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ABSTRACT

Load forecasting is essential for the operation and planning of a utility company. Recent large-scale
smart meter deployments enabled the collection of fine-grained load data and created opportunities
for sensor-based load forecasting. Machine learning has achieved great successes in load forecast-
ing; however, conventional machine learning techniques require data transfer to the cloud or another
centralized location for model training. This not only exposes data to privacy and security risks but
also, with a large number of smart meters, increases network traffic. Federated Learning (FL) has a
potential to alleviate mentioned concerns by training a single ML model in a distributed manner with-
out requiring participants to share their data. Consequently, this paper proposes FedNorm, a novel
asynchronous FL approach for load forecasting with smart meter data. While most FL strategies are
synchronous and require all clients to complete local training in each round of aggregation, FedNorm
is asynchronous and aggregates updates without waiting for lagging clients. To achieve this, FedNorm
measures the clients contributions considering similarities of local and global models as well as the
loss function magnitudes. The experiments demonstrate that FedNorm achieves higher accuracy than
seven state-of-the-art FL techniques. Moreover, experiments show that FedNorm converges in fewer

communication rounds compared to other FL. models.

1. Introduction

According to the United States Energy Information Ad-
ministration (EIA), global electricity consumption contin-
ues to outpace global population growth [1]. At the same
time, countries are setting aggressive greenhouse gas emis-
sions targets; European Union, for example, aims to reduce
emissions for 40% and increase energy efficiency for 27%
by year 2030 [2]. Renewable energy resources are expand-
ing quickly; however, their intermittent nature and variabil-
ity pose challenges for balancing supply and demand.

In a such challenging environment, load forecasting has
a critical role in balancing supply and demand, providing
information for generation scheduling, grid operation, and
infrastructure planning, as well as for transitioning towards
a smarter grid. Today, electricity consumption data gath-
ered by widely adopted smart meters provide tremendous in-
formation about historical consumption patterns on building
and even household level, consequently creating new oppor-
tunities for fine-grained load forecasting [3].

Machine learning (ML) approaches have been widely used
in load forecasting tasks [4] as they discover relations within
data and identify patterns. ML-based techniques are typi-
cally sensor-based: they use historical load data collected
by smart meters, merged with meteorological and other data
to train ML models. Then, those trained models are used to
infer future energy consumption. Conventionally, smart me-
ter data are transmitted to a data center or other centralized
systems for ML model training. In such centralized systems,
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a single model is trained individually for each smart meter
or data from several smart meters are aggregated to train a
model [5].

Although these centralized solutions have shown great
results in load forecasting, they are faced with numerous
challenges. First of all, transferring smart meter data may
expose personal information about a consumer’s household
such as routines, habits, and individual appliance usage [3].
Consumers’ concerns about data privacy and security are
among the most often mentioned reasons for smart meter
installation hesitancy and a major obstacle to smart meter
adaptation despite the benefits of improved energy manage-
ment [6]. Moreover, centralized systems require transmit-
ting all data to a centralized location, which leads to increased
network traffic [7]. As the number of smart meters grows,
training an individual ML model for meter-level load fore-
casting becomes computationally expensive and even infea-
sible [7].

Federated learning (FL) presents a possible solution to
these challenges as it is capable of training an ML model
across many decentralized edge devices that hold local data
without the need to share raw data among devices or even
with the centralized system [8]. Fig. 1 depicts an FL scheme:
each device receives a copy of the global model and im-
proves it by learning from local data. Then, instead of raw
data, the updated parameters of the local models are sent to
the server to be aggregated into the global model.

FL represents a shift from centralized to distributed ML,
nevertheless, traditional FL. employs a synchronous protocol
[9]: at each iteration, the server distributes the global model
to a subset of clients and then waits for the selected subset
of clients to complete their training before collecting all up-
dates and aggregating them. This is a hindrance as device
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Figure 1: Standard federated learning

heterogeneity can cause some clients to complete training
much faster than others while network unreliability can lead
to delayed or even dropped transmissions. Asynchronous FL
is a newly emerged FL method that allows the server to ag-
gregate parameters without waiting for the lagging devices
[10]; however, it is still in its early stages.

Another FL challenge is non-1ID (independent and iden-
tically distributed) data. Smart meters collect data corre-
sponding to users with different preferences and behaviours
leading to significant differences in the data distributions and
patterns. The presence of non-IID data degrades the FL per-
formance, brings instability to the training process, and re-
sults in a higher number of rounds required for convergence
[11].

