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Abstract—The increase in electrical metering has created
tremendous quantities of data and, as a result, possibilities for
deep insights into energy usage, better energy management, and
new ways of energy conservation. As buildings are responsible for
a significant portion of overall energy consumption, conservation
efforts targeting buildings can provide tremendous effect on
energy savings. Building energy monitoring enables identification
of anomalous or unexpected behaviors which, when corrected, can
lead to energy savings. Although the available data is large, the
limited availability of labels makes anomaly detection difficult.
This research proposes a deep semi-supervised convolutional
neural network with confidence sampling for electrical anomaly
detection. To achieve semi-supervised learning, two sub-networks
are used: the first performs reconstruction and uses unlabelled
data, while the second performs classification with labelled
data. The two sub-networks overlap: the encoder parameters
are shared between the two. To quantify anomaly detection
confidence, a valuable metric in anomaly detection, the network
uses a dropout sampling method. The proposed approach has
been evaluated with real-world electrical data from systems such
as HVAC, lighting, and heat pumps. The results demonstrated
the accuracy of the proposed anomaly detection solution.

Keywords—Anomaly Detection, Neural Network, Deep Learn-

ing, Confidence Sampling, Semi-supervised Learning, Convolu-
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I. INTRODUCTION

An International Energy Agency analysis found worldwide
building energy use has grown from 102 exajoules (EJ) in
2000 to 120 EJ in 2012 [1]. The estimated potential global
annual savings in building energy use equate to around 53
exajoules (EJ) by 2050 if technology and energy efficient
policies are applied [2]. Such technologies include metering
which measures and records the resource usage of systems
such as HVAC units and lighting at regular intervals.

Building electricity metering provides data that can be
analyzed to gain insights into energy usage, manage energy
consumption, and identify opportunities for savings. It also
enables identification of anomalous patterns, which when
corrected, can lead to energy savings. Anomalous patterns

are defined as deviations from previous historical observations
[3]. Because buildings are responsible for a large portion of
overall energy consumption and have a large potential for
energy savings [2], anomaly detection targeting buildings can
effectively reduce energy waste. Major building systems such
as HVAC can consume up to 50% of building energy [4]
making them an excellent candidate for anomaly detection.
However, anomaly detection becomes difficult in practice as

many real-world applications have hundreds of metered sys-
tems producing large amounts of noisy and sparsely labelled
data. If unaided by anomaly detection solutions, this situation
becomes overwhelming for building managers because they
cannot devote constant attention to identifying anomalies.

One solution is to use machine learning techniques to
augment the anomaly detection capabilities of businesses.
Such techniques can be applied using one of three forms of
learning: supervised learning with provided labels or target
values for training, unsupervised learning without labels, or
semi-supervised learning, which is a blend of the other two
learning methods. In the case of electrical anomaly detection,
raw metering data are unlabelled and acquisition of labels is
difficult because anomaly events by definition are infrequent.
Consequently, the resulting datasets contain few labelled ob-
servations [3], a condition referred to here as sparsely labelled.

Prior work using supervised learning sidestepped this la-
beling issue by training a network to perform a regression task
and predict future energy usage values [5], [6]. Classifying an
observation in this approach requires a secondary step that
compares the difference between actual and predicted values
to a threshold. The chosen threshold value dictates the decision
boundary for classification of all samples, but generalization is
poor if the threshold value is incorrectly chosen. In contrast,
when a model learns to perform classification directly using
labelled data, a secondary step is not needed and an appropriate
boundary is learned for each class, providing better perfor-
mance. With unsupervised learning, the boundary selection
issue also arises because reconstruction error needs to be
compared to a threshold [7], [8].

This research proposes a deep semi-supervised convolu-
tional neural network for electrical anomaly detection from
streaming data with disjoint training and quantification of pre-
diction confidence. To accommodate sparsely labelled datasets,
the proposed network uses a dual architecture comprised of
two separate sub-networks each with its own objective: recon-
struction or classification. The network parameters are shared
between portions of the two sub-networks, enabling disjoint
updates as various blends of labelled and unlabelled samples
are seen. To quantify prediction confidence, the proposed
approach uses dropout sampling method proposed by Gal and
Ghahramani [9]. Because the proposed network uses convolu-
tional layers, information is captured from neighbouring ob-
servations, enabling contextual anomaly detection. In addition,
a preprocessing method for periodic variables ensures that the
distance between periodic rollovers is preserved regardless of
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period and without massive increase in feature dimensionality.

