

Their average classification accuracy was between 60% and 
75% in the datasets with nondisabled subjects. 

Also, Sharif et al. [23] used EMG signals to classify eight 
dynamic ADL tasks. They extracted spectrograms and Mean 
Absolute Values (MAV) from those signals. SVM and CNN 
algorithms were compared using accuracy as the main metric. 
They obtained accuracies between 65 and 92% for dynamic 
tasks. Another approach [24] combined EMG and inertial 
motion data to predict four categories of functional activities. 
These categories were created by grouping 17 ADLs. A KNN 
machine learning algorithm was used to predict the 
categories, obtaining an accuracy of 89.2%.  

Only one published paper has applied machine learning 
algorithms to the KIN-MUS UJI dataset [25]. Salatiello and 
Giese utilized an LSTM network and forearm EMG activity 
to predict hand kinematics. Although our work uses the same 
dataset, it does not have the same classification goal. 
Thereby, this paper is the first reported work on ADL 
classification using the raw EMG data from this dataset. 

IV. METHODS 

A.  Dataset 

The KIN-MUS UJI dataset contains recordings of seven 
EMG channels and 18 joint-angles data from 22 subjects 
performing 26 actions that are representative of ADLs. Table 
I shows descriptions of the ADLs. Some recordings were 
performed with the subjects standing and others while they 
sat down on a chair [6].  

TABLE I.  ADLS IN THE KIN-MUS UJI DATASET  [6]. 

ADL Action description 
1 Collecting a coin and putting it into a change purse 
2 Opening and closing a zipper 
3 Removing a coin from a change purse and leaving it on the table 
4 Catching and moving two different sized wooden cubes 
5 Lifting and moving an iron from one marked point to another 
6 Taking a screwdriver and using it to turn a screw clockwise 360° 
7 Taking a nut and turning it until completely inserted inside the bolt 

8 Taking a key, placing it in a lock and turning it counterclockwise 
180° 

9 Turning a door handle 30° 
10 Tying a shoelace 
11 Unscrewing two lids and leaving them on the table 

12 
Passing two buttons through their respective buttonhole using both 
hands 

13 Taking a bandage and putting it on their left arm up to the elbow 

14 
Taking a knife with the right hand and a fork with the left hand and 
splitting a piece of clay (sitting) 

15 
Taking a spoon with the right hand and using it 5 times to eat soup 
(sitting) 

16 
Picking up a pen from the table, writing their name and putting the 
pen back on the table (sitting) 

17 
Folding a piece of paper with both hands, placing it into an 
envelope and leaving it on the table (sitting) 

18 Taking a clip and putting it on the flap of the envelope (sitting) 
19 Writing with the keypad (sitting) 

20 
Picking up the phone, placing it to their ear and hanging up the 
phone (sitting) 

21 Pouring 1L of water from a carton into a jug (sitting) 

22 
Pouring water from the jug into the cup up to a marked point 
(sitting) 

23 Pouring the water from the cup back into the jug (sitting) 
24 Putting toothpaste on the toothbrush 
25 Using a spray over the table 5 times 
26 Cleaning the table with a cloth for 5 seconds 

Each subject performed each ADL once while their EMG 
were recorded using a Biometrics Ltd. device with surface 
electrodes placed at specific locations on the forearm. These 
EMG signals were acquired at a sampling rate of 1000 Hz, 
amplified by 1000, and then band-pass filtered between 20 
Hz and 460 Hz [6]. The KIN-MUS UJI dataset was chosen 
due to its consistent protocol for placing the EMG electrodes 
on forearm areas verified to represent ADL performance [6]. 
Furthermore, the representative set of ADLs in this dataset 
are based on the reliable SHFT [8]. This test has been used 
and validated in the assessment of hand functions in patients 
with diverse musculoskeletal disorders or injuries [26] [28]. 
These characteristics make the dataset ideal for developing 
tools for assessing rehabilitation processes as proposed in our 
paper. 

B.  Preprocessing and Feature Engineering 

Many of the ADLs in the dataset are similar, varying by 
minor differences in the type of grip and the length of each 
motion. For example, turning a screwdriver and turning a 
door handle are similar actions. Thus, to ensure that there was 
sufficient information in each example to classify the ADLs, 
each trial in its entirety was used as one input example to the 
machine learning model. In contrast, previous studies split 
each trial into windows and used each window as a single 
input example, which enabled their techniques to be used in 
real-time. Since our work is intended for analysis after 
rehabilitation exercises, longer input sequences could be used 
with larger models. However, this approach introduced 
challenges because each signal was a different length 
(ranging from 4.66 s to 33.62 s), but most machine learning 
models require fixed input lengths. To solve this problem, the 
methodology shown in Fig. 2 was applied. For each of the 
time domain (TD) EMG signals in each trial, a Fast Fourier 
Transform (FFT) was computed. Thus, seven frequency 
domain (FD) representations were obtained from each trial. 
Then, each TD and FD representation were divided into 100 
segments and features were calculated for each segment. The 
features for every signal (seven EMG channels and seven 
FFTs) and every segment were concatenated into a feature 
matrix. The feature matrix for each trial was considered as 
one input example for the machine learning models. 