Consequently, this paper proposes FedNorm, a novel asyn-
chronous FL strategy for load forecasting with smart meter
data under a non-IID setting. To deal with staleness and non-
IID data, FedNorm measures the contribution of participat-
ing nodes taking into consideration the similarity between
local and global model weights as well as the magnitude of
local objective functions. Then, the global model is updated
based on the client’s contributions. The proposed approach
accelerates the training loss reduction in each communica-
tion round and, therefore accelerates convergence. Experi-
ments show that the proposed algorithm converges quickly
under asynchronous and non-IID conditions and outperforms
most common synchronous and asynchronous FL strategies.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the related works, Section 3 provides pre-
liminaries, the proposed FedNorm is presented in Section
4, and Section 5 explains the evaluation methodology and 6
discusses results. Finally, Section 7 concludes the paper.

2. Related Work

This section first reviews recent deep learning works for
load forecasting including FL. methods. Next, techniques for
FL with non-IID data and asynchronous FL are discussed.

2.1. Load Forecasting
Load forecasting techniques based on Deep Learning (DL)
have gained popularity because of their ability to model com-

plex relationships [5]. Although DL algorithms such as feed-
forward neural networks and convolutional neural networks
have been used for load forecasting [5], these methods are
not designed to capture temporal dependencies present in
data. In recent years, Recurrent Neural Networks (RNNs)
have improved load forecasting due to their ability to cap-
ture time dependencies [12].

Sehovac et al. [13] proposed Sequence to Sequence Re-
current Neural Network (S2S RNN) with attention for load
forecasting. S2S model improves time modeling by employ-
ing two RNNSs, encoder and decoder RNN, and authors add
the attention to strengthen the link between the encoder and
decoder. Tian et al. [14] also employed S2S model, but their
work focused on scaling load forecasting for a large number
of smart meters.

Jagait et al. [15] introduced Online ARIMA-RNN en-
semble, a load forecasting approach capable of learning from
new data as they arrive. The approach combines Online
Adaptive Recurrent Neural Network [12] and Rolling ARIMA
using the adaptive weighted aggregation technique. Long
Short-Term Memory (LSTM), a type of RNN, was combined
with Support Vector Machine, Random Forest, and a data
preprocessing technique to create a multi-step forecasting
strategy capable of improving forecasting accuracy [16].

For load forecasting tasks, researchers combined LSTM
with other techniques to improve the accuracy of predic-
tions. Li et al. used empirical mode decomposition and sam-
ple entropy with LSTM for ultra-short-term load forecasting
[17]. LSTM was merged with Convolutional Neural Net-
work (CNN) to forecast the monthly peak load for a time
horizon of three years [18]. Sekhar and Dahiya [19] also
combine LSTM with CNN, but they added Grey Wolf Op-
timization (GWO) to obtain the optimal set of parameters
for CNN and LSTM. Moreover, the transformer architecture
from natural language processing has recently been adapted
for load forecasting by modifying the transformer workflow,
incorporating N-space transformation, and adding a tech-
nique for handling contextual features [20]. The transformer-
based architecture achieved a slightly better forecast than
Seq2Seq neural networks.

Besides deep learning approaches, techniques based on
traditional ML and statistical models have also been explored.
Chodakowska er al. [21] used Auto Regressive Integrated
Moving Average (ARIMA) for regional load forecasting and
examined ARIMA’s robustness to noise. Tan et al. [22] pro-
posed an approach based on multi-task learning and least
square Support Vector Machine (SVM). Similarly, Wang et al.
[23] also used SVM, but they combined SVM with LSTM
for multi-energy load forecasting. Tree-based models have
also been used, although they are commonly combined with
another technique: for example, Gradient Boosting Deci-
sion Trees (GBDT) were combined with LSTM for multi-
energy load forecasting [24]. Nevertheless, in recent years,
deep learning models have been dominant in load forecast-
ing [25].

The reviewed works showed an increased load forecast-
ing performance; however, they are all centralized techniques
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burdened with the aforementioned challenges of large net-
work traffic, and privacy concerns. To address these issues,
Taik et al. [26] investigated edge computing and FL for
household load forecasting with smart meters. They em-
ployed the FL paradigm to learn from a group of houses with
similar profiles; however, the performance of the suggested
FL model is degraded by non-IID data.