The approach has been evaluated with a large real-world
electrical dataset collected from various systems such as HVAC
and lighting. The experiments demonstrated that combination
of a deep semi-supervised network and periodic preprocessing
enables accurate anomaly detection while providing additional
confidence information for intelligent decision-making.

This paper is organized as follows: Section II describes
related work in the field of anomaly detection using neural
networks in the electrical data domain. Section III outlines
the approach taken by the research described here. In Section
IV, the application and testing of the network on data are
described. Finally, Section V describes concluding thoughts
and future work.

II. RELATED WORK

Objective Function: Several studies have used an objec-
tive function consisting of a single error function, such as
mean square, focused on prediction of future values [5], [6],
[10], input reconstruction [7], [8], or classification. Methods
using a single error function cannot make use of blends of
data, unlabelled and labelled, by their definition. The semi-
supervised method proposed here uses an objective function
consisting of two error functions, one unsupervised and the
other supervised. This enables the network to use all available
data, both labelled and unlabelled, which is beneficial in
anomaly detection because unlabelled data is plentiful and
labelled data is not [11].

The research presented here focuses on performing classi-
fication in one step, without a secondary threshold comparison
step, which helps generalization and accuracy because the class
decision boundary is supported by data. Similar approaches
have been used in other domains besides anomaly detection,
where the model is updated in one step with a dual objective or
is pretrained using unsupervised learning. Dai and Le [12] used
supervised and unsupervised recurrent networks to pretrain
a network to initialize weights, enabling strong performance
in language classification tasks. Ranzato and Szummer [13]
used layer-wise pretraining in which each layer performed
classification and reconstruction on its inputs. Weston et al.

[14] suggested several variations of semi-supervised networks
that focus on learning the embedding of an input at different
positions within a network; the embedding is then used to train
a supervised loss function. Unlike existing anomaly detection
work, the research presented here uses intermittent supervised
updates as labelled data becomes available and unsupervised
learning otherwise, meaning that updates do not need to be
performed simultaneously. Training in such a disjoint fashion
was previously suggested by Weston et al. [14].

Confidence Sampling: Previous studies using neural net-
works cannot provide an estimate of certainty for network
predictions. This problem arises primarily because neural
networks learn a discriminant function, in which an input is
mapped directly to a desired output, making quantification of
prediction uncertainty difficult because probabilities play no
role [15]. This work uses a technique suggested by Gal and
Ghahramani [9], which samples from a network by exploiting
the dropout technique. Dropout, a regularization technique pro-
posed by Srivastava et al. [16], “drops” a random percentage

of units during training. By doing so the network is strongly
regularized, combating overfitting common in deep networks,
and increasing network generalization. Application of this
dropout sampling method makes it possible to understand
how confident the network is in its classification. Prediction
confidence enables explicit handling of uncertain inputs, in
turn supporting additional techniques such as a reject option,
improving the model’s prediction capabilities, and creating
additional labelled samples.

Preprocessing of Periodic Variables: It is common to
transform continuous periodic variables such as time of day
to 1-hot encoding or linear scale representations. Chae et

al. [17] transformed time variables into integer values and
1-hot encoding for use in anomaly detection, e.g, {1,0,0}
for weekdays, {0,1,0} for Saturday, and {0,0,1} for Sunday.
Preprocessing using 1-hot encoding causes an increase in input
dimensionality because each possible value of the periodic
value requires a dimension. Benedetti et al. [6] and Araya
et al. [7] normalized all values by scaling them to the range
[0,1] by dividing each variable by its maximum. Performing
such preprocessing causes jumps in ”distance” that are not
reflective of the actual ”distance” between time points. The
encoding used in this work, a projection onto the unit circle,
correctly preserves distances between points and requires only
two additional dimensions per periodic value.

Network Depth: Prior work on anomaly detection has
used shallow networks containing fewer than three hidden
layers. Mousavian et al. [10] used a shallow network with two
hidden layers to predict future usage values and to classify
a point based on its difference from the real reading. Araya
et al. [7] and Sakurada and Yairi [8] both used networks to
perform input reconstruction where anomaly classification was
predicted on the reconstruction error achieved. Araya et al.

used a deep network with three hidden layers on electrical
metering data. Our work in contrast uses deeper networks
providing greater representational power and generalization
[18]. The increase in representational ability occurs because
the network learns a hierarchy of features built upon those
from previous layers, which enables extraction of non-local
relationships and patterns [19]. In addition, in the context of
periodic events, which occur in anomaly detection, Szymanski
and McCane [20] found that deep networks learn feature
hierarchies that efficiently encode periodic events, a capability
that makes deep networks well suited to time series electrical
data.

A final consideration is the number of hidden units per
layer affecting the width of the network. Previous studies used
a small number of units in each layer [8], but our work uses an
order of magnitude more units. This increase in units serves
a dual purpose: to increase network capacity, and allow usage
of higher dropout probabilities.

III. METHODOLOGY

Introduced below is the architecture and components of
the anomaly detection system. This architecture, in Fig. 1, is
comprised of preprocessing, model, and notify components.
An explanation of each component’s usage and function is
detailed below.
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Fig. 1: End-to-end overview of system. x1, ..., xN

are the raw samples coming in from the monitored electrical systems. The
network outputs are used to notify the operator.

A. Preprocessing

Preprocessing is performed to exploit the domain knowl-
edge of the system and process specific features, such as time
information, helping improve performance of the model. The
final product of preprocessing and feature generation can be
seen in Table I.

IQR Filter: An interquartile test is performed to remove
extreme readings, such as those caused by sensor malfunctions,
where the value is unlikely to be output by the system.
Such readings are removed if they are above the threshold
Q3 + 1.5IQR where Q3 is the 75th quantile and IQR is the
interquartile range of the data. In addition, simple filtering is
performed to remove days where the systems did not record
data.

Reading Normalization: The reading values must be
normalized into the range [0, 1], on a per-system basis, to
minimize the magnitude of gradient updates helping model
convergence. This is done by scaling each x

n

for n = 1, .., N
reading value using Eq. 1, where X is the dataset and N is the
number of raw dataset samples:

x̃
n

=

x
n

�min(X)

max(X)�min(X)

(1)

Feature Generation: Each reading value is augmented
with first and second difference features between normalized
x̃
n

reading values. The difference is calculated as x̃�

n

=

x̃
n

� x̃
n�1 and applied twice: on the normalized data and

to the resulting first difference. The two difference features
provide information on each inputs value change over time
and are similar to a moving first- and second-order derivative
approximation.

Features containing periodic variables, such as the times-
tamp of each sample, are transformed extracting additional
information. This transformation involves splitting each times-
tamp, t

n

, into its k constituent, with possible values such as
k = {month,weekday, weekOfY ear, hour,minute}, and
performing a mapping of each variable to a unit circle rep-
resentation. This mapping takes the kth constituent’s value,
t
n,k

, with a known period, p
k

, and maps it with the following
formula:

ˆt
n,k

=

(
cos

⇣
2⇡t

n,k

p
k

⌘
, sin

⇣
2⇡t

n,k

p
k

⌘)
(2)

where each periodic value t
n,k

is split into two components
representing its x and y locations on the unit circle. This
transformation preserves distances between rollovers of peri-
odic variables. To understand its utility consider the following
example. Assume a variable with known period p

k

= 60 is
given, and the difference between two values, 59 and 1, needs
to be calculated. Taking the algebraic difference produces
a result, 58, that ignores the values underlying periodicity.
In contrast, when the values are mapped to the unit circle,
distance is preserved and the calculation yields, after back-
converting, the correct distance of 2.

This periodic mapping requires significantly fewer feature
dimensions than other common preprocessing techniques such
as 1-hot encoding. Incorporation of time information such
as month, weekday, hour, and minute using 1-hot encoding
requires an additional 12, 7, 24, and 60 additional features.
If all components are included, 103 additional dimensions of
very sparse data would be needed per sample. In contrast,
the periodic mapping described above simply requires two
dimensions per time component, or only eight additional
dimensions if all components are included.

TABLE I: Features and description of processed data.

Feature Description

Sensor Value Normalized value with range [0, 1]

First Difference Difference of nth and (n� 1)

st values
Second Difference Difference of nth and (n� 1)

st first difference
Month {sin,cos} Unit circle projection with p

k

= 12

Weekday {sin,cos} Unit circle projection with p
k

= 7

Week Of Year {sin,cos} Unit circle projection with p
k

= 52

Hour {sin,cos} Unit circle projection with p
k

= 24

Minute {sin,cos} Unit circle projection with p
k

= 60

Soft Labels: Data points are assigned soft labels, using
simple heuristics, signifying the belief that the particular point
is an anomaly. The soft labels are used by the classification
network. A soft label is considered ”soft” because label values



are chosen to push the classifier closer to a belief of the
underlying label. It was found to be most effective to select
soft labels that were equidistant from their hard class label.
For example, a soft positive label of 0.7 and a soft negative
label of 0.3 may be selected for a classification with regular
labels of {0, 1}.

In this study, the following heuristics are used to assign
soft positive labels to points:

• If the raw reading value is less than 0.0. This was
saved before the values were normalized.

• If the current reading value is greater than the global
99.9th quantile.

• If the current reading value is greater than the 99.9th
quantile of points with the same hour and minute
values in the preceding three weeks and the variance
of this set of points was below a certain threshold.

Soft negative labels were assigned to points:

• If the current reading value is roughly equal, ±✏ where
✏ is a very small number, to the mean of points with
the same hour and minute values in the preceding three
weeks and the variance of this set of points was above
a certain threshold.

Window generation: The samples are created by collecting
sliding windows w

i,j

of j = 1, ..., J observations and soft la-
bels y

i,j

. The experiments in this work use J = 23 observation
per window, covering a 2 hour duration, with six observations
skipped between each window. The skip is chosen to reduce
the similarity between window samples. The label values over
each window must be a valid probability distribution where
y
i

must satisfy y
i,j

2 [0, 1] and
P

J

j=1 yi,j = 1. To enforce
this constraint if any soft labelled observations y

i,j

exist
within a window w

i

normalization is performed over all J
observations in y

i,j

, producing a valid probability distribution.
Each observation label y

i

, after normalization, indicates a
prior belief of the presence or absence of an anomaly in the
jth observation of w

i

. If the window contains no labels, a
y
i

= nil label is assigned to the window. Therefore, each
sample within the generated dataset, denoted by w

i

, consists
of a sliding windows of samples, each with corresponding label
value y

i

. Each individual window is stacked into one matrix
W 2 IR

N⇥J⇥F and each label into one matrix Y 2 IR

N⇥J

where N is the number of samples, J is the number of
observations in the window, and F are the number of generated
features.

B. Model

Network: The proposed network uses a dual architecture
comprised of two separate sub-networks, each with its own
objective: reconstruction or classification. This enables the
training of deep networks on sparsely labelled datasets. The
encoder parameters are shared between the two objectives,
enabling disjoint updates as various blends of observations are
seen and making it possible to train deep expressive networks.
The network architecture, as seen in Fig. 2, is comprised of
separate sub-networks: encoder, decoder, and classifier. The
encoder sub-network, Enc(w

i
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Fig. 2: Diagram of network structure. The network uses
two losses: Class Prediction and Reconstruction Input. The
encoder, decoder, and classifier sub-networks are shown by
the blue, green and red blocks respectively.

z
i

which is an embedding of w
i

. The decoder sub-network,
Dec(z

i

; ✓
D

), reconstructs w
i

given the compressed represen-
tation z

i

. Finally the classifier sub-network, Class(z
i

; ✓
C

),
predicts which observations 1, .., J within w

i,j

are anomalous.
Each sub-network Enc, Dec, and Class is parameterized by
✓
E

, ✓
D

, and ✓
C

respectively. The compressed representation
z
i

must contain the information needed to perform both the
classification and reconstruction tasks.

Training: The model is trained using backpropagation to
minimize a dual loss function. The loss function, seen in Eq. 3,
is a weighted sum of the reconstruction and classification error
for each sub-network.

L(w
i

, y
i

; ✓) = �L
Recon

(w
i

, ŵ
i

; ✓
D

)+(1��)L
Class

(y
i

, ŷ
i

; ✓
C

)

(3)

In situations where the observation is unlabelled, eg.
(w

i

, nil), only the encoder and decoder sub-networks (EDNs),
Enc(w

i

; ✓
E

) and Dec(z
i

; ✓
D

), are used for parameter updates.
If the observation is labeled all sub-networks are updated:
Enc(w

i

; ✓
E

), Dec(z
i

; ✓
D

), and Class(z
i

; ✓
C

). The ability
to train portions of the network independently is extremely
beneficial because most anomaly detection datasets contain few
labelled samples. The natural expression for classification and
reconstruction errors are given, respectively, by cross entropy
(Eq. 4) and mean square error (MSE, Eq. 5) functions:

L
Class

(y
i

, ŷ
i

; ✓
C

) =

1

N

NX

i=1

H(y
i,j

, ŷ
i,j

) (4)

L
Recon

(w
i

, ŵ
i

; ✓
D

) =

1

N

NX

i=1

{w
i

� ŵ
i

}2 (5)

where H(y
j

, ŷ
j

) is the cross entropy function

H(y
i

, ŷ
i

) = �
JX

j=1

y
i,j

logŷ
i,j

(6)

ŵ
i

and ŷ
i

are outputs of the Dec(.) and Class(.) networks
for training tuple (w

i

, y
i

).



The contribution of each loss function to network parame-
ters is controlled by � as seen in Eq. 3, where the valid range
is [0, 1]. If � is 0.0 network parameters will be adjusted only
by classification losses. Conversely, for � = 1.0 classification
loss has no impact on parameters and only reconstruction loss
causes change. Values between the range of [0, 1] shift the
impact each loss has on network parameters such that we
dedicate more network capacity towards one loss function.

Algorithm 1 Training algorithm for network

Require: W
train

= {w1, ..., wN

} and Y
test

= {y1, ..., yN}
Require: ↵: learning algorithm parameters
Require: ⇢: percent of units to drop
Require: �: capacity of network used for reconstruction.

✓
E

, ✓
D

, ✓
C

 init
N  number of samples
for i := 1 to N do

z
i

 Enc(w
i

; ✓
Et)

ŵ
i

 Dec(z
i

; ✓
Dt)

L
Di  � 1

2⌃
J

j=1{wi,j

� ŵ
i,j

}2
L
Ci  1

if y
i

6= nil then
ŷ
i

 Class(z
i

; ✓
Ct , ⇢)

L
Ci  (1.0� �)

⇢
�
P

J

j=1 yi,j log ŷi,j

�

end if
✓
Ct+1  ✓

Ct � ↵
C

@LCi
@✓C

✓
Dt+1  ✓

Dt � ↵
EDN

@LDi
@✓D

✓
Et+1  ✓

Et � ↵
EDN

⇥
@LDi
@✓E

+

@LCi
@✓E

⇤

end for

The training algorithm is detailed in Algorithm 1 where ↵
C

is the learning rate used for the classifier sub-network, ↵
EDN

is the learning rate used for the EDN sub-network, and ⇢ is
the percentage of units dropped per batch update.

Confidence Sampling: The classifier sub-network was
trained using dropout, which enable the usage of dropout
sampling proposed by Gal and Ghahramani [9]. Dropout
sampling enables quantification of network prediction confi-
dence by performing several forward passes, determined by a
parameter S, with dropout enabled, while holding the hidden
representation z

i

constant. The resulting output sample set,
ỹ
i

= {ỹ
i,1, ..., ỹi,S}, provides access to both the predictive

mean and variance of our networks output. Estimates of
the mean and variance of Class(z

i

; ✓
C

) were calculated as
follows:

ỹ
i,s

⇠ Class(z
i

; ✓
C

) (7)

E[ỹ
i

] ⇡ 1

S

SX

s=1

ỹ
i,s

(8)

V ar[ỹ
i

] ⇡ ⌧�1I
D

+

1

S

SX

s=1

ỹT
i,s

ỹ
i,s

(9)

where ỹ
i,s

is the networks output given z
i

= Enc(w
i

; ✓
E

),
w

i

is an observation, I
D

is an D-dimensional identity matrix

and ⌧ is the inverse precision calculated using the following
formula:

⌧ =

⇢l2

2N�
(10)

where l is chosen as the prior frequency of the data
and � is the amount of L2 regularization applied on the
network parameters. Algorithm 2 describes the sampling al-
gorithm. This can be loosely viewed as sampling various sub-
networks of Class(z

i

; ✓
C

) to determine the confidence that
z
i

, an encoded representation of w
i

, is anomalous. With a
measurement of network confidence, the subsequent decision-
making process can be augmented by a reject option. This
option requires human intervention only for low-confidence
observations, which provides the possibility of adding labelled
samples to the network over time in an online fashion.

Algorithm 2 Sampling algorithm for network

Given: X
test

= {w1, ...wN

}
Given: ✓

E

, ✓
D

, ✓
C

: learned parameters
Given: ⇢: dropout percent used during training
N  number of samples
S  number of time forward passes from network
⌧  ⇢l

2

2N�

for i := 1 to N do
ẑ
i

 Enc(w
i

; ✓
E

)

ỹ
i

= {}
for s := 1 to S do

ỹ
i,s

⇠ Class(z
i

; ✓
C

) : sample with dropout
end for
µ
i

 1
S

P
ỹ
i,s

�
i

 ⌧�1I
D

+

1
S

P
S

s=1 ỹ
T

i,s

ỹ
i,s

end for

C. Notify

Finally, the operator is notified when an anomaly has
occurred using the classifier sub-network output and the EDN
reconstruction error. As the EDN is a convolutional Autoen-
coder performing dimensionality reduction, the assumption
that correlated data can be reduced to a lower dimensional
subspace is used. On this subspace normal and anomalous data
are substantially different [8], meaning that high reconstruction
error indicates the presence of an anomaly.

Operator Notification: The combination of the networks
output, classification confidence values and reconstruction er-
ror over a window of samples, is converted to binary output.
Eq. 11 intuitively captures this conversion:

ŷ(w
i

) =

8
>>>>>><

>>>>>>:

Var[ỹ
i

] < Var[ỹ
train

] &

1 E[ỹ
i

] > E[ỹ
train

] &

L
Recon

(w
i

) > E[L
Recon

(X
train

)]

0 otherwise

(11)

Notification occurs when the joint model has low predictive
variance, high predictive mean, and high reconstruction error.



Ideally each window would be presented to the operator screen
for anomalies, with predictive mean and variance superim-
posed over the window. This of course would not scale as the
operator would need to inspect many samples, so notification
are gated based on the networks predictive variance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The evaluation of this work used data provided by Power-
smiths [21], a Canadian based company, specialized in Internet
connected devices used to record and transmit information
from electrical systems. The captured information, primarily
from building systems, is used to help businesses manage
environmental footprints and reduce electrical waste. The
dataset is comprised of two years of electrical data, recorded at
five minute intervals, from buildings in the same geographical
location.

A typical sample from the data was comprised of a
timestamp and a sensor value. After preprocessing, the dataset
contained 664053 rows with 23 observations and 13 features
per window. Soft labelling heuristics generated 91k labelled
points. As the percentage of labelled points were higher than
most practical scenarios involving anomaly detection, a subset
was sampled reducing the percentage of labelled samples from
13% to 3%. This resulted in 19.9k labelled samples. Finally
the dataset was split into training, test, and validation sets, each
respectively containing 80%, 15%, and 5% of the dataset. The
number of labelled samples were kept proportional to each set
percentage.

To evaluate this work the following anomaly models were
chosen: a Fully Connected AutoEncoder (FCAE), a Convo-
lutional AutoEncoder (CAE) the modernized version of the
FCAE, and a Support Vector Machine (SVM). Each model
was configured as follows:

• FCAE contained two sets of three layers, representing
the encoder and decoder, with 299, 16, and 4 neurons
respectively. The decoder neurons were 8, 16, and
299. Where 299 is the product of the input window
dimensions, J ⇤ F .

• CAE used the same architecture as the EDN sub-
network as seen in Table II.

• SVM used C = 1.0, a RBF kernel, and a ⌘ of 1
13

where ⌘ is used instead of the � notation common in
the SVM literature.

The models used for comparison could not be trained using
the previously generated labels so a binary classification label
dataset was derived. The derived set was assigned a positive
class label of 1 if any value within a label window y

i

was
above random, which in this case was defined as 1.0/J where
J is the window size. Furthermore, as the FCAE & CAE cannot
be trained directly to do classification, the MSE function was
minimized instead and used a threshold function on the output
of each model M on sample i:

ŷ(x
i

) =

8
><

>:

1 M(x
i

) > E[M(

ˆX
train

)] +

1
2

q
Var[M(

ˆX
train

)]

0 otherwise
(12)

For all model performances to remain comparable the
binary cross entropy function was used: L(ŷ, y) = �ylog(ŷ)�
(1� y)log(1� ŷ).

A. Implementation details

The implementation was completed in Python using
Theano [22] and ran on a server with Intel Core i7 CPU
at 3.50GHz, 32GB RAM, and 2 NVIDIA GeForce GTX 980
GPUs. The EDN was constructed using 3 convolutional layers
with decreasing filter and stride size, as detailed in Table II.
Filter sizes of [5, 1] and [3, 1] were used because incorporation
of temporal information was needed along the J dimension
and filters of shape [M, 1] act only along this dimension. The
classifier sub-network used four fully connected layers of: 512,
256, 128, 23 units each, spanning from input z to output ŷ. All
layers used the Leaky ReLu activation function with leakiness
of 0.01. The weight matrices of the network were initialized
with Glorot uniform initialization [23].

TABLE II: Encoder and Decoder sub-network settings.

Layer Num. Filters Filter size Stride
Encoder L1 64 5,1 2,1
Encoder L2 32 3,1 1,1
Encoder L3 16 3,3 1,1
Decoder L1 16 3,3 1,1
Decoder L2 32 3,1 1,1
Decoder L3 64 5,1 2,1

The EDN used input corruption and magnitude penalties
for regularization. The encoder’s input was corrupted with 0.1
standard deviation of added zero-mean Gaussian noise and a
magnitude penalty on z was used with weight 9e-5. Typically
parameters of the encoder and decoder networks are tied
as a regularization technique [24]. Empirically it was found
that tying parameters heavily adjusted the encoder parameters
towards the reconstruction task which decreased the encoders
capacity used for classification. This interference could not be
corrected unless the � parameter was set very close to zero.
The experiments used untied parameters with � = 0.2.

The classifier sub-network used dropout and L2 regular-
ization on all dense layers with a dropout rate of 0.25 and
L2 weight of 1e-4. Additionally, the EDN network acts as a
strong regularizer on the classifier sub-network. The network
was trained for 50 epochs on the training dataset and batch
size of 128 using the Adam optimizer [25]. A learning rate of
3e-5 was used for the classifier sub-network and 1e-5 for the
EDNs.

B. Results and Discussion

The performance of our models on two datasets were
examined: the Test dataset and a small set of samples con-
taining Generated Anomalies. For the generated dataset the
effectiveness of having confidence information presented and
the models ability to identify anomalies were discussed.

Test dataset: The loss functions, measured in bits, signifies
how effectively each model captures the underlying class



TABLE III: Classification entropy of experiments.

Model Test Entropy
Random 13.78
FCAE 11.43
EDN 7.94
CAE 6.45
SVM 3.82
Proposed model 3.08

distribution. A lower value indicates better performance. The
results on the test dataset, containing 2.98k labelled samples,
are found in Table III. The performance of Random, where a
class is randomly assigned to a window w

i

, was 13.78. This
acts as a baseline for which all models must outperform to
provide useful anomaly detection capabilities.

From Table III, it is quickly apparent the Proposed Model

outperforms all models by a healthy margin. The SVM, though
unable to perform localization, showed excellent performance
on the dataset. The authors strongly believe the utilization of
a distributed training environment with larger volumes of data
would allow the proposed model to use deeper networks with
increased performance and generalization.

Notable is the performance difference between the EDN
and CAE as both models share the exact same architecture.
This result is expected as the EDN had parameter updates from
the classifier sub-network that adjust the common parameters
in the encoder network. The FCAE model outperforms the
Random baseline by a smaller than expected factor. The
poor performance of the FCAE is most likely because the
network is unable to use temporal information present within
each window. This seems even more likely when the number
of parameters available to the FCAE and CAE, which uses
temporal information, are compared. The FCAE has almost
an order of magnitude more free parameters than the CAE:
9792 and 1312 respectively.

Generated Anomalies: After inspection, reoccurring pe-
riods of low usage, where the majority of reported values
are near zero, were found within the dataset. These periods
typically were weekends and time periods between 9pm-4am.
Therefore a handful of samples from these periods had anoma-
lous signals added to the reading values, where ’anomalous’
signals are defined as impulse or gradual increase in usage
over time for a small duration. Examples of the impulse and
gradual increase can be seen, with the proposed model output,
in Fig. 3 and Fig. 4 respectively.

In Fig. 3 an impulse anomaly and the models response
was plotted where the predictive mean and predictive variance
are shown on the top portion of the plot. It is clear that the
model has roughly localized where the injected anomaly has
been placed at t = 75. The model also has several smaller
peaks at time t = {15, 30, 40, 60, 90, 110} which are likely
due to noise from sampling. Upon inspection of the confidence
bands, shown as the area around the lines, the smaller peaks
have larger bands indicating the model had high uncertainty in
these localizations. This is in contrast to the impulse anomaly
at t = 75 which has narrow, nearly non-existent, confidence

Fig. 3: Confidence plot of an impulse.

band around the point.

Fig. 4 depicts a longer duration anomaly being added.
Again the model correctly identifies this anomaly and has
the same smaller peaks in predictive mean. Through the
examination of the confidence bands all but the prediction at
t = 55 can be considered as accurate.

Fig. 4: Confidence plot of gradual anomaly over a short
duration.

Of additional interest, in both Fig. 3 and Fig. 4 the detection
of an anomaly is slightly offset by a tick or two of the x-
axis, approximately 5-10 minutes. This phenomena is most
likely the result of the larger 1-d convolutional filters. The first
convolutional layer filter, of size [5, 1], is sensitive to features
in an area of 5 ticks and the convolution of this filter results
in some temporal information being lost, hence the inexact
location of anomalies. A possible solution to this might involve
adjustment of the filter dimension, filter stride or number of
convolutional filters in the EDN.

As an additional consideration a single sample from the
dataset, with a manually verified anomaly, is seen in Fig. 5. The
model assigns a higher probability, around time t = 90� 105,
with a tighter confidence bound indicating higher certainty
that an anomaly occurred. Inversely, at time 25� 40, there is
an increase in the probability with a wider confidence bound
indicating uncertainty of the networks prediction.



Fig. 5: Model confidence in predictions

V. CONCLUSION AND FUTURE WORK

In this research, a methodology for training deep neural
networks was presented. This method uses disjoint training
enabling the training of deep neural networks for anomaly
detection on sparsely labelled data. Additionally the abil-
ity to quantify network confidence was presented allowing
deeper understanding of observations that the network clas-
sifies as anomalous. The results show that this methodology
can accurately identify multiple anomalies within a contextual
window. Moreover, the detection ability of this methodology
outperforms other models such as a SVM and Autoencoder
variants. Future works will explore improving the efficiency
of this methodology allowing a smaller dataset. Additionally
the impact of soft labeling and various schema on modeling
performance will be explored.
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