
Citation: L’Heureux, A.; Grolinger,

K.; Capretz, M.A.M.

Transformer-Based Model for

Electrical Load Forecasting. Energies

2022, 15, 4993. https://doi.org/

10.3390/en15144993

Academic Editors: Filipe Rodrigues

and João M. F. Calado

Received: 4 June 2022

Accepted: 5 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Transformer-Based Model for Electrical Load Forecasting
Alexandra L’Heureux , Katarina Grolinger * and Miriam A. M. Capretz

Department of Electrical and Computer Engineering, The University of Western Ontario,
London, ON N6A 5B9, Canada; alheure2@uwo.ca (A.L.); mcapretz@uwo.ca (M.A.M.C.)
* Correspondence: kgroling@uwo.ca; Tel.: +1-519-661-2111 (ext. 81407)

Abstract: Amongst energy-related CO2 emissions, electricity is the largest single contributor, and
with the proliferation of electric vehicles and other developments, energy use is expected to increase.
Load forecasting is essential for combating these issues as it balances demand and production and
contributes to energy management. Current state-of-the-art solutions such as recurrent neural net-
works (RNNs) and sequence-to-sequence algorithms (Seq2Seq) are highly accurate, but most studies
examine them on a single data stream. On the other hand, in natural language processing (NLP),
transformer architecture has become the dominant technique, outperforming RNN and Seq2Seq
algorithms while also allowing parallelization. Consequently, this paper proposes a transformer-
based architecture for load forecasting by modifying the NLP transformer workflow, adding N-space
transformation, and designing a novel technique for handling contextual features. Moreover, in
contrast to most load forecasting studies, we evaluate the proposed solution on different data streams
under various forecasting horizons and input window lengths in order to ensure result reproducibility.
Results show that the proposed approach successfully handles time series with contextual data and
outperforms the state-of-the-art Seq2Seq models.

Keywords: electrical load forecasting; deep learning; transformer architecture; machine learning;
sequence-to-sequence model

1. Introduction

In 2016, three-quarters of global emissions of carbon dioxide (CO2) were directly
related to energy consumption [1]. The international energy agency reported that amongst
energy-related emissions, electricity was the largest single contributor with 36% of the
responsibility [2]. In the United States alone, in 2019, 1.72 billion metric tons of CO2 [3] were
generated by the electric power industry, 25% more than that related to gasoline and diesel
fuel consumption combined. The considerable impact of electricity consumption on the
environment has led to many measures being implemented by various countries to reduce
their carbon footprint. Canada, for example, developed the Pan-Canadian Framework on
Clean Growth and Climate Change (PCF), which involves modernization of the power
system through the use of smart grid technologies [4].

The Electric Power Research Institute (EPRI) defines a smart grid as one that integrates
various forms of technology within each aspect of the electrical pipeline from generation
to consumption. The purpose of technological integration is to minimize environmental
burden, improve markets, and strengthen reliability and services while minimizing costs
and enhancing efficiency [5]. Electric load forecasting plays a key role [6] to fulfill those
goals by providing intelligence and insights to the grid [7].

There exist various techniques for load forecasting, but recurrent neural network
(RNN)-based approaches have been outperforming other methods [6,8–10]. Although
these techniques have been successful in terms of accuracy, a number of downsides have
been identified. Firstly, studies typically evaluate models on one or very few buildings or
households [8–10]. We suggest that this is not sufficient to draw conclusions about their

Energies 2022, 15, 4993. https://doi.org/10.3390/en15144993 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15144993
https://doi.org/10.3390/en15144993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0217-0970
https://orcid.org/0000-0003-0062-8212
https://orcid.org/0000-0002-1380-971X
https://doi.org/10.3390/en15144993
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15144993?type=check_update&version=1

Energies 2022, 15, 4993 2 of 23

applicability over a large set of diverse electricity consumers. Accuracy for different con-
sumers will vary greatly, as demonstrated by Fekri et al. [11]. Therefore, this research uses
various data streams exhibiting different statistical properties in order to ensure portability
and reproducibility. Secondly, although RNN-based methods achieve high accuracy, their
high computational cost further emphasizes processing performance challenges.

In response to computational cost, the transformer architecture has been developed in
the field of natural language processing (NLP) [12]. It has allowed great strides in terms of
accuracy and, through its ability to be parallelized, has led to performance improvements
for NLP tasks. However, the architecture is highly tailored to linguistic data and cannot
directly be applied to time series. Nevertheless, linguistic data and time series both have
an inherently similar characteristic: their sequentiality. This similarity, along with the
remarkable success of transformers in NLP, motivated this work.

Consequently, this research proposes an adaptation of the complete transformer archi-
tecture for load forecasting, including both the encoder and the decoder components, with
the objective of improving forecasting accuracy for diverse data streams. While most load
forecasting studies evaluate the proposed solutions on one or a few data streams [8–10], we
examine the portability of our solution by considering diverse data streams. A contextual
module, an N-space transformation module, a modified workflow, and a linear transforma-
tion module are developed to account for the differences between language and electrical
data. More specifically, these changes address the numerical nature of the data and the
contextual features associated with load forecasting tasks that have no direct counterparts
in NLP. The proposed approach is evaluated on 20 data streams, and the results show that
the adapted transformer is capable of outperforming cutting-edge sequence-to-sequence
RNNs [13] while having the ability to be parallelized, therefore addressing the performance
issues of deep learning architecture as identified by L’Heureux et al. [14] in the context of
load forecasting.

The remainder of this paper is organized as follows: Section 2 presents related work,
where we provide a critical analysis of current work; the proposed architecture and method-
ology are shown in Section 3; Section 4 introduces and discusses our results, and finally,
Section 5 presents the conclusion.

2. Related Work

Due to technological changes, the challenge of load forecasting has grown significantly
in recent years [15]. Load forecasting techniques can be categorized under two large
umbrellas: statistical models and modern models based on machine learning (ML) and
artificial intelligence (AI) [16].

Statistical methods used in load forecasting include Box–Jenkins model-based tech-
niques such as ARMA [17–19] and ARIMA [20,21], which rely on principles such as au-
toregression, differencing, and moving average [22]. Other statistical approaches include
Kalman filtering algorithms [23], grey models [24], and exponential smoothing [25]. How-
ever, traditional statistical models face a number of barriers when dealing with big data [26],
which can lead to poor forecasting performance [16]. In recent years ML/AI have seen
more success and appear to dominate the field.