Briggs et al. [27] explored the use of FL and FL with
hierarchical clustering (FL+HC) for energy load forecasting
on the household level. Their results showed that the pro-
posed approaches outperform centralized learning but not
local learning. Zhang et al. [28] proposed a probabilistic
model for solar irradiation forecasting based on deep learn-
ing, variational Bayesian inference, and FL. Although the
results showed competitive performance, the main drawback
is that the model does not support non-IID data.

All reviewed FL-based load forecasting studies [26, 27,
28] only consider a synchronous scenario, while we deal
with asynchronous systems. This means that in our system,
clients may send updates to the server at different times due
to differences in the computation abilities of each node or
due to communication delays or interruptions.

2.2. FL with non-IID data and Asynchronous FL

The FL performance degrades with non-IID data [29],
but we cannot expect an IID distribution in many real-world
settings. To deal with the non-IID problem, Smith et al. [30]
introduced MOCHA, a paradigm that combines multi-task
learning with FL. MOCHA fits a separate model for each
local node and uses multi-task learning in the aggregation
process. Mohri et al. [31] introduced agnostic FL, which
uses a weighted average of the clients’ gradients and a novel
optimization approach to update the shared model. Their
research demonstrated that the proposed method promotes
fairness and reduces bias.

The MOCHA [30] and Agnostic FL [31] consider non-
IID challenges in diverse domains; however, they have not
been applied to load forecasting and their capabilities for
load forecasting need to be investigated. Fekri ef al. [32]
proposed an FL. model with a dynamic learning rate for load
forecasting with non-1ID smart meter data. Their FL. model
outperformed both centralized and local models for each smart
meter. To overcome the non-IID data challenges in time-
series data including load forecasting, Yeongwoo et al. [33]
introduced dynamic clustering into the FL framework. On
the server side, the framework employs ClusterGAN and Hyp-
Cluster to dynamically group clients into the clusters accord-
ing to their loss. The aggregation is carried out individu-
ally for each cluster, and the updated parameters are sent to
clients that are part of the same cluster.

Discussed FL approaches [30, 31, 32, 33] are well suited
for non-IID data; however, they are synchronously trained
and, thus, unfit for heterogeneous devices and unreliable net-
works. Chen et al. [10] proposed an asynchronous online
FL framework (ASO-Fed), in which clients perform online
learning from local streaming data. ASO-Fed uses a fea-
ture Representation learning method on the server to extract

cross-device attributes from the clients’ updates. Fleet [34]
is another online FL framework: it introduced AdaSGD, an
asynchronous learning algorithm robust to stale updates (up-
dates that are arriving with delay). For calculating similar-
ities among clients, some labeled data must be shared with
the server what creates potentials for privacy leakage. Ad-
ditionally, AdaSGD has a limited capacity for dealing with
non-IID data. Fleet keeps all the gradients including stale
ones assuming that they may contain valuable information.
In the presence of clients with large delays and non-IID data,
gradients may be more dissimilar what can cause challenges
in AdaSGD convergence.

FedAsync [35], an asynchronous FL algorithm, applies
regularization on the local clients and uses a weighted av-
erage to update the global model. While FedAsync demon-
strated some staleness tolerance, for large staleness, FedAsync
performs similarly to synchronous FL. Similarly, federated
adaptive weighting [11] aims to improve the FL performance
in presence of non-1ID data through assigning different weights
for the participating nodes when updating the global model.

Asynchronous FL works [10, 34, 35, 11] introduced dif-
ferent techniques; however, asynchronous FL is an emerging
topic and needs to be further investigated in diverse settings.
To our knowledge, our proposed method is the first asyn-
chronous FL algorithm for load forecasting.

3. Preliminaries

Assume that we have K distributed devices. Let P de-
note a partition of data points stored on the device k, with n;,
indicating the size of P,, and N = Zszl n, representing the
total number of data points on all devices. For any k # k’
and P, PIZ = fJ, the FL objective can be described in a
form of the optimization problem:

K
. ny
L = E —
Hi,l,n (w) Z Nl//k(w)

(1a)

where y (w) = RS Z Ci(X;, Yis Wy) (1b)

Mk iep,

where L(w) is the global model loss function, y; (w) is the
loss of the k' device, #;(x;, y;; w),) is the loss function for
data point {x;,y;}, and w, represents the local model pa-
rameters.

FedAVG is the widely used synchronous FL approach
[8]. Each round of FedAVG starts by randomly selecting a
subset of devices and broadcasting the model to those de-
vices. The selected devices train in parallel their local mod-
els with the local data for multiple epochs. Then, these lo-
cal devices send model updates to the server, and the server
aggregates the changes when it receives updates from all se-
lected clients. The updating mechanism of most synchro-
nized FL algorithms is similar to FedAvg [36]. One draw-
back of the synchronized FL is that during each global iter-
ation, if one or more clients experience significant network
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Server @

latency or have more data and require longer training time,
complete FL system must wait. This results in idling and
prolonged training time [10].

The IID condition in stochastic gradient-based learning
is crucial as it allows models to have an unbiased estimate of
the full gradient [29]. FedAvg has proved to be successful
when data distribution for local nodes is similar to that of
local nodes’ data gathered centrally [11]. However, in load
forecasting, the local data distribution is generally non-IID
since local nodes contain different usage patterns. In FL, the
local objective y; (w) is closely related to data distribution
P,. Alarge number of local updates on non-IID data lead the
local model y, (w) towards optima of its local objective as
opposed to the global objective L(w). This discrepancy be-
tween local models w), and the global model w accumulates
along training, resulting in increased communication rounds
before training converges [11].

4. FedNorm

This section describes the proposed FedNorm, an asyn-
chronous approach for learning from distributed smart meter
data when some of the clients are unable to participate in the
training process due to network instability or when the lag-
ging clients do not complete their training timely. Each client
carries out its own data preprocessing using its own local
data. First, Min-Max normalization is performed individu-
ally for each smart meter to scale data to [0:1] range. This
enables the system to handle diverse magnitudes of smart
meter readings among participants, reduces the dominance
of the large features, and consequently results in improved
convergence. Next, the sliding window technique [12] is ap-
plied locally, for each smart meter independently, to prepare
data for the ML model. The first window contains the first
w readings and makes the first sample. Next, the window
slides for s steps to make the second sample containing read-
ings from step s to s+ w, and so on. As in standard FL, each
local model trains with its local data and sends parameters
to the server.

As seen in Fig. 2, clients’ updates are merged into the
global model at different time steps; for example, Client 1
changes are merged at ¢; while Client 2 changes are added
at t,. The theoretical analysis shows that the diversity of
the node contributions in FL convergence can be measured
by the local gradient of each node and the global gradient
[11]. This motivates us to measure the contribution of par-
ticipating nodes by assigning the weights for participating
nodes based on the similarity between local weights w; and
global weight w together with the magnitude of local objec-
tive functions y; (w). An intuitive weighting design should
follow the notion that nodes with larger contributions in re-
ducing the global objective function L(w) deserve higher
impact in each global round. Therefore, our process for as-
signing adaptive weights includes three steps: determining
node contribution, scaling node contributions, and calculat-
ing client contribution ratios.

Determining Node Contributions: We specifically mea-

Client 1 Client 2 Client M-1 Client M

Figure 2: Asynchronous federated learning in the proposed
FedNorm

sure each node’s contribution at each global round using con-
tribution A, which is defined as:

Br
ak s Y
K_H K
b=l =l ) - Y 2 o)
k=1

Here, o, represents the degree of similarity between the global
and local models, while g, defines the direction of contribu-
tion. The «; is calculated as the sum of the absolute vector
values, where the vectors are weight differences between the
global model and the local models. In FL, the direction of
minimizing local objective y; (w) might not align with the
direction of minimizing global objective L(w) even though
they have similar weights [11]. Therefore, we need f; as
a difference between local objectives and the global objec-
tive to define the alignment direction. If §, is positive, it has
an opposite direction to the global aggregation. In contrast,
when f, is negative, the local node positively contributes to
the global aggregation.

Scaling Node Contributions: Since a; hasno upper bound,
the 4, = a; * f, swings over a broad range of negative
and positive values amplifying the difference between large
positive and negative values. This wide difference between
the large positive and negative values causes the weighting
function to be skewed toward large numbers. To solve this
issue and reduce the impact of large A;, we scale node con-
tributions using a non-linear mapping based on the Gaussian
function:

=)

f(A) =ae 27 3)

where a is the maximum, y is the mean, and o is the standard
deviation of A;. The designed mapping function gives local
nodes with positive impact in the aggregation more weights
and reduce the effect of less effective participant while con-
trolling the impact of large 4, values.

Calculating Client Contribution Ratios: After determin-
ing node contributions and scaling them to handle the partic-
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ipants with large values, we use Softmax (Equation 4) func-
tion to calculate the ratio of each participating node in the
global model aggregation as follows:

o ) )
&(wy) = W 4
j=

Softmax is a mathematical function that transforms a vector
of numbers into a vector of probabilities, with the probability
of each value proportional to the vector’s relative scale.

Algorithm 1 presents the FedNorm process. FedNorm
employs LSTM, a variant of RNN, as the base learner be-
cause LSTM can capture temporal dependencies and has been
very successful in load forecasting [12]. First, the global
LSTM model is initialized with random weights, Line 2.
Lines 3 to 12 describe the process that happens in each global
training round. A subset of devices S, is randomly selected,
Line 4, and the global model is broadcast to those devices,
Line 5. The selected devices then train their local models
in parallel with their local data for multiple epochs, Line 7.
Procedure AsyncClientU pdate in Line 6 represents the par-
allel execution for the selected clients while Line 7 indicates
initiation of the procedure AsyncClientU pdate executed on
each client individually.

Procedure AsyncClientU pdate, starting at Line 15, shows
the local model training process. First, the local data P, are
divided into the batches B of size b, (Line 16). Next, for E
epochs (Line 17) and B batches (Line 18), the local weights
are updated (Line 19).

The clients from .S, that have completed their training
send their new local weights back to the server for aggrega-
tion, Line 20, and the server updates the global model by cal-
culating the weighted average of the received local weights
as shown in lines 9-11. These three lines 9-11 are the core of
FedNorm and correspond to the three steps described above
and represented with equations 2-4. Note that the server does
not wait to receive updates from all clients, but aggregates
the global model as client’s updates arrive. Next, the up-
dated global model is sent back to all non-running clients,
Line 12. The process is repeated from Line 3 until conver-
gence and, finally, the trained global model is broadcasted to
all participants, Line 13.

5. Evaluation Methodology

This section presents the dataset and evaluation metrics,
followed by Non-IID analysis, experimental setup, and bench-
mark algorithms.

5.1. Dataset and evaluation Metrics

The FedNorm evaluation is conducted with the real-world
residential consumers dataset provided by London Hydro, a
local electrical distribution utility. Each consumers’ dataset
contains hourly energy consumption for three years, result-
ing in 25,560 readings per household. Additional features,
including the day of the year, the day of the month, the week
of the year, the day of the week, and the hour of the day,
were devised from the load reading date/time to assist with

Algorithm 1 FedNorm

1: Server Execution:
2: Initialize global model weights w,
3: for global iterations t=1,2,..., T do

4: S, < random set of m clients
5: Send global model to S, clients
6: for each client k € .S, in parallel do
7 wk, | < AsyncClientUpdate(k,t,)
8: Receiving parameters from clients
. _ K yi(w)
9: Ak - ”w - wk” * (Wk(w) - k=1 "k )
o)
10: S(wy) = W
k
11: Wiy < ZkeK & (wpwy
12: Send the model to all non-running participants

13: Send the model to all participants

14: Client Execution:
15: procedure ASYNCCLIENTUPDATE(k,w)

16: B « split P, into batches of size b,
17: for each local epoch e < E do

18: for batch b € B do

19: w <« w-n\V=ew)

20: return w to server

modeling daily, monthly, and weekly patterns. The study in-
cluded 19 consumers. Fig. 3 depicts a fragment of the load
data for each of the households. It can be observed that load
patterns, as well as load magnitudes, differ greatly among
households.

Each household with its own data is treated as a local
node in FL scenarios. For the purpose of experimental eval-
uation, each household dataset is divided into 70% train-
ing and 30% testing set. This divide remains the same for
all FL and non-FL experiments. Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) are
common error metrics considered for load forecasting [32];
therefore, they are used here as well. It is important to note
that RMSE is a scale-dependent error metric, which means
that the same RMSE values have different meanings depend-
ing on the magnitude of data. MAPE, on the other hand,
expresses errors as percentages; thus, it is better suited for
comparison among datasets.

The algorithms were implemented in PyTorch and all ex-
periments were conducted with AMD Ryzen 4.20 GHz pro-
cessor and NVIDIA GeForce RTX 2080 Ti graphics card.

5.2. Non-IID Analysis

Non-IID data in FL typically means the differences be-
tween distributions P; and P; for different clients i and j.
This subsection examines data distributions for the consid-
ered houses to investigate how similar or different is energy
consumption among those houses.

Fig. 4 visualizes data distributions for all houses using a
Ridgeline plot; specifically, this figure shows a kernel den-
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Figure 3: Sample energy consumption data from each of the houses

sity distribution for each house aligned to the same horizon-
tal scale and slightly overlapped. It can be observed that
houses have different shapes of the distributions which sug-
gests that the consumption data distributions among houses
are different.

To further examine the differences among houses, Fig.
5 shows the box plot of energy consumption for each of the
houses. It can be observed that the houses greatly differ in
terms of the mean energy consumption as well as in terms
of ranges.

Another way of comparing data distributions among the
houses is with the Q-Q (quantile-quantile) plot which plots
the quantiles of the two distributions against each other. If
the two distributions are the same, the points in the Q—Q plot
will approximately lie on the 45° line. Fig. 6 shows the Q-Q
plot comparing House 2 with randomly selected houses 6,
13, 14, and 19, while Fig. 7 does the same for House 11. In
these plots, there is a significant distance between data points

and the 45° line, which indicates that the distributions in the
pairs are different.

Consequently, comparisons presented in figures 4, 5, 6,
and 7 show that energy consumption data distributions among
houses are different and that we are dealing with non-IID
data.

5.3. Experimental Setup

po simulate the asynchronous setting, in each round of
FL, a fraction of clients is randomly selected, and, then, the
selected clients are again randomly divided into two groups,
(1) those that complete training in the current round (with-
out delay) and (2) those that need additional time to complete
training (with delay). The first group is aggregated with the
global model immediately after finishing their training, and
the second group waits for the next rounds to be aggregated.
This separation into without and with delay simulates de-
layed training. As in FL, the process depends on the round
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Figure 5: Energy consumption box plot for the houses

in which the gradients are aggregated, for the group (2) 'with
delay’ we push the aggregation to the next round. Note that
the client that was already delayed in the previous round can
again be delayed as the delayed clients are selected randomly.

Fig. 8 illustrates the simulation process. In Step S1, a
fraction F (in figure five clients) of the clients is selected
to train their local models. In step S2, the selected clients
are randomly divided into two groups C without delay and
R1 with delay. The clients in C finish their training in the
current round and are aggregated into the global model in
Step S3 but R1 clients are still training their local models.
In Step S4, all clients except Rl1s receive a copy of the up-
dated global model. In the next round of training .S'5, again
a fraction of the clients is selected; however, the size of the
fraction is equal to F/ = F — count(R1). In S6, similar
to $2, the F' is divided into two groups: without and with
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tions between House 2 and Houses 6, 13, 14, and 19
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Figure 7: Q-Q plot comparing energy consumption distribu-
tions between House 11 and Houses 6, 13, 14, and 19

delays, C and R2 respectively. Thus, in Step 6, the delayed
clients R1 from the previous round and some clients from
round two complete the training, as indicated with C in the
figure, while R2 clients are still running and will complete
training in the next round. Clients C are aggregated into the
global model in Step S7. This process continues until the
model converges.

5.4. FL Techniques Included in Comparison
The proposed FedNorm is compared to the following
synchronous and asynchronous FL techniques:

e FedSGD: Federated stochastic gradient descent is the
first proposed FL method. In this approach, the server
averages the local clients’ gradients to make a gradient
descent step on the global model [37].

e FedAvg: This is a widely used generalization of
FedSGD [8], in which the local nodes train for several
epochs and then exchange the weights rather than the
gradients.

e FedAdam, FedYogi, FedAdaGrad [38]: These appro-
aches are an adaptive variants of the stochastic gradi-
ent (FedSGD) method. The adaptive optimizers ADAM,
YOGI, and AdaGrad are applied on the server to ad-
dress the issues of client drift.
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Figure 8: Asynchronous setting simulation.

e FedProx: This FL framework adds a proximal term
on the local objective function to mitigate the data het-
erogeneity problem and to improve the model stability
[39].

e FedAsync: This approach uses a weighted average to
update the server model. [35].

All listed algorithms are synchronous, except for FedAsync
which is asynchronous. Comparing FedNorm against these
algorithms allows us to examine the performance from sev-
eral perspectives. The comparison with the commonly used
FedSGD and FedAVG algorithms shows the difficulties of
load forecasting in FL settings and in the presence of het-
erogeneous data. AdaGrad, ADAM, and YOGTI show the ef-
ficiency of various adaptive federated optimizers in the face
of heterogeneous data while FedProx improves handling het-
erogeneous data by generalization and re-parametrization of
FedAvg. Thus, comparing FedNorm to those algorithms ex-
amines behaviour in presence of heterogeneities. Finally,
FedAsync, asynchronous FL, is needed to show tolerance
to staleness.

6. Results and Analysis

This section presents comparison results, investigates the
statistical significance, and examines convergence.

6.1. Predictive Performance Comparison

The proposed FedNorm is compared to five other FL
methods on the task of predicting load demand eight hours
and sixteen hours ahead. Table 1 shows the average predic-
tive accuracy of each algorithm for both forecasting hori-
zons, calculated across all homes in the dataset. In terms
of both evaluation metrics, MAPE and RMSE, FedNorm
achieves the lowest error for both forecasting horizons. In
terms of MAPE error, FedAvg, FedProx, and FedAsync show
a similar performance while FedSGD and FedAdagrad ex-
hibit large errors. In terms of RMSE, FedNorm performs
the best, while there is little difference among other models.

Table 1

Average MAPE and RMSE for 8 and 16 hours ahead forecast
MAPE RMSE

Methods 8 Hours 16 8 Hours 16
ahead Hours ahead Hours
ahead ahead
FedNorm 4.14 3.11 0.0773 0.0754
FedAvg 5.67 5.85 0.1115 0.1124
FedProx 5.86 5.92 0.1132 0.1151
FedSGD 8.30 8.71 0.1167 0.1427
FedAdagrad 8.81 12.60 0.1183 0.1556
FedAdam 6.68 7.51 0.1076 0.1153
FedYogi 6.38 8.11 0.1188 0.1139
FedAsync 5.94 5.78 0.1132 0.0971

As households differ greatly in their consumption pat-
terns, it is important to examine the performance for individ-
ual houses. Thus, figures 9 and 10 depict MAPE and RMSE
obtained by each algorithm for eight hours ahead prediction,
for each house individually. Overall, FedNorm performs bet-
ter than other approaches. While for a few houses, such as
House 6, other approaches achieve slightly lower error than
FedNorm, for most houses FedNorm performs much better.

Figures 11 and 12 show the same metrics, MAPE and
RMSE, for sixteen hours ahead prediction. Again, FedNorm
performs the best for most houses, and for those houses for
which it is not the best, it achieves the error very close to the
lowest one.

Fig. 13 depicts an example of actual and predicted loads
for House 3 and eights hours forecasting horizon. Specif-
ically, forecasts obtained by the top three algorithms (Fed-
Norm, FedAvg, FedProx) according to MAPE are shown. It
can be observed that the predicted values better match the
actual values for FedNorm than for the other approaches,
which supports the results observed in Table 1.
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Figure 12: RMSE errors for 16 hours ahead prediction.
6.2. Statistical Significance can be used to determine if forecasts are significantly differ-
Standard metrics such as MAPE and RMSE compare ent. For two forecasts fi,..., f, and gy,..., g,, for a time
models, but they do not consider whether the differences be- series yq, ..., y,, the Diebold-Mariano test is defined as fol-

tween the models are significant. Diebold-Mariano test [15]
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ahead forecast
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where y;, = % Y (d;—d)(d;_; —d) is autocovariance at lag

DM

&)

k,d; = el.2 - rl.2 is the loss differentials where e; = y; — f; and
r; = y; — g; are the residuals (errors) for the two forecasts,
and d = % Y, d, is the sample mean loss differential.
Because DM is a statistical test, when the DM value falls
outside the range [-1.96 1.96], the null hypothesis (the dif-
ference between two model’s performance is not significant)
is rejected at a 5% confidence level. Fig. 14 shows DM val-
ues for FedSGD, FedAvg, FedAdam, FedAdagrad, FedYogi,
FedProx, Fed Async contrasted to the proposed FedNorm for
each house. As the goal is to evaluate the proposed Fed-
Norm against other algorithms, rows in the figure compare
FedNorm to each of the other algorithms. It can be observed
that the outcome of the Diebold-Mariano test indicates that
the forecasts obtained by the proposed FedNorm are signif-
icantly different from all other considered approaches.

6.3. Analysis of Convergence

The performance of FL depends on its convergence char-
acteristics. For the convergence analysis, in each round of
training, the clients are first trained and then tested, record-
ing the test error for each individual house. To analyze over-
all model convergence across all houses, we report the me-
dian, 25th and 75th percentile, maximum, and minimum of
errors.

Fig. 15 shows the error distributions for all FL. meth-
ods and the first 20 training rounds. It can be observed that

FedNorm converges very fast, and after the third round, it
converges. Additionally, the error ranges are small, which
means that the FedNorm performance for different houses
is very similar and with a low error. This can be explained
by FedNorm giving the nodes with larger contribution to the
reduction of global objective function higher impact in each
round. The contribution of each node is based on the similar-
ity of local and global weights together with the magnitude
of local objective functions.

FedProx takes longer to converge, with large error ranges
in early rounds and smaller in later rounds. Although Fe-
dAvg converges after the third round as our approach, error
ranges for FedAvg are large, which indicates inconsistencies
among houses. FedSGD ta-kes longer to converge; at first,
the error range is large, but after 12 rounds, the error range
is reduced. Errors for FedYogi, FedAdam, FedAsync, and
FedAdagrad vary over training rounds, and there is no clear
indication of convergence. Overall, FedNorm converges faster
than other approaches, and its performance among homes is
more consistent.

6.4. Traffic Analysis

This subsection examines the quantity of data transferred
between the clients and the server in traditional ML learning
and in the proposed FedNorm. As described in Subsection
5.3, to simulate the asynchronous setting, in each round of
FL, a fraction of clients is randomly selected to represent
training with delay. In all experiments, the maximum num-
ber of clients selected for training in that round has been
set to nine; therefore, in the worst-case scenario for network
traffic, all nine complete training.

From Fig. 15, it can be seen that FedNorm converges
after the third round. In each round, the server sends the
global model to clients selected for training, and the clients
send the updated model back to the server. With the model
size of 0.021MB and for the worst case scenario involving
nine clients in both transfer directions, this results in 9 clients
* 3 rounds *2 directions * 0.021MB model size = 1.135MB
traffic. At the end of the training process, the trained model
is sent to all clients resulting in 19 * 0.021MB = 0.399MB
traffic. The total traffic for FedNormis 1.135MB + 0.399MB
= 1.533MB.

On the other hand, each household dataset size is 0.636MB.
The traditional centralized training requires transferring the
complete dataset to the server resulting in network traffic of
19 * 0.636MB = 12.084MB. Compared to FedNorm, this
centralized training results in more than seven times larger
transfer. Itis worth bearing in mind that as the size of datasets
grows, data traffic increases for the centralized training while
it remains the same for FedNorm as only parameters are
transferred.

7. Conclusion

Conventional machine learning-based load forecasting
transfers smart meter data to a centralized location where
the ML model is trained. The drawback of this approach is
that all data must be transferred to a remote location, which
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over iterations for each of the seven algorithms

increases network traffic, and exposes data to security and achieves higher accuracy in terms of MAPE and RMSE than
privacy risks. seven other FL approaches FedSGD, FedAvg, FedAdam, Fed-
Therefore, this study proposes FedNorm, an asynchronous  Yogi, FedAdagrad, FedProx, and FedAsync for eight and
FL approach for load forecasting with smart meter data, which  sixteen hours forecasting horizons. While forecasting accu-
does not require participants to share their local data. Fed- racy varies among houses, FedNorm consistently achieves
Norm updates the global model asynchronously without wait-  lower or similar error rates compared to the other algorithms.
ing for all client devices to complete their training. The  Moreover, FedNorm converges faster then the mentioned al-
contributions of each client node are determined based on gorithms. The main reason for this is that FedNorm pays
the similarity of local model weights with the global model =~ more attention to the local models which are more similar to
weights while taking into account the magnitude of the lo- the global model. Statistical tests showed that the difference
cal objective function. The experiments show that FedNorm  between FedNorm and other approaches is significant while
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examination of performance on individual houses demon-
strated high consistency and low error rates. This study con-
sidered two forecasting horizons, 8 and 12 hours ahead, and
in both scenarios FedNorm outperformed the other seven
techniques. While FedNorm achieved comparable accuracy
for the two horizons, further investigation is needed to ex-
amine FedNorm behavior with longer forecasting horizons.

Future work will examine FedNorm with a larger dataset

that contains dissimilar as well as similar clients to gain a
deeper understanding of FedNorm behavior in the presence
of occasional similar clients. Moreover, future work will ex-
amine the behavior of FedNorm in the presence of concept
drift, when load patterns change due to building or behav-
ioral factors.
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