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Abstract—Buildings are responsible for a significant amount
of total global energy consumption and as a result account for a
substantial portion of overall carbon emissions. Moreover, build-
ings have a great potential for helping to meet energy efficiency
targets. Hence, energy saving goals that target buildings can
have a significant contribution in reducing environmental impact.
Today’s smart buildings achieve energy efficiency by monitoring
energy usage with the aim of detecting and diagnosing abnormal
energy consumption behaviour. This research proposes a generic
collective contextual anomaly detection (CCAD) framework that
uses sliding window approach and integrates historic sensor
data along with generated and contextual features to train an
autoencoder to recognize normal consumption patterns. Subse-
quently, by determining a threshold that optimizes sensitivity
and specificity, the framework identifies abnormal consumption
behaviour. The research compares two models trained with
different features using real-world data provided by Powersmiths,
located in Brampton, Ontario, Canada.

I. INTRODUCTION

According to the United Nations Environment Programme
[1], buildings are the largest contributor to global carbon
emissions; they account for about 40% of global energy
consumption and 30% of CO2 emissions. Moreover, the
World Energy Outlook [2] report states that compared to the
transportation and industry sectors, buildings have the highest
untapped energy efficiency potential. Hence, energy efficiency
schemes aimed at the building sector can have a significant
impact on achieving a green future.

One approach to building energy efficiency is to monitor en-
ergy usage with the aim of detecting and diagnosing abnormal
consumption behaviour. In recent decades, modern buildings
have been equipped with an increasing number of sensors
and smart meters. By analyzing data from these devices,
normal consumption profiles can be identified. Subsequently,
when patterns that do not conform to the normal profiles
are detected, the building manager is notified, and appro-
priate energy-saving measures are taken. More importantly,
for safety-critical building services such as gas consumption,
early detection and notification of anomalous behaviour (gas
leakage) can help prevent potentially life-threatening disasters.

Anomaly detection refers to the process of identifying
abnormal observations that do not correspond to expected
patterns or events [3]. Depending on their nature, anomalies

can be broadly categorized as point, contextual or collective
anomalies [3]. Point anomalies refer to the occurrence of a
value that is considered anomalous compared to the rest of
the data. For instance, an hourly heating, ventilating, and
air conditioning (HVAC) consumption might be anomalous
compared to previous recorded hourly values. Contextual
anomalies take contextual or behavioural attributes into ac-
count to identify anomalies. For instance, an hourly HVAC
consumption might be anomalous in winter, but not in summer.
Collective anomalies refer to the situation in which a set of
related data instances is anomalous compared to the rest of
the data. Individually, these values might not be anomalous,
but collectively they represent an anomalous occurrence. For
instance, individually, a facility’s lighting energy consumption
values might be normal as compared to previous recorded
values. However, if these values are considered as a collection
over a specific time window, they might represent a collective
anomaly.

One of the problems of standard collective anomaly detec-
tion techniques is that there is little concern for the context of
the anomaly under consideration. For example, a collection of
heating energy consumption data of a school recorded every 5
minute for an hour might be anomalous in July (when schools
are closed), but not in October (when schools are running).

Most modern buildings are equipped with a built-in control
system referred to as a building automation system (BAS). A
BAS is a part of what is referred to as an intelligent or smart
building [4], and it enables building managers to automate
and oversee the energy efficiency aspect of a building. By
providing early detection and diagnosis of abnormal building
behaviour, contextual collective anomaly detection helps not
only to reduce financial cost, but also, on a larger scale, to
reduce the environmental impact of electric power generation.

This research proposes a framework to identify collective
contextual anomalies. The Collective Contextual Anomaly
Detection (CCAD) framework uses a sliding window approach
and integrates historic sensor data along with generated and
contextual features to identify contextually abnormal patterns
in sensor data. The framework is flexible and can adapt to
requirements of the anomaly detection domain. This provides
an anomaly detection platform that can be tuned to stringent
or lenient requirements with regards to sensitivity, specificity



or an optimal overall value of these two metrics. Moreover,
two anomaly detection models are compared, one trained using
historic sensor data, generated features and contextual features,
and the other model trained with all these except the generated
features.