Modern techniques based on machine learning and artificial intelligence provide an
interesting alternative to statistical approaches because they are designed to autonomously
extract patterns and trends from data without human interventions. One of the most
challenging problems of load forecasting is the intricate and non-linear relationships within
the features of the data [27]. Deep learning, a machine learning paradigm, is particu-
larly well suited to handle those complex relationships [28], and, consequently, in recent
years, deep learning algorithms have been used extensively in load forecasting [11,29,30].
Singh et al. [31] identified three main factors that influenced the rise of the use of deep learn-
ing algorithms for short-term load forecasting tasks: its suitability to be scaled on big data,
its ability to perform unsupervised feature learning, and its propensity for generalization.

Energies 2022, 15, 4993 3 of 23

Convolutional neural networks (CNN) have been used to address short-term load
forecasting. Dong et al. [32] proposed combining CNN with k-means clustering in order
to create subsets of data and apply convolutions on smaller sub-samples. The proposed
method performed better than feed-forward neural network (FFNN), support vector re-
gression (SVR), and CNN without k-means. SVR in combination with local learning
was successfully explored by Grolinger et al. [10] but was subsequently outperformed
by deep learning algorithms [6]. Recurrent neural networks (RNNs) have also been used
to perform load forecasting due to their ability to retain information and recognize tem-
poral dependencies. Zheng et al. [6] compared their results using RNN favorably to
FFNN and SVR. Improving on these ideas, Rafi et al. [33] proposed a combination of
CNN and long short-term memory (LSTM) networks for short-term load forecasting
that performed well but was not well-suited to handle input and outputs of different
lengths. This caveat is important due to the nature of load forecasting. In order to ad-
dress this shortcoming, sequence-to-sequence models were explored. Marino et al. [34],
Li et al. [35], and Sehovac et al. [36] achieved good accuracy using this architecture. These
works positioned the S2S RNN algorithm as the state-of-the-art approach for electrical load
forecasting tasks by successfully comparing S2S to DNN [36], RNN [35,36], LSTM [34–36],
and CNN [35]. Subsequently, Sehovac et al. [37] further improved their model’s accuracy
by including attention to their architecture. Attention is a mechanism that enables models
to place or remove focus, as needed, on different parts of an input based on their relevance.

However, accuracy is not the only metric or challenge of interest with load forecasting.
Online learning approaches such as the work of Fekri et al. [11] have been used to address
velocity-related challenges and enable models to learn on the go. However, their proposed
solution does not address the issue of scaling and cannot be parallelized to improve
performance, as it relies upon RNNs. In order to address the need for more computationally
efficient ways to create multiple models, a distributed ML load forecasting solution in the
form of federated learning has been recently proposed [38]. Nevertheless, the evaluation
took place on a small dataset and the chosen architecture still prohibited parallelization.
Similarly, Tian et al. proposed a transfer learning adaptation of the S2S architecture in
order to partly address the challenge of processing performance associated with deep
learning [13]. Processing performance was improved by reducing the training time of
models by using transfer learning.

The reviewed RNN approaches [11,13,37] achieved better accuracy than other deep
algorithms. However, RNNs are difficult to parallelize because of their sequential nature.
This can lead to time-consuming training that prevents scaling to a large number of energy
consumers. In contrast, our work uses transformers, which enable parallelization and
thus reduce computation time. Wu et al. [39] previously presented an adaptation of the
transformer model for time series predictions; however, they did so to predict influenza
cases rather than load forecasting and did not include many contextual features in their
work. Zhao et al. [40] presented a transformer implementation for load forecasting tasks,
however the contextual features were handled outside of the transformer and therefore
added another processing complexity layer to the solution. Additionally, their work
provided little details in terms of implementation, and the evaluation was conducted on
a single data stream and limited to one-day-ahead predictions. Their work also did not
provide information regarding the size of the input sequence. In contrast, our work presents
a detailed adaptation of a transformer capable of handling the contextual features within
the transformer itself, enabling us to take full advantage of the multi-headed attention
modules and its ability to be parallelized.

The objective of our work is to improve accuracy of electrical load forecasting over diverse
data sources by adapting the transformer architecture from the NLP domain. In contrast to the
sequential nature of the latest state-of-the-art load forecasting techniques [34–36], the transformer
architecture is parallelizable. Additionally, to ensure portability and reproducibility, the work
presented in this paper is evaluated on 20 data streams over a number of input windows and

Energies 2022, 15, 4993 4 of 23

for various forecasting horizons. Our transformer-based approach is shown to outperform
state-of-the-art S2S RNN.

3. Load Forecasting with Transformers

The traditional transformer architecture as proposed by Vaswani et al. [12] was orig-
inally developed for natural language processing (NLP) tasks. In NLP, the input to the
transformer is sentences or phrases that are first converted to numbers by an embedding
layer and are then passed to the encoder portion of the transformer. The complete sentence
is processed at once; therefore, the transformer needs another way to capture sequence
dependency among words: this is done through positional encoding.

In contrast, load forecasting deals with very different data. The two main compo-
nents of load forecasting data are energy consumption readings and contextual elements
including information such as the day of the week, the hour of the day, and holidays. The
similarity between load forecasting and NLP comes from the sequentiality present in data
and dependencies between words/readings: this motivated the idea of adapting transform-
ers for load forecasting. However, the difference in the nature of the data and its structure
impacts the ability to directly utilize the transformer architecture and requires adaptations.

Therefore, to perform load forecasting with transformers, this research introduces
contextual and N-space transformation modules along with modifications to the training
and inference workflows. The following section presents how the transformer architecture
is adapted for load forecasting by introducing the two workflows. For each of these,
we describe how each component of the original architecture is modified and which
components are added in order to successfully design the adapted model.

3.1. Model Training

Transformer training is carried out through the contextual model, N-space transformation
module, and lastly the actual transformer. Figure 1 depicts the modified architecture.

3.1.1. Contextual Module

The objective of the contextual model is to enable different processing pathways for
energy readings and contextual features. Energy readings are both the input to the system
and the required output, because past readings are used to predict future consumption.
In contrast, contextual features are known values and do not need to be predicted by the
transformer. For example, if trying to predict a load 24 steps ahead, the day of the week
and the hour of the day for which we are forecasting are known. Therefore, these two
components of the data can be processed differently.

The input of the system consists of energy readings combined with contextual features,
while the expected output is comprised only of load values. Contextual features commonly
used with load forecasting [13] include those extracted directly from the reading date/time,
such as time of day and day of the week. After extraction, these features are represented
numerically and combined to form contextual vectors.

These numerical vectors are merged with load readings, resulting in n features for
each time step, where n is the number of contextual features plus one to account for the
load reading. At this point, the data are a stream of readings, while the transformer in NLP
expects sentences. To convert these streams into a format suitable for transformers, the
sliding window technique is used. The process is depicted in detail in Figure 2.