 

Fig. 2. Segmentation performed to TD and FD signals to obtain a 
features matrix. With preprocessing, each trial produces a matrix of 
217 features (31 features x 7 channels) by 100. 



  

Based on the classification studies of EMG signals [29]
[31], the computed features from each TD segment were the 
Mean, variance of EMG, MAV, Integrated EMG (IEMG), 
Simple Square Integral (SSI), RMS, Waveform Length 
(WL), Zero Crossing (ZC), and the Willison Amplitude 
(WAMP). Other statistical features were computed from a 
rectified version of each TD segment. These added 
measurements were the maximum value, minimum value, 
standard deviation (STD), median, 1st Quartile, 3rd Quartile, 
and the coefficients of a second-order Auto-Regressive (AR) 
model. Although the TD segments were of different lengths, 
calculating these features retained most of the sequence 
information while equalizing   the dimension of each input 
example by diving each signal into equal number of 
segments.  

On the other hand, the computed FD features were the 
Mean Power (MNP) [30], Total Power (TTP) [30], SSI, 
RMS, variance, WL, and WAMP. The statistical features 
added from the FD segments were the maximum power 
value, minimum power value, STD, median, 1st Quartile, and 
3rd Quartile. 

C. Hyperparameter Optimization 

The TD and FD features were used to train and test the 
performance of an SVM, a Random Forest, a CNN, an 
XGBoost, a GRU, and three ensemble architectures (hard, 
soft, stacking), on the ADLs classification. The ensemble 
approaches were built with four models obtained from the 
best training performance techniques to evaluate which 
approach would improve the alone-model performance. 

The dataset was randomly split into training (80%) and 
testing (20%) sets such that the testing set had four or five 
trials from each ADL. At this way, an activity from a single 
person was assigned to only one of the two sets, but not in 
both. The hyperparameters were tuned using manual and grid 
searches. During tuning, all models were trained and 
validated through a 5-fold cross-validation. In this technique, 
the training set is divided into five same-size sections/folds, 
then four of them are used to train one model and the 
remaining one is used to validate the model. The process is 
repeated five times, each time with a different fold as the 
validation set. Each fold was normalized using Min Max 
Normalization to a range between zero and one.  

D. Comparison Metrics 

To compare the techniques, the classification 
performance was computed using the following metrics: 

1) Classification Accuracy is the result of dividing the 
number of correctly classified samples by the total number of 
samples. Values closer to 1 indicate better performance [9]. 

2) F1-score considers is the harmonic mean of precision 
and recall. It can assume values between 0 and 1 with higher 
values indicate better performance [9]. 

3) Confusion Matrix collects the number of correctly 
and incorrectly classified samples in a square matrix, with 
actual labels in the rows and predicted labels in the columns. 
Correct predictions increase the values of diagonal matrix 
elements, while misidentified classes increase the off-
diagonal values. This metric allows a direct comparison 
between the class predictions [9]. 

V.  RESULTS 

A. Validation Results 

After applying the hyperparameter search on the training 
set, the best models from each technique were selected to 
compare their performance in the testing data. The 
hyperparameters of the best models are given in Table II and 
the cross-validation results are shown in Table III.  

The CNN performed best with 83.6% validation 
accuracy, 4.6% better than the second-best model (GRU). 
Fig. 3 shows the CNN architecture implemented, which has 
four convolutional layers with a ReLU as the activation 
function, three average pooling layers, two fully connected 
layers, and a softmax layer. It was noticed that changing 
certain hyperparameters of the CNN altered the classification 
performance. The number of filters, the filter size, and the 
optimizer, all affected the results for each model. Therefore, 
the four best CNN models were selected for use in three 
ensemble learning approaches, hard-voting, soft-voting, and 
stacking. Table IV shows the best four CNN 
hyperparameters. 