The remaining sections of the paper are organized as
follows: Section II describes related anomaly detection work
in the building energy domain. Section III outlines the CCAD
framework proposed in this research, Section IV presents a
case study and finally, Section V concludes the paper.

II. RELATED WORK

Anomaly detection is an important problem that has been
widely studied in diverse application areas such as fraud
detection, system health monitoring, and intrusion detection.
In this research, an analysis of related work in the energy
domain is presented.

Several previous studies have used historical energy data
to identify point anomalies [5] [6] [7]. Chou and Telaga [5]
proposed a two-stage approach to identify point anomalies in
real-time. Consumption value was predicted one step ahead,
and anomalies were identified by comparing whether or not the
reading deviated significantly from the predicted value. Wrinch
et al. [6] identified anomalies in periodic building operations
by analyzing electrical demand data using a weekly moving
time window in the frequency domain. However, the methods
described assumed a constant periodicity in the data, which
caused many false positives [8]. Janetzko et al. [7] described
an unsupervised anomaly detection technique based on a time-
weighted prediction by using historic power consumption data
to identify point anomalies. Bellala et al. [9] proposed an
unsupervised cluster-based algorithm that detects anomalous
points based on a low-dimensional embedding of power data.
In contrast, this research adds context to the anomaly detection
because a value might be anomalous in one context but not in
another.

Other studies have considered contextual attributes or be-
haviours to identify anomalies in a specific context. Zhang et
al. [10] used historic data as well as weather and appliance
data to compare clustering, entropy and regression techniques
to identify exceptionally low energy consumption patterns in a
household. However, the model as presented is static and does
not adapt to changes in facility consumption pattern. Zorita
et al. [11] proposed a methodology that uses multivariate
techniques to construct a model using climatic data, building
construction characteristics as well as activities performed in
the building. Ploennigs et al. [12] presented a diagnostic ap-
proach that makes use of a building’s hierarchy of sub-meters.
By analyzing historic data, the authors focus on identifying
the extent to which building equipment causes abnormal daily
energy use. Capozzoli et al. [13] proposed a methodology
that uses statistical pattern recognition techniques and artificial
neural network ensemble to find anomalies in near real-time.
Hayes and Capretz [14] identified sensor data anomalies by
using a combination of point anomaly and contextual anomaly
detection approaches. However, by using a sliding window

collective anomaly detection approach, our research addresses
anomalies in collective sensor data, which makes it easier to
analyze building consumption profiles over a specific window
size instead of at a specific point in time.

Jiang et al. [15] proposed a three-stage real-time collec-
tive contextual anomaly detection method over multiple data
streams. However, the approach described identifies anomalies
in the context of the data streams, whereas the proposed CCAD
framework is flexible with regard to new contextual features.

III. COLLECTIVE CONTEXTUAL ANOMALY DETECTION
FRAMEWORK (CCAD)

This research proposes a Collective Contextual Anomaly
Detection (CCAD) framework, shown in Fig. 1. The frame-
work uses historic sensor data, generated features, and contex-
tual features to identify collective contextual anomalies. The
following sections describe the components of this framework.

A. Data Preprocessing

The term “sensor data” in this case represents a time-
stamped record of consumption data recorded at regular
intervals. These sensor data usually suffer from noise and
incompleteness caused by faulty devices or communication
errors; hence, the data requires cleaning.

1) Data Cleaning: To mitigate the negative impact of noisy
and incomplete data on CCAD framework performance, these
data must be removed from the dataset. Depending on the
problem domain, noisy data are indicated by values outside
the valid range. For instance, in the building energy domain,
negative electric consumption values are considered noisy.
Incomplete data in this context refers to the existence of
missing data within an hourly sliding window data. Moreover,
the proposed CCAD framework uses a sliding window to
identify anomalies; a sliding window in this case is a specific
window size that includes a set of consecutive values. Hence, if
the data in a sliding window are incomplete, then that specific
input set is removed from the dataset.