In the sliding window approach, as shown in Figure 2, the first input sample (Win-
dow 1) consists of the first k readings, thus one sample has a dimension of k× n where
n is the number of features. If predicting p steps ahead, the expected output contains
load readings without contextual features at time steps k + 1 to k + p. Then, the window
slides for s steps, the next input sample consists of readings from s + 1 to s + k, and the
expected output contains load readings for time steps s + k + 1 to s + k + p. In this study,
overlapping sliding widows are used, thus s < k.

Energies 2022, 15, 4993 5 of 23

In training, contextual features with the load values are the inputs to the encoder,
while the inputs to the decoder are contextual features with the expected (target) load
values. The output of the decoder consists of the predicted load values, which are used to
compute the loss function and, consequently, to calculate gradients and update the weights.

Figure 1. Training workflow.

Energies 2022, 15, 4993 6 of 23

Figure 2. Overlapping sliding window with contextual features.

3.1.2. N-Space Transformation Module

The purpose of the N-space transformation module is to improve the performance
of the multi-headed attention (MHA) component of the transformer by transforming the
input data to better capture relationships between energy readings and contextual features.
Once the data pass through the contextual module, the energy reading and its contextual
features form a vector. That vector nt at time t is a concatenation of contextual vector ct
and energy reading ert such that nt = (ert, c1t, c2t, c3t, . . . , c f t), where f is the number of
contextual features. Therefore, the length of any vector n is equal to the length of f + 1.
In order to enter the encoder, each of the k vectors corresponding to k time steps of the
window are stacked together to form an augmented input matrix of dimensions n × k,
effectively rotating the matrix.

Since the contextual features are concatenated to the energy reading, only one column
of the input matrix contains the energy reading. As multi-head attention (MHA) deals with
subsets of features, several heads will only be handling contextual features; however, in
energy forecasting, we are interested in the relationship of contextual features with the
target variable: energy consumption.

MHA performs attention calculations on different projections of the data as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (1)

headi = Attention(QWQ
i , KWK

i , VWV
i) (2)

where Q, K, and V are query, key, and value vectors, respectively, used to calculate the
attention and taken from the input matrix, Wo are parameters among heads, and WQ

i , WK
i ,

and WV
i are projection parameters for Q, K, and V, respectively [12]. Given that h is the

number of heads and dmodel represents the number of input features, the dimensions of the
projection parameters are as follows:

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dvWO ∈ Rhdv×dmodel (3)

Energies 2022, 15, 4993 7 of 23

dk = dv = dmodel/h = n/h. (4)

The subspace defined by the projection parameters divides the input matrix along the
feature dimension n, making each head responsible for only a subset of features, which
leads to the energy reading er not being assigned to all heads. Therefore, some heads deal
with determining relationships along contextual features only, which is undesirable, as the
model is trying to predict energy consumption from other features.

In order to address this challenge while taking full advantage of MHA, the proposed
approach transforms the input matrix into a higher N-space before entering the transformer
component. Each dimension of the new space becomes a different combination of the
original features through the use of a linear transformation such that:

I=X · A (5)

I=

er11 c11 . . . c1 f
. . .
erk1 ck1 . . . ck f

 ·
A11 . . . A1θ

. . .
An1 . . . Anθ

 (6)

I=

(er11 A11+ . . . + c1 f An1) . . . (er11 A1θ+ . . . + c1 f Anθ)

. . .
(erk1 A11+ . . . + ck f An1) . . . (erk1 A1θ+ . . . + ck f Anθ)

 (7)

where X is the input matrix of dimension k× n, I is the matrix after transformation, and
A are the transformation weights which will be learned during training. The size of the
transformed space is determined by θ: matrix I has dimension k× θ after transformation.
The size of θ becomes a hyperparameter of the algorithm, where finding the appropriate
value may require some experimentation; this parameter will be referred to as the model
dimension parameter.

After transformation, each component in matrix I includes energy readings, as seen in
Equation (7). By distributing the energy reading over many dimensions, we ensure that
attention deals with the feature the model is trying to predict.

3.1.3. Transformer Module

The transformer is composed of an encoder and a decoder module, as seen in Figure 1.
This study used a stack of two encoders, each one with two attention heads, and the
feed-forward neural network following the attention mechanism: this internal encoder
architecture is the same as in the original transformer [12]. Matrix I created during N-space
transformation is the input to the transformer and the expected output are the energy
readings for the desired output window.

The encoder processes input matrix I, and the encoder output gets passed to the two
consecutive decoders. Additionally, the decoder receives the expected output window
that went through the contextual model and N-space transformation. As in the original
transformer, the decoders consist of the attention mechanisms followed by the feed-forward
neural network.

After the data travel through the encoder and the decoder, linear transformation is
the last step. Transformation produces the predicted energy consumption by receiving
data with θ dimensions and transforming them into a single value, effectively reversing the
N-space transformation. The output gets compared to the target output to compute the
loss. This loss is then used to compute the gradients and for backpropagation to update
weights in the decoder, encoder, and N-space transformation; this process is depicted by
the red arrows in Figure 1.

In the original architecture [12], because the decoder receives the expected target
value as an input, the input to the decoder is shifted to the right during training to avoid
the decoder learning to predict itself as opposed to the next reading. However, in this
adaptation, because of the N-space transformation, the input value is no longer the same
as the target output, and this step is no longer needed and is handled by various added

Energies 2022, 15, 4993 8 of 23

transformations. However, the decoder input is still processed using a look-ahead mask,
meaning that any data from future time steps are hidden until the prediction is made.

Note that the input contains energy consumption for past time steps, while the target
output (expected output) is also energy consumption, but for the desired steps ahead. The
length of the input specifies how many historical readings the model uses for forecasting,
while the length of the output window corresponds to the forecasting horizon. For example,
in one of our experiments, we use 24 past readings to predict 12, 24, and 36 time steps ahead.

3.2. Load Forecasting with Trained Transformer

Once again, due to differences in the nature of the input data, further modifications to
transformer workflow are required in order to use the trained model for inference tasks.
The transformer is composed of an encoder and a decoder module, as seen in Figure 3,
which depicts the inference workflow.

Figure 3. Load forecasting inference workflow of the transformer architecture.

3.2.1. Contextual Module

During training, the contextual module is used in the same manner for both the
encoder and the decoder because throughout the entire training process data are fully
accessible, meaning that actual and expected values can be accessed at any time. However,
this is not the case for the inference task because we do not have access to future data.

This difference is particularly significant when dealing with transformers because
the transformer builds its output one step at a time and uses each step of the forecasting
horizon to predict the next. The input of the decoder at each step consists of all of the
previously predicted steps. This is problematic in our workflow because, while the expected
input consists of load readings along with their contextual component, the output of
the transformer consists only of load readings. Therefore, if we feed the transformer
output directly into the decoder, the contextual features will be missing. The goal of the
contextual module is to address this shortcoming through separating the contextual and
load data pathways.

Energies 2022, 15, 4993 9 of 23

The typical transformer workflow is modified by sending each output step of the trans-
former back through the contextual and N-space transformation module before they enter
the decoder. The contextual module is responsible for retrieving the corresponding con-
textual data and creating f features numerical vectors. This is also the case in the training
workflow where it has, however, very little impact. At each step t of the prediction, the con-
textual data are retrieved and transformed into a contextual vector ct = (c1t, c2t, c3t, . . . , c f t),
where f is the number of contextual features. By definition, contextual values such as day,
time, and even temperature are either known or external to the system.

After the context is retrieved, the predicted energy reading pert is combined with the
contextual vector to create a vector n such that m = (pert, c1t, c2t, c3t, . . . , c f t). This vector
will then go through the N-space transformation module.

3.2.2. N-Space Transformation Module

The N-space transformation module behaves in the same way during inference as it
does during training. The only difference is that it is used after each step t of the output as
opposed to once.

After each prediction t, the output vector m, which has a dimension equal to f + 1, is
transformed by computing the dot product of vector m to the transformation weights A
such that

It =m · A (8)

It =
[

pert1 ct1 . . . ct f

]
·

A11 . . . A1θ

. . .
An1 . . . Anθ

 (9)

It =
[
(pert1 A11+ . . . + ct f An1) . . . (pert1 A1θ+ . . . + ct f Anθ)

]
(10)

As opposed to during training, where the output matrix I is computed once per input
sequence, it is now built slowly over time. Before each next prediction, the newly created
vector It is combined with those previously created within this forecasting horizon such
that the decoder input I is:

I=


(pert1 A11+ . . . + ct f An1) . . . (pert1 A1θ+ . . . + ct f Anθ)

(per(t−1)1 A11+ . . . + c(t−1) f An1) . . . (per(t−1)1 A1θ+ . . . + c(t−1) f Anθ)

. . .
(per(t−q)1 A11+ . . . + c(t−q) f An1) . . . (per(t−q)1 A1θ+ . . . + c(t−q) f Anθ)

 (11)

where q is the number of steps previously predicted and t < horizon. This input I is then
fed to the decoder.

3.2.3. Transformer Module

The transformer is composed of an encoder and a decoder module, as seen in Figure 3.
The encoder’s input is matrix I created by taking a window of historical readings of length
k and processing it through the contextual and N-space transformation module in the
same manner described in the training workflow. The encoder output then gets passed to
the decoder.

Additionally, the decoder receives input matrix I described in the previous subsection.
However, one further modification is required when the first prediction is made since there
is no previous prediction available to feed the decoder. This modification is described as an
adaptive teacher forcing method. The teacher forcing [41] method is a technique used in
transformers with NLP where the target word is passed as the next input to the decoder.
In our case, such a word is not available; therefore, we make use of an adaptive teacher
forcing technique where the input for prediction Step 1 is equal to the last value of the
encoder input, that is, the last row of the I input matrix. This step allows us to have an
effective starting point for our predictions without compromising future results.

Energies 2022, 15, 4993 10 of 23

4. Evaluation and Results

This section presents the evaluation methodology of our various experiments, along
with their results.

4.1. Evaluation Methodology

In order to evaluate the suitability of the proposed architecture for load forecasting, so-
lutions are evaluated by performing load predictions under various settings and comparing
those results with the state-of-the-art method.

In the evaluation, we compare the proposed transformer approach with S2S, as S2S has
been shown to outperform RNN approaches based on GRUs, LSTMs, and other neural net-
works, including feedforward neural networks [36]. Note that the original transformer [12]
cannot be directly used for comparison as it is designed for text and is not directly applica-
ble to load forecasting. The S2S model with attention [37] achieves very similar accuracy to
the S2S model while significantly increasing computational complexity [37]; therefore, the
S2S model is used for comparison.

Fekri et al. [11] argue that it is not sufficient to evaluate and compare load forecasting
results on one data stream, and that evaluation on a single stream may lead to misleading
conclusions. Therefore, in order to validate the portability and repeatability of our results,
various data streams are used. Moreover, different input lengths and forecasting horizons
must also be considered, as the algorithm may perform better or worse depending on the
considered input and output lengths.

Consequently, experiments are conducted to examine the transformer’s and S2S’s
behavior for different forecasting horizons and input sequence lengths. Specifically, input
lengths of 12, 24, and 36 steps are considered. For each input window length, forecasting
horizons of 12, 24, and 36 steps are chosen. This makes 9 experiments for each algorithm,
transformer, and S2S; thus, there are 18 experiments per data stream. Our chosen dataset
contains 20 different streams, for a total of 360 experiments.

For each data stream, the last 20% of the data was reserved for testing, while the
remainder was used for training. Furthermore, to avoid getting stuck in local minima [13],
training was repeated 10 times for each experiment and for both algorithms, with the
best-performing model being selected.

In order to assess the accuracy of the models, the most commonly used metrics in
load forecasting—mean absolute percentage error (MAPE), mean absolute error (MAE),
and root mean square error (RMSE) [42]—are used. These metrics can be formally defined
as follow:

MAPE =
1
N

N

∑
t=1

|yt − ŷt|
yt

(12)

MAE =
1
N

N

∑
t=1
|yt − ŷt| (13)

RMSE =

√√√√(
1
N
)

N

∑
t=1

(yt − ŷt)2 (14)

where yt is the actual value, ŷt the predicted value, and N the total number of samples. All
metrics, MAPE, MAE, and RMSE, are calculated after the normalized values are returned
to their original scale.

4.2. Data Set and Pre-Processing

The experiments were conducted on an open-source dataset [43] containing aggregated
hourly loads (in kW) for 20 zones from a US utility company. Therefore, 20 different
data streams were used. Each of these streams contains hourly data for 487 days or
11,688 consecutive readings. Hourly prediction was selected for experiments over daily
predictions as it is a more challenging problem due to random intraday variations: the

Energies 2022, 15, 4993 11 of 23

literature shows that the same approaches achieve better accuracy for daily predictions
than for hourly predictions [10]. The dataset provided the usage, hour, year, month, and
day of the month for each reading. The following temporal contextual features were also
(created from reading date/time): day of the year, day of the week, weekend indicator,
weekday indicator, and season. During the training phase, the contextual information and
the load value were normalized using standardization [36] with the following equation:

x̂ =
x− µ

σ
(15)

where x is the original vector, x̂ is the normalized value, and µ and σ are the mean and
standard deviation of the feature vector, respectively.

Once normalized, the contextual information and data streams were combined using
the temporal information, and then a window sliding technique was applied to create
appropriate samples. In order to increase our training and testing set, an overlap of the
windows was allowed, and step s was set to 1.

4.3. Model Structure and Hyperparameter Tuning

Experiments were conducted on a machine running Ubuntu OS with an AMD Ryzen
4.20 GHz processor, 128 GB DIMM RAM, and four NVIDIA GeForce RTX 2080 Ti 11 GB
graphics cards. In order to alleviate processing time, GPU acceleration was used while
training the models. The models were developed using the PyTorch library.

The transformer used in these experiments was made up of a stack of two encoders,
two decoders, and two attention heads, and the feed-forward neural network in each
encoder and decoder contained 512 neurons. The fully connected hidden layers of the
transformer are those of the feed-forward networks embedded in the encoder and decoder;
they use ReLU activation function. The Adam optimizer [44] was used during training, with
beta values of 0.9 and 0.98 and epsilon values of 1× 10−9 as suggested by Vaswani et al. [12].
The learning rate along with the transformer dropout [45] rate used to prevent overfitting,
the N-space dimension, and the batch size used to send data to the transformer were
optimized using a Bayesian optimization approach on the Weights and Biases platform [46].
A total of 3477 runs were performed in order to identify the most relevant hyperparameters.
Figure 4 shows the importance of each hyperparameter and whether or not it has a positive
or negative correlation with optimizing loss.

Figure 4. Hyperparameter relevance. Green indicates a positive correlation and red a negative correlation.

Based on the information received by the sweeps, we were able to establish that the
models appeared to reach convergence after 13 epochs, and that a learning rate of 0.001
and a dropout of 0.3 yielded the best batch loss. However, the optimal N-space dimension
(model_dim) and batch size were not as easily determined. A visualization of these
parameters shown in Figure 5 allowed us to choose a batch size of 64 and a model dimension
of 32 because they appear to best minimize the overall loss. The model dimension refers to
size θ of the N-space transformation module. Lastly, transformer weights were initialized
using the Xavier initialization, as it has been shown to be effective [47,48].

Energies 2022, 15, 4993 12 of 23

Figure 5. Hyperparameter optimization visualization.

The S2S algorithm used for comparison was built using GRU cells, with a learning rate
of 0.001, 128 hidden layers, and 10 epochs. These parameters were established as successful
in previous works [13,36]. Therefore, the chosen S2S implementation is comparable to the
one proposed by Sehovac et al. [36,37].

4.4. Results

This section presents the results obtained in the various experiments and discusses findings.

4.4.1. Overall Performance

The goal of these experiments is to assess the ability of the transformer to predict
electrical load under different circumstances. In order to establish the impact of the size of
the input window on performance, 12, 24, and 36 historical samples were used as input
for each experiment. Note that the size of the input window corresponds to the number
of consecutive lagged values, or lag length, used for the prediction. Additionally, since
accuracy on one horizon does not guarantee good performance on another [11], forecasting
horizons of 12, 24, and 36 steps were also tested. Each of these parameters was evaluated
in combination for a total of 9 experiments per stream.

The detailed average statistics over all 20 streams can be seen in Table 1. It can be
observed that 7 out of 9 times, the transformer outperforms S2S [36]. MAPE accuracy differ-
ences range from 0.93% to 3.21%, with the transformer performing 1.21% better on average
when considering all experiments and 1.78% when considering only the experiments where
the transformer outperforms S2S [36] .

The average of all stream results for each of these experiments is shown in Figure 6. In
this case, only MAPE is shown, as MAE and RMSE exhibit similar behavior. In Figure 6,
we can make various observations such that the transformer performs much better than
S2S [36] when using a 12 h input window, but that the results are much closer when dealing
with a 24 h input window. We can also see that regardless of the input size, the transformer
outperforms S2S [36] significantly when using a 36 h horizon.

In order to assess the significance of the improvements the proposed transformer
model achieves over the state-of-the-art S2S [36], the two-sided Wilcoxon signed-rank
test [49] was performed with respect to MAPE and RMSE. This method has been used
in the context of energy predictions and electrical load forecasting [50–52] and allows us
to establish whether the reported model errors are significantly different. For each of the
experiments, the errors obtained by the two models, S2S and our transformer model, were
assessed for each of the 20 streams. The p-values for different input window sizes and
forecasting horizons are shown in Figure 7.

Energies 2022, 15, 4993 13 of 23

Table 1. Average accuracy over the streams for each combination of input size and forecasting horizon.
The bold numbers indicate where transformers outperform S2S.

Input
Window Horizon

MAPE MAE RMSE

Trans. S2S [36] Trans. S2S [36] Trans. S2S [36]

12 12 0.0946 0.1039 6180.46 6262.3 8475.7 8350.62

12 24 0.1035 0.1274 6863.35 7812.95 9695.31 10,351.87

12 36 0.1076 0.1397 7045.74 8564.05 9969.6 11,267.95

24 12 0.1077 0.0931 6607.1 5622.66 9043.54 7665.2

24 24 0.1118 0.1148 7011.42 7166.48 9717.14 9659.01

24 36 0.1122 0.1271 7267.98 8166.71 10,347 10,860.76

36 12 0.0888 0.088 5853.8 5465.43 8002.23 7440.19

36 24 0.0928 0.1046 6197.62 6779.88 8649.07 9117.58

36 36 0.0975 0.1276 6794.74 8010.88 9542.88 10,660.9

Figure 6. Average MAPE comparison over various input and forecasting horizons between the
transformer model and S2S [36].

(a) p-values with respect to RMSE (b) p-values with respect to MAPE

Figure 7. Heatmap of the Wilcoxon test p-values. Statistical significance, where p-value < 0.05, is
indicated with “*”.

The results show that for a significance level of α = 0.05, the errors are significantly
different for 7 out of 9 experiments with regard to RMSE, and 8 out of 9 experiments for
MAPE, as shown in Figure 7. Therefore, considering statistical tests from Figure 7 and the
results shown in Table 1, the proposed transformer model achieves overall better accuracy
than the S2S model.

Energies 2022, 15, 4993 14 of 23

In order to investigate these observations further, we present the average performance
for each forecasting horizon over all streams and experiments in Table 2. We can observe
that the transformer performs better than S2S [36] for longer forecasting horizons, but has
similar short-term performance. When predicting 36 steps ahead, the transformer performs
2.571% better on average than S2S [36]. These results are also highlighted in Figure 8a.

Table 2. Average performance metric per forecasting horizon. The bold numbers indicate where
transformers outperform S2S.

Horizon
MAPE MAE RMSE

Trans. S2S [36] Trans. S2S [36] Trans. S2S [36]

12 0.0970 0.0950 6213.7865 5783.4636 8507.1582 7818.6714

24 0.1027 0.1156 6690.7948 7253.1038 9353.8385 9709.4885

36 0.1057 0.1315 7036.1531 8247.2149 9953.1587 10,929.8686

Similarly, Table 3 shows aggregated results over various input window sizes. We can
observe that transformers perform better than S2S [36] when provided with smaller amounts of
data or shorter input sequences. The transformer outperforms S2S [36] by 2.18% on average
using a 12-reading input window. These results are also highlighted in Figure 8b.

Table 3. Average performance metric per input window. The bold numbers indicate where trans-
formers outperform S2S.

Horizon
MAPE MAE RMSE

Trans. S2S [36] Trans. S2S [36] Trans. S2S [36]

12 0.1019 0.1237 6696.5146 7546.4348 9380.2027 9990.1481

24 0.1105 0.1116 6962.1674 6985.2825 9702.5603 9394.9921

36 0.0930 0.1067 6282.0524 6752.0650 8731.3925 9072.8884

Zhao et al. [40] also employed the transformer for load forecasting; however, they used
similar days’ load data as the input for the transformer, while our approach uses previous
load readings together with contextual features. Consequently, in contrast to the approach
proposed by Zhao et al. [40], our approach is flexible with regard to the number of lag
readings considered for the forecasting [40], as demonstrated in experiments. Moreover,
Zhao et al. handle contextual features outside of the transformer and employ a transformer
with six encoders and six decoders, which increases computational complexity.

(a) Average MAPE by horizon (b) Average MAPE by window size

Figure 8. Comparisons of average MAPE between the transformer model and S2S [36].

4.4.2. Stream-Based Performance

The previous subsection showcased the overall performance of transformers; however,
the accuracy of the individual streams must also be investigated. Figures 9–11 depict the

Energies 2022, 15, 4993 15 of 23

performance of each stream under each window size and forecasting horizon over the three
main metrics: MAPE, MAE, and RMSE. Visualization of the various metrics highlights
some differences in results. For example, looking at detailed MAPE results shows that
Zones 4 and 9 appear to behave differently than others. The MAE and RMSE show large
variance in the ranges of data that we would not have otherwise observed.

Figure 9. MAPE comparison for each stream under each forecasting horizon and input window size
between the transformer model and S2S [36].

Energies 2022, 15, 4993 16 of 23

Figure 10. MAE comparison for each stream under each forecasting horizon and input window size
between the transformer model and S2S [36].

Energies 2022, 15, 4993 17 of 23

Figure 11. RMSE comparison for each stream under each forecasting horizon and input window size
between the transformer model and S2S [36].

Energies 2022, 15, 4993 18 of 23

After looking at the detailed results of each experiment, we further investigated the
average accuracy of each stream. The results are shown in Table 4. The average MAPE
accuracy of each stream over all window sizes and horizons is 10.18% for transformers and
11.40% for S2S [36], but it can be seen in Table 4 that it varies from 5.31% to 37.8%. The
transformer’s MAPE for the majority of the zones is below 12%. The exceptions are Zones
4 and 9, which have higher errors; still, the transformer outperforms S2S [36] .

Table 4. Accuracy comparison of S2S and Transformer for each Stream. The bold numbers indicate
where transformers outperform S2S.

Zone
MAPE MAE RMSE

Trans. S2S [36] Trans. S2S [36] Trans. S2S [36]

1 0.0939 0.1012 1826.3836 1929.7862 2540.3900 2607.0799

2 0.0561 0.0606 9955.8756 10,766.6417 13,568.4506 14,284.679

3 0.0539 0.0603 10,379.6343 11,554.4385 14,299.3237 15,336.5755

4 0.1660 0.1992 36.4677 36.0893 52.0658 49.6033881

5 0.1031 0.1100 761.4848 802.5733 1052.5361 1078.32458

6 0.0560 0.0619 10,434.4980 11,459.4040 14,215.9081 15,204.1639

7 0.0531 0.0606 10,246.9099 11,588.6249 14,084.0466 15,359.2081

8 0.0766 0.0863 298.2776 337.0904 412.7754 446.240376

9 0.3780 0.4420 13,743.3821 11,256.9949 21,161.6973 15,840.7173

10 0.1069 0.1085 4238.9889 4663.3933 6007.8092 6628.53789

11 0.0805 0.0883 9140.0013 9842.5011 12,841.2556 13,162.449

12 0.0939 0.1046 13,109.0104 14312.1861 18,581.9497 19,152.9508

13 0.0769 0.0827 1486.8373 1614.8049 1996.4151 2126.63412

14 0.1200 0.1352 2445.5682 2696.8011 3335.8576 3543.05389

15 0.0846 0.0945 5235.9749 5785.0526 6953.8205 7544.27375

16 0.1050 0.1176 3058.6245 3351.4500 4283.1468 4471.78485

17 0.0723 0.0820 2457.7264 2759.0086 3346.5709 3644.62272

18 0.0919 0.1012 20,060.7726 21,882.9082 27,734.4832 29,208.1563

19 0.1058 0.1176 8363.9343 9147.0767 11,380.2885 12,026.7175

20 0.0620 0.0661 5657.8772 6105.0565 7578.9121 8004.41788

Based on the observed detailed results for each experiment presented in Figures 9–11,
we further investigate the variability of data. For each stream, variance was drawn using
both normalized and un-normalized data. The results are shown in Figure 12.

(a) Stream Usage data
Figure 12. Cont.

Energies 2022, 15, 4993 19 of 23

(b) Stream-normalized usage data

Figure 12. Box plot of stream data.

It can be observed that the two streams that appeared to perform differently, 4 and 9,
have a high number of outliers close to 0, which can affect accuracy. This may explain why,
regardless of the algorithm used, the error is higher than with other streams.

To visually illustrate the accuracy of the prediction results, the predicted and actual
energy readings using a 36-step input and 36-step horizon for the streams for Zones 3, 4,
and 9 are shown in Figure 13. The models shown have MAPEs of 0.05484, 0.1636, and
0.2975, respectively. The models appear to capture the variations quite well; however, lower
values do appear to create some inconsistencies in prediction. These graphs only show a
subset of the predicted test set but are able to showcase the differences across the various
streams, such as differences in range, minimum and maximum values, and overall patterns
of consumption.

(a) Data from Zone 3

(b) Data from Zone 4
Figure 13. Cont.

Energies 2022, 15, 4993 20 of 23

(c) Data from Zone 9

Figure 13. Usage data of different streams over time.

In order to gain insight into the ability of the transformer to perform accurately over
various streams using different input sizes, Table 5 shows the average MAPE for each
stream over each input size. It can be observed that transformers outperform S2S [36]
55 times out of 60. Therefore, we can conclude that transformers can outperform S2S [36]
in the majority of cases, regardless of variance within data streams.

Table 5. Comparison of average MAPE for each stream over each input size. The bold numbers
indicate where transformers outperform S2S.

Zone
36 24 12

Trans. S2S [36] Trans. S2S [36] Trans. S2S [36]

1 0.0907368 0.09602993 0.09875669 0.09860627 0.09222631 0.10894584

2 0.05524482 0.05683472 0.05724595 0.05962232 0.05577322 0.06546532

3 0.05346749 0.05671243 0.05385202 0.05880784 0.05433251 0.06546107

4 0.15230604 0.19670615 0.1685036 0.20666588 0.17727173 0.19410134

5 0.09420072 0.10373397 0.1129271 0.1058648 0.10224154 0.12029345

6 0.05647846 0.05869588 0.053517 0.05992111 0.05798402 0.06702744

7 0.05167302 0.05682455 0.05256521 0.05955054 0.0549446 0.06536387

8 0.07150024 0.0822365 0.07872773 0.08415244 0.07949735 0.0925331

9 0.3074255 0.38559468 0.43601709 0.42283669 0.39044071 0.51743441

10 0.08068328 0.10279355 0.15054447 0.10421485 0.08943305 0.11862457

11 0.07755393 0.08442687 0.0849148 0.08620438 0.07908267 0.09419119

12 0.08964494 0.0983836 0.10155942 0.10269988 0.09059058 0.11256996

13 0.07574321 0.07863231 0.07783259 0.08117275 0.07722563 0.08839613

14 0.11062324 0.12798273 0.12961384 0.13304362 0.11961636 0.14470344

15 0.07822967 0.09031995 0.0929283 0.0928472 0.0825027 0.1003986

16 0.09933909 0.11099539 0.1115117 0.11485636 0.10415954 0.12690634

17 0.06939691 0.07811709 0.07495881 0.08085506 0.07251007 0.08701767

18 0.0867606 0.09528691 0.09568781 0.09993103 0.09310351 0.10825483

19 0.10059118 0.11143918 0.11338793 0.11526007 0.10335356 0.12596767

20 0.05852363 0.06298088 0.06571468 0.06576078 0.06162274 0.06956308

5. Conclusions

Transformers have revolutionized the field of natural language processing (NLP)
and have rendered NLP tasks more accessible through the development of large pre-
trained models. However, such advancements have not yet taken place in the field of
load forecasting.

Energies 2022, 15, 4993 21 of 23

This paper investigated the suitability of transformers for load forecasting tasks and
provided a means of adapting existing transformer architecture to perform such tasks. The
model was evaluated through comparisons with a state-of-the-art algorithm for energy
prediction, S2S [36], and it was shown to outperform the latter under various input and
output settings. Furthermore, repeatability of the results was successfully challenged by
testing the model on a large number of data streams.

On average, the proposed architecture provided a 2.571% MAPE accuracy increase
when predicting 36 h ahead, and an increase of 2.18% when using a 12 h input windo.
The solution performed better on longer horizons with smaller amounts of input data.
The transformer provided increased accuracy more than 90% of the time while having the
potential to be parallelized to further improve performance.

Transformers have been shown to be highly reusable when pre-trained on large
amounts of data, making NLP models more easily deployable and accessible for a variety
of tasks. Future work will investigate the possibility of creating a pre-trained transformer to
perform load forecasting tasks for the masses and investigate performance improvements
through transformer parallelization.

Author Contributions: Conceptualization, A.L.; methodology, A.L.; software, A.L.; validation,
A.L.; formal analysis, A.L.; investigation, A.L.; resources, K.G. and M.A.M.C.; writing—original
draft preparation, A.L.; writing—review and editing, K.G., M.A.M.C. and A.L.; visualization, A.L.;
supervision, K.G. and M.A.M.C.; project administration, K.G. and M.A.M.C.; funding acquisition,
K.G. and M.A.M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been supported by the NSERC under grants RGPIN-2021-04161 and
RGPIN-2018-06222.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-
forecasting/data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Walther, J.; Weigold, M. A systematic review on predicting and forecasting the electrical energy consumption in the manufacturing

industry. Energies 2021, 14, 968. [CrossRef]
2. International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector; Technical Report; IEA Publications: Paris,

France, 2021.
3. U.S. Energy Information Administration (EIA). Frequently Asked Questions (FAQs). How Much Carbon Dioxide Is Produced

Per Kilowatthour of U.S. Electricity Generation. 2021. Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
(accessed on 20 May 2022) .

4. Lo Cascio, E.; Girardin, L.; Ma, Z.; Maréchal, F. How Smart is the Grid? arXiv 2020, arXiv:2006.04943.
5. Shabanzadeh, M.; Moghaddam, M.P. What is the Smart Grid? Definitions, Perspectives, and Ultimate Goals. In Proceedings of

the 28th International Power System Conference, Tehran, Iran, 13 November 2013.
6. Zheng, J.; Xu, C.; Zhang, Z.; Li, X. Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent

Neural Network. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems, CISS 2017; Institute of
Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [CrossRef]

7. Aung, Z.; Toukhy, M.; Williams, J.; Sanchez, A.; Herrero, S. Towards Accurate Electricity Load Forecasting in Smart Grids. In
Proceedings of the 4th International Conference on Advances in Databases, Knowledge, and Data Applications, Saint Gilles,
France, 29 February–5 March 2012.

8. Zhang, X.M.; Grolinger, K.; Capretz, M.A.; Seewald, L. Forecasting Residential Energy Consumption: Single Household
Perspective. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications, ICMLA, Orlando,
FL, USA, 17–20 December 2018; pp. 110–117. [CrossRef]

9. Jagait, R.K.; Fekri, M.N.; Grolinger, K.; Mir, S. Load forecasting under concept drift: Online ensemble learning with recurrent
neural network and ARIMA. IEEE Access 2021, 9, 98992–99008. [CrossRef]

10. Grolinger, K.; L’Heureux, A.; Capretz, M.; Seewald, L. Energy Forecasting for Event Venues: Big Data and Prediction Accuracy.
Energy Build. 2016, 112, 222–233. [CrossRef]

 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
http://doi.org/10.3390/en14040968
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
http://dx.doi.org/10.1109/CISS.2017.7926112
http://dx.doi.org/10.1109/ICMLA.2018.00024
http://dx.doi.org/10.1109/ACCESS.2021.3095420
http://dx.doi.org/10.1016/j.enbuild.2015.12.010

Energies 2022, 15, 4993 22 of 23

11. Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive
Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [CrossRef]

12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 2017.

13. Tian, Y.; Sehovac, L.; Grolinger, K. Similarity-Based Chained Transfer Learning for Energy Forecasting with Big Data. IEEE Access
2019, 7, 139895–139908. [CrossRef]

14. L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A. Machine Learning with Big Data: Challenges and Approaches. IEEE
Access 2017, 5, 7776–7797. [CrossRef]

15. Li, L.; Ota, K.; Dong, M. When Weather Matters: IoT-Based Electrical Load Forecasting for Smart Grid. IEEE Commun. Mag. 2017,
55, 46–51. [CrossRef]

16. Hammad, M.A.; Jereb, B.; Rosi, B.; Dragan, D. Methods and Models for Electric Load Forecasting: A Comprehensive Review.
Logist. Sustain. Transp. 2020, 11, 51–76. [CrossRef]

17. Chen, J.F.; Wang, W.M.; Huang, C.M. Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for
short-term load forecasting. Electr. Power Syst. Res. 1995, 34, 187–196. [CrossRef]

18. Huang, S.J.; Shih, K.R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations.
IEEE Trans. Power Syst. 2003, 18, 673–679. [CrossRef]

19. Pappas, S.S.; Ekonomou, L.; Karampelas, P.; Karamousantas, D.C.; Katsikas, S.K.; Chatzarakis, G.E.; Skafidas, P.D. Electricity
demand load forecasting of the Hellenic power system using an ARMA model. Electr. Power Syst. Res. 2010, 80, 256–264.
[CrossRef]

20. Contreras, J.; Espínola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
2003, 18, 1014–1020. [CrossRef]

21. Nepal, B.; Yamaha, M.; Yokoe, A.; Yamaji, T. Electricity load forecasting using clustering and ARIMA model for energy
management in buildings. Jpn. Archit. Rev. 2020, 3, 62–76. [CrossRef]

22. Scott, G. Box-Jenkins Model Definition. Investopedia—Advanced Technical Analysis Concepts. 2021. Available online:
https://www.investopedia.com/terms/b/box-jenkins-model.asp (accessed on 20 May 2022).

23. Al-Hamadi, H.M.; Soliman, S.A. Short-term electric load forecasting based on Kalman filtering algorithm with moving window
weather and load model. Electr. Power Syst. Res. 2004, 68, 47–59. [CrossRef]

24. Zhao, H.; Guo, S. An optimized grey model for annual power load forecasting. Energy 2016, 107, 272–286. [CrossRef]
25. Abd Jalil, N.A.; Ahmad, M.H.; Mohamed, N. Electricity load demand forecasting using exponential smoothing methods. World

Appl. Sci. J. 2013, 22, 1540–1543. [CrossRef]
26. Wang, C.; Chen, M.H.; Schifano, E.; Wu, J.; Yan, J. Statistical methods and computing for big data. Stat. Interface 2016, 9, 399–414.

[CrossRef]
27. de Almeida Costa, C.; Lambert-Torres, G.; Rossi, R.; da Silva, L.E.B.; de Moraes, C.H.V.; Pereira Coutinho, M. Big Data Techniques

applied to Load Forecasting. In Proceedings of the 18th International Conference on Intelligent System Applications to Power
Systems, ISAP 2015, Porto, Portugal, 18–22 October 2020. [CrossRef]

28. Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series
techniques. Appl. Energy 2019, 236, 1078–1088. [CrossRef]

29. Yang, W.; Shi, J.; Li, S.; Song, Z.; Zhang, Z.; Chen, Z. A combined deep learning load forecasting model of single household
resident user considering multi-time scale electricity consumption behavior. Appl. Energy 2022, 307, 118197. [CrossRef]

30. Phyo, P.P.; Jeenanunta, C. Advanced ML-Based Ensemble and Deep Learning Models for Short-Term Load Forecasting:
Comparative Analysis Using Feature Engineering. Appl. Sci. 2022, 12, 4882. [CrossRef]

31. Nilakanta Singh, K.; Robindro Singh, K. A Review on Deep Learning Models for Short-Term Load Forecasting. In Applications of
Artificial Intelligence and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2021. [CrossRef]

32. Xishuang, D.; Lijun, Q.; Lei, H. Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach.
In Proceedings of the IEEE International Conference on Big Data and Smart Computing, BigComp, Jeju, Korea, 13–16 February
2017; pp. 119–125. [CrossRef]

33. Rafi, S.H.; Nahid-Al-Masood; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting Method Using Integrated CNN and LSTM
Network. IEEE Access 2021, 9, 32436–32448. [CrossRef]

34. Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using Deep Neural Networks. In Proceedings
of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016;
pp. 7046–7051. [CrossRef]

35. Li, D.; Sun, G.; Miao, S.; Gu, Y.; Zhang, Y.; He, S. A short-term electric load forecast method based on improved sequence-to-
sequence GRU with adaptive temporal dependence. Int. J. Electr. Power Energy Syst. 2022, 137, 107627. [CrossRef]

36. Sehovac, L.; Nesen, C.; Grolinger, K. Forecasting building energy consumption with deep learning: A sequence to sequence
approach. In Proceedings of the IEEE International Congress on Internet of Things, ICIOT 2019—Part of the 2019 IEEE World
Congress on Services, Milan, Italy, 8–13 July 2019; pp. 108–116. [CrossRef]

37. Sehovac, L.; Grolinger, K. Deep Learning for Load Forecasting: Sequence to Sequence Recurrent Neural Networks with Attention.
IEEE Access 2020, 8, 36411–36426. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2020.116177
http://dx.doi.org/10.1109/ACCESS.2019.2943752
http://dx.doi.org/10.1109/ACCESS.2017.2696365
http://dx.doi.org/10.1109/MCOM.2017.1700168
http://dx.doi.org/10.2478/jlst-2020-0004
http://dx.doi.org/10.1016/0378-7796(95)00977-1
http://dx.doi.org/10.1109/TPWRS.2003.811010
http://dx.doi.org/10.1016/j.epsr.2009.09.006
http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1002/2475-8876.12135
https://www.investopedia.com