TABLE II.  HYPERPARAMETERS OF THE BEST MODELS 

Technique Hyperparameters 
SVM Kernel: RBF  

C (regularization parameter) = 1117.3 
Gamma = 0.0002 

Random 
Forest 

Number of estimators: 350 
Maximum depth: 35 

XGBoost Number of estimators: 340 
Maximum depth: 4 
Learning rate: 0.03 
Minimum child weight: 1 
Subsample: 0.797 
Column sample by tree: 0.463 

CNN Filters in the first layer (doubles each layer): 16 
Kernel size: 3 
Learning rate: 0.001 
Optimizer: Adam 
Dropout: 0 
Number of neurons in dense layer: 1024 
Activation function: ReLU (Rectified Linear Unit) 
Pooling technique: Average 

GRU Number of layers: 4 
Number of neurons in each layer: 100 

 

TABLE III.  MODEL 5-FOLD CROSS VALIDATION RESULTS 

Technique Validation  
Accuracy 

SVM 65.4% 
Random Forest 57% 
XGBoost 47.7% 
CNN 83.6% 
GRU 79% 

 

TABLE IV.  HYPERPARAMETER DIFFERENCES IN FOUR CNN MODELS 

Model Filters (1st Layer) Kernel Size Optimization  
CNN1 16 3 3 Adam 
CNN2 32 2 2 Adamax 
CNN3 16 2 2 Adam 
CNN4 32 2 2 Adam 



Fig. 3. CNN architecture.

B. Testing Results

All the best models obtained from the validation were 
tested once using testing data. The average classification 
accuracy and the average F1-score were used to compare 
their performance. Fig. 4 shows metric results in percentages. 
The results of both Accuracy and F1-score are similar, 
indicating that the correct and incorrect classified classes are 
equally affecting performance. The metrics also show that the 
worst performances are obtained with the decision tree 
algorithm approaches, Random Forest and XGBoost, with 
accuracies of 63% and an F1-score of 57%. The best 
performances were obtained from the CNN architectures and 
their ensembles, with accuracies between 80% and 86%, and 
F1-score between 79% and 86.1%. The hard voting CNN 
ensemble was the best one with an accuracy and F1-score of 
86%. The GRU model had lower performance than the CNN, 
with a test accuracy of 73.9%.

A confusion matrix for the hard voting CNN ensemble 
model is presented in Fig. 5. The model perfectly classified 
13 out of 26 ADLs. Of the 13 classes with incorrect 
predictions, 10 of them had 2 or less misclassifications. The 
model had the most difficulty with ADL 2, ADL 10, and 
ADL 12.

Except ADL 22, all activities performed in a sitting 
posture were classified without errors or with just one error 
(See Table I and Fig. 5). In contrast, almost all ADLs 

incorrectly classified were performed by the participants in a 
standing posture. These differences could be generated 
because the upper limb EMG signals are significantly 
affected by different body postures [32].

On the other hand, the algorithm has a consistent 
confusion between ADLs 10 and 12 (See Table I and Fig. 5). 
This misclassification appears because these two activities 
are made with both hands, with similar smooth movements, 
and low muscle activations. Another noticed error is that the 
model sometimes identifies ADL 2 as ADL 8, this could be 
happening because both activities include a lateral pinch grip 
[6]. ADL 8 incorporates a hand rotation that helps the model 
to identify this activity better than ADL 2.

The model performance results are comparable with other 
studies of ADL detection using EMG feature engineering 
[21] [24]. However, this is the first one dealing with 
classifying a wide variety of ADLs performed with diverse 
upper-limb movements.

Fig. 5. Confusion matrix obtained from the best model in the 
testing set.

Fig. 4. Testing results comparison between the best models.



  

VI. CONCLUSIONS 

This work compared several machine learning algorithms 
on the classification of 26 ADLs using EMG recordings from 
the forearm. This was the first work performing an ADL 
classification task on the dataset developed by Jarque-Bou et     
al. [6]. To prepare the data, each trial was divided into 100 
segments and 31 time- and feature-based features were 
calculated from each signal. Hyperparameter optimization, 
was performed with 5-fold cross validation on the training 
data. Then, the final models were applied to the testing data 
and evaluated using the accuracy and the F1-score as 
comparison metrics. 

CNNs performed better than random forest, XGBoost, 
GRU, and SVM approaches in the classification of the 26 
ADLs. CNN achieved a testing accuracy of 83.4%. When 
paired with hard voting using four CNNs, an accuracy of 
86% and a F1-score of 86.1% were achieved. These results 
are meaningful when they are compared with the range of 
results achieved on similar datasets because of the difference 
in the amount and complexity of the ADLs classified. 

The hard voting ensemble CNN model correctly 
classified most ADLs, mainly those performed in a sitting 
posture. These results indicate that the approach presented in 
this research could be used in rehabilitation systems to off-
line assess the progress of the patient's ability to perform 
ADLs. Moreover, the classifier could be incorporated into a 
robot-assisted upper limb rehabilitation system that captures 
EMG signals from the patient's forearm. 

Additional work is needed to make our approach useful in 
practice, such as developing a model for identifying the start 
and stop of each activity and obtaining a larger dataset to 
improve generalization, including data from people with 
upper-limb disabilities. Furthermore, improving the 
efficiency of the model may be necessary, which could be 
done by identifying the most important features and reducing 
the number of feature calculations. Moreover, combining 
GRU and CNN is suggested as an extension to this work to 
improve accuracy. 
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