2) Feature Preparation: Given a clean dataset, the fea-
ture preparation component focuses on the arrangement and
generation of features and involves two sub-steps: data
reorganization and feature generation.
Data Reorganization: This sub-step involves reorganizing
the dataset so that an input data instance is represented
not by a single consumption value, but instead by a set of
consecutive consumption values. The size of the set represents
the sliding window of the CCAD framework. For instance, for
a record consisting of five-minute time-stamped sensor data,
to represent an input data instance, the data are reorganized
as shown in Table I. The columns represent the consumption
values (kWh) at the 5th, 10th, ... , 60th minute, and each row

TABLE I: Sample Preprocessed Dataset

... 5 10 15 20 25 30 35 40 45 50 55 60 ...

... 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.4 ...

... 0.3 0.2 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ...



Fig. 1: Collective Contextual Anomaly Detection (CCAD) Framework.

represents a sliding hourly window. The data are organized in
this way to create a pattern suitable for learning by the Pattern
Learner Engine (PLE).

Feature Generation: This component introduces contextual
or behavioural features into the CCAD framework. In the
building energy consumption domain, the context can be
spatial, temporal or weather-related. Moreover, by deriving
additional sensor data features such as the mean and median,
more insights can be obtained from the sliding window sensor
data. The generated features are described in Table II. The
temporal contextual features day of year, season, month,
day of week, and hour of day are selected because energy
consumption exhibits temporal seasonality. To ensure that the
CCAD framework does not use features from other sources,
weather attributes are not used in this research. The generated
features (x̄, s, Sn-S1, (x̄i-x̄(i−1)), (x̄(i+1)-x̄i), Q1, Q2, Q3,
and IQR) are selected to explore whether or not these features
affect the performance of the CCAD framework.

As a measure of central tendency, the mean x̄ of the sliding
window sensor data provides a measure of the centre of the
data. The standard deviation, s, gives an idea of how spread
out the data are. The difference between the last and the
first elements of the sliding window, (Sn-S1), shows whether
or not the data on both ends of the window are the same.
Moreover, the trend of the moving average between successive
input data patterns is captured by including two more features:
the difference between the means of the ith and (i − 1)st

input datasets, i.e., (x̄i-x̄i−1) and the difference between the
means of the consumption values of the (i+1)st and ith input
datasets, i.e., (x̄i+1-x̄i). In a dataset that suffers from outliers,
the median is a more robust measure of the centre of the data
than the mean; hence, the following four features representing
the median at different ranges of the sliding window are
suggested: the first quartile (Q1), second quartile (Q2), third
quartile (Q3) and interquartile range (IQR).

3) Normalization: To avoid suppressing the information
within the smaller-valued features, the features must be nor-
malized. The data were normalized by rescaling the features
to range in [0 1] [16].

TABLE II: Features Generated and Domain

Feature Description

Day of Year 1-365/366
Season 1-4
Month 1-12
Day of Week 1-7
Hour of Day 0-23
Sj , {j =1, ..., n} n - size of the sliding window

S - sensor consumption data
x̄ Mean of sensor data values in each

window
s Standard deviation of sensor data

values in each window
Sn - S1 Difference between last and first

elements of a sliding window
x̄i - x̄(i−1) Difference between the means of

ith and (i− 1)st sliding windows
x̄(i+1) - x̄i Difference between the means of

(i+ 1)st and ith sliding windows
Q1 First quartile of the sensor data

values in each window
Q2 Median of the sensor data values

in each window
Q3 Third quartile of the sensor data

values in each window
IQR Interquartile range of the sensor

data values in each window



B. Model Training and Testing

The CCAD framework uses unlabelled sensor data; hence,
it relies on an unsupervised learning algorithm to identify
collective contextual anomalies. The basic assumption is that
historic sensor data are predominantly normal. Because of this
assumption, the historical dataset (“real dataset”) can be split
into training and testing data with the objective of using the
testing data to evaluate the capacity of the CCAD framework
to correctly identify normal behaviour.

1) Real Training Data: This part of the real data is used
to train the Anomaly Detection Engine to recognize normal
input data patterns.

2) Real Testing Data: Once the Anomaly Detection Engine
is trained, the real testing data are used to test the specificity or
true negative rate (TNR) of the model. True negative (TN) is
the number of normal consumption patterns that are correctly
identified; TNR is the ratio of TN and total negatives in the
dataset, and it is evaluated using (1).

TNR =
TN

P
(1)

where N is the number of negative instances.
To ensure a fair coverage, the test data are selected in such
a way that the contextual features are evenly distributed. For
instance, if temporal contextual features are considered, the
test dataset is spread out to cover all months, and seasons and
random hours.

3) Artificial Data: This research generates artificial anoma-
lous data to test the sensitivity or true positive rate (TPR) of
the model. True positive (TP) is the number of anomalous
consumption patterns that are correctly identified; TPR is the
ratio of TP and total positives in the dataset, and it is evaluated
using (2).

TPR =
TP

P
(2)

where P is the number of positive instances.
Artificial anomalous data are generated based on historic
sensor data patterns. Consumption patterns can be classified
into two types of period: high-activity and low-activity. A
high-activity period has comparatively high energy consump-
tion, whereas a low-activity period has either low or zero
consumption values. Artificial anomalous data are generated
to cover both cases. By plotting the frequency distribution of
all the historic consumption data, it is possible to determine
the statistically valid range of consumption values that are
considered normal. This range is validated by using the
95% confidence interval. An artificial anomalous test dataset
for the high-activity period can be generated by fitting an
appropriate distribution to the frequency distribution plot and
generating random numbers from outside the possible range of
consumption values. For the low-activity period, the primary
test objective is to determine whether a low-activity period’s
consumption pattern behaves similarly to an active-period con-
sumption pattern. Hence, for the low-activity period, random

consumption values can be generated from the distribution
used earlier. But this time, the random values are generated
from the range of possible consumption values.

C. Anomaly Detection Engine (ADE)

Anomaly detection using dimensionality reduction relies on
the assumption that data contain variables that are correlated
with each other and hence can be reduced to a lower-
dimensional subspace where normal and abnormal data appear
substantially different [17]. The Anomaly Detection Engine
(ADE) proposed in this research takes advantage of dimen-
sionality reduction and is made up of four components: the
Pattern Learner Engine (PLE), the Pattern Recognizer Engine
(PRE), the Threshold Determinator (TD), and the Anomaly
Classifier (AC).

Algorithm 1 describes the anomaly detection engine compo-
nent illustrated in Fig. 1. The PatternLearner is trained
to recognize input data patterns consisting of historic sensor
data, contextual features, and sensor data generated features
(line 1).

Algorithm 1: Collective Contextual Anomaly Detection
Input : NewSensorV alue, RealTrainingData,

RealTestingData, ArtificialData,
ContextualFeatures, GeneratedFeatures

Output: Notification
1 normal model ← PatternLearner

(SlidingWindow, RealTrainingData,
ContextualFeatures, GeneratedFeatures);

2 mse negative ← PatternRecognizer

(normal model, SlidingWindow, RealTestingData,
ContextualFeatures, GeneratedFeatures);

3 mse positive ← PatternRecognizer

(normal model, SlidingWindow, ArtificialData,
ContextualFeatures, GeneratedFeatures);

4 thresholdValue
← ThresholdDeterminator(mse positive,
mse negative)

5 mse value ← PatternRecognizer (normal model,
SlidingWindow, NewSensorV alue,
ContextualFeatures, GeneratedFeatures);

6 if IsAnomalousPattern(mse value,
thresholdV alue) then

7 return Notification = true;
8 else
9 return Notification = false;

10 end

Once a model has been trained with normal input patterns
(line 1), the PatternRecognizer uses this model to
reconstruct new instances of historic sensor data as well as
artificially generated anomalous data. The mse negative (line
2) and mse positive (line 3) are the reconstruction errors of



the real testing data and the artificial anomalous data, respec-
tively. The ThresholdDeterminator (line 4) function
uses mse negative and mse positive to determine a thresh-
old value θ, which optimizes the specificity and sensitivity of
the model. Once θ has been determined, it is used to classify
reconstruction error values obtained from new sensor data. The
mse value (line 5) denotes the reconstruction error of new
sensor input data, and the IsAnomalousPattern function
uses θ to classify a collective sensor data as contextually
anomalous or not.

1) Pattern Learner Engine (PLE): The pattern learner
engine (PLE) uses an autoencoder [18] to train a model to
reconstruct input data patterns. As mentioned in Section III
A, during feature generation, to provide more information
to the CCAD framework, attempts were made to introduce
more contextual and other generated features. However, as the
dimension increases, the engine falls into the trap of the curse
of dimensionality where scalability and over-fitting issues
become apparent. High-dimensional data impose performance
strains on machine learning algorithms [19]. By using an
autoencoder [18], which performs non-linear dimensionality
reduction, the CCAD framework gains computational effi-
ciency [20] and better classification accuracy [21] compared
to other dimensionality reduction techniques such as PCA or
Kernel PCA [17]. The PLE is generic and can be replaced by
other dimensionality reduction techniques.

An autoencoder is an unsupervised neural network that is
trained with normal input vectors {x(1), x(2) , ..., x(m)}.
Assuming each data sample x(i) ∈ RD, is represented by a
vector of D different variables, the input data is compressed
into a lower-dimensional latent subspace to construct the out-
puts {x̂(1), x̂(2) ,..., x̂(m)} by minimizing the reconstruction
error in (3) and by activating units using the activation function
given in (4):

Err(i) =

√√√√ D∑
j=1

(xj(i)− x̂j(i))2 (3)

The activation of unit i in layer l is given by Eq. 2:

a
(l)
k = f

 n∑
j=1

W
(l−1)
kj a

(l−1)
j + b

(1)
k

 (4)

where W and b are the weight and bias parameters
respectively; the hyperbolic tangent activation function is
used in this paper.

2) Pattern Recognizer Engine (PRE): Once the PLE has
trained a model using the normal consumption patterns, the
pattern recognizer engine (PRE) tests the model using the real
testing dataset as well as the artificially generated anomalous
dataset. The output of the PRE engine is a reconstruction error,
which is a measure of how close the input data pattern is to the
normal data pattern on which the model was initially trained.
The PRE engine serves two purposes: the first is to help the

threshold determinator (TD) find a suitable threshold value,
and the second is to test whether new sensor data patterns
conform to the normal consumption pattern. The PRE is first
used with the real testing data to determine the number of true
negatives (TN). Then, the PRE is used with artificial testing
data to determine the number of true positives (TP).

3) Threshold Determinator (TD): This component uses the
outputs of the PRE component to determine a threshold value
that optimizes the sensitivity and specificity of the CCAD
framework. The TP and TN values obtained from the PRE
engine are used to determine the true positive rate (TPR)
evaluated using (1) and true negative rate (TNR) evaluated
using (2).

Lower threshold values yield higher true positive rate, but
increase false positives (FP), which refer to the number of
normal consumption patterns that are incorrectly identified. To
find a threshold value that optimizes the trade-off between high
true positive rate and low false positive rate (the proportion
of normal consumption patterns incorrectly identified), the
receiver operating characteristics (ROC) curve was explored.
ROC is a plot in a unit square of the true positive rate
(TPR) versus false positive rate (FPR) across varying threshold
values. The ROC curve was chosen to analyze the performance
of the anomaly detection model because, it considers all
possible threshold values to evaluate both TPR and FPR of the
CCAD framework. Several threshold determination techniques
were explored [22] [23]. In this research, it was assumed that
both specificity and sensitivity have equal weight, i.e., that
the value of finding an anomalous consumption pattern and the
value of identifying a normal consumption pattern is the same.
However, this might not be always the case. For instance, the
cost of energy wasted and/or equipment failure incurred as a
result of failure to identify an anomalous incident might not be
the same as the cost incurred to mobilize resources to respond
to a false alarm. Using this assumption, and noting that the
point (0,1) on the ROC curve (0% false alarm rate and 100%
anomaly detection rate) is the ideal point, the shortest distance
d from a point on the curve to point (0,1) as shown in Fig. 2
is evaluated using (5) [22].

d2 = (1− sensitivity)2 + (1− specificity)2 (5)

where d is the shortest distance from a point on the ROC
curve to the point (0,1).

This distance is used to determine the threshold value that
optimizes both the sensitivity and specificity of the CCAD
framework. The TD component is generic, and it can be
replaced by other threshold determination implementations.

4) Anomaly Classifier and Notifier: When new instances
of data patterns are entered into the CCAD framework, their
reconstruction error values are determined using the trained
model in PLE. These values are then compared with the
threshold θ, and patterns with a reconstruction error value
greater than θ are classified as anomalous. Anomalous values
trigger the notifier component to raise an alarm that notifies the



building manager, who then performs appropriate procedures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed CCAD framework has been evaluated using
a dataset provided by Powersmiths [24], a company that
focusses on production of sensor devices with the aim of
creating a sustainable future. Powersmiths collects various data
from sensor devices, and the framework was evaluated using
HVAC consumption data (kWh) of a school recorded every
five minutes from 2012-2014.

Initially, incomplete and noisy data were removed from
the dataset, and the dataset was reorganized so that an input
instance represents an hourly sliding window data. An hourly
input instance is represented by a set of five-minute interval
consumption data, temporal contextual features, and additional
generated features. The dataset was normalized between 0 and
1, and the final clean data size consisted of 22339 samples.

After preprocessing, the real dataset was then split into 90%
real training and 10% real testing datasets and used 10-fold
cross validation. Subsequently, artificial anomalous dataset
were generated. To generate artificial anomalous data, historic
sensor data were examined and the consumption pattern was
found to have three low-activity periods; (a) weekends (b) July
and August, and (c) the hours between 8 P.M. - 7 A.M. The
consumption values for these periods were zero 95% of the
time, so with this level of confidence, non-zero consumption
values are anomalous for these low-activity periods. The
frequency distribution, of the consumption values for each
of the 5 minute interval consumption values of the dataset
were plotted, and each of the plots have the same distribution.
Fig. 3 shows the plot of a sample distribution. Because zero
consumption is normal for these time periods, by excluding
the zero consumption values, the distribution in the figure was
fitted using the gamma distribution, and random values were
generated from the range [0.1-1.2]. Again, examining the data
in Fig. 3, the consumption value was found to be less than

Fig. 2: ROC: optimal threshold determination [23].

1.2kWh 99% of the time. Hence, for the high-activity period,
with a confidence level of 99%, random values greater than
1.2 kWh were generated using an appropriate distribution.

A. Experiments

The first step of the experiment involved tuning the pa-
rameters of the autoencoder. To learn patterns, the algorithm
needs to minimize the mean squared error (MSE) of the recon-
struction; hence, this metric was used to tune the parameters
of the autoencoder. The autoencoder used in this research
was based on an implementation in H2O [25], a scalable and
fast open source machine learning platform. The experiment
was performed within the R [26] programming environment
using an H2O API. Both shallow neural networks (one hidden
layer) and deep neural networks (more than two hidden layers)
were explored. Deeper networks resulted in an increase in
the processing time without a significant improvement in the
MSE. Five layers were finally used; an input and output layers
as well as three hidden layers. In addition, various values of
regularization parameters and number of epochs were tested,
and values that resulted in stable low MSE were selected. Table
III shows the parameters selected.

Two experiments were then performed. The first was in-
tended to examine the anomaly detection performance of the
CCAD framework using 17 features, (5 contextual features and
12 features representing consumption data), and the second
experiment was intended to explore the anomaly detection

Fig. 3: Historic Consumption Frequency Distribution.

TABLE III: Autoencoder Model Parameters

Parameter Value

Hidden Layers 3
Neurons in Hidden Layers 20, 10, 20
L1 (Regularization Parameter) 1E-04
Epoch 400
Activation Hyperbolic Tangent



Fig. 4: TN and TP frequency distribution: 17 features.

performance of the CCAD framework using 26 features, (the
17 features mentioned earlier plus 9 more generated features,
i.e., x̄, s, Sn-S1, (x̄i-x̄(i−1)), (x̄(i+1)-x̄i), Q1, Q2, Q3, and
IQR described in Table II).
Experiment 1: The objective of this experiment was to

examine the sensitivity and specificity of the CCAD frame-
work using 17 features. Hence, the engine was initially trained
using the real training dataset, and then first, the specificity
of the CCAD framework was evaluated by testing the model
using the real test dataset. Next, the sensitivity of the CCAD
framework was examined by testing it using the artificially
generated anomalous data. Fig. 4 shows the distribution of the
TN and TP of the experiment.
Experiment 2: This was the same experiment as Experi-

ment 1 but with 26 features. Fig. 5 shows the distribution of
TN and TP for this experiment.

Fig. 4 and Fig. 5 show the trade-off between the TN
(number of normal consumption patterns correctly identified)
and TP (number of anomalous consumption patterns correctly
identified) as the threshold θ varies. From the figures, it can be
observed that as θ decreases from t2 to t1, the proportion of TP
to the right of θ increases, which shows that more anomalies
are identified. However, as θ decreases the proportion of TN

Fig. 5: TN and TP frequency distribution: 26 features.

Fig. 6: ROC diagram for 17- and 26-feature models.

to the right of θ also increases, which shows that the number
of normal consumption patterns misclassified as anomalous
has increased. Hence, finding the value of θ that optimizes
TPR (sensitivity) and FPR (1-specificity) becomes important.
Hence, the ROC curve was plotted with two objectives in
mind: the first was to find the threshold value that optimizes
both the sensitivity and the specificity of both models; the
second was to compare the performance of these two models
for various thresholds.

Fig. 6 shows the ROC curves for both models. To evaluate
the threshold value that optimizes the sensitivity and the
specificity of the two models, the shortest distance between
each of the curves and the point (0,1) was evaluated. Based
on the shortest distance for the two curves, the optimal values
of FPR and TPR were evaluated using (5). Table IV shows
the results. By using 9 more features, the sensitivity (TPR)
of the CCAD increased by 11.6%. However, its false positive
rate (FPR) also increased by 8.4%.

B. Discussion

In this research, since both sensitivity and specificity are
assumed to have equal weight, the results in Table IV can be
seen as a slight overall increase in performance. Nevertheless,
depending on the problem, either one of the TPR or FPR might
be more important than the other. For instance, for critical
services that have stringent FPR requirements, the 17-feature
trained model performs better. Moreover, for services that
have lenient FPR requirements, the 26-feature trained model
performs better. Fig. 6 illustrates this clearly; for small FPR,
the 17-feature curve is closer to the ideal point (0,1), whereas

TABLE IV: Model Comparison: optimal threshold values

Features Threshold FPR(%) TPR(%)

17 0.07 12.7 68.6
26 0.05 21.1 80.2



TABLE V: Model Comparison: Lower Threshold Value

Features Threshold FPR(%) TPR(%)

17 0.03 62.8 93.7
26 0.03 40.2 93.8

for larger and hence more flexible FPR, the 26 feature-trained
model is closer to the point (0,1).

Table V shows the trade-off faced as lower threshold value is
used to achieve higher TPR. By lowering the threshold value of
the 26-feature model from 0.05 to 0.03, the TPR has increased
to 93.8% (around 93% of the anomalous consumption patterns
were correctly identified); however, the FPR has also increased
to 40.2% (around 40% of the normal consumption patterns
were incorrectly identified as anomalous).

Moreover, a similar lowering of the threshold value in-
creased the TPR of the 17-feature model to 93.7%, while
the FPR increased to 62.8%. This demonstrates that within
the limits of the trade-off mentioned, the CCAD framework
proposed can be tuned to meet the anomaly detection require-
ments of the problem under consideration.

V. CONCLUSIONS AND FUTURE WORK

In this research, a generic collective contextual anomaly
detection (CCAD) framework has been proposed. The CCAD
framework uses a sliding window approach and integrates
historic sensor data and contextual as well as additional
generated features to identify abnormal building consumption
behaviour. The results show that this framework can suc-
cessfully identify collective contextual anomalies in building
HVAC consumption. Moreover, the anomaly detection rate and
false alarm rates of two models (one trained with 17 features
and the other with 26-features) were compared. For stringent
false alarm rules and lenient anomaly detection, the 17-feature
model performs better, whereas for more lenient false alarm
rules and stringent anomaly detection, the 26-feature-based
model performs better.

Future works will explore real-time collective contextual
anomaly detection. Moreover, a comparison of the perfor-
mance of other dimensionality reduction techniques such as
PCA as well as the effect of different sliding window sizes
on the performance of the anomaly detection metrics will be
explored.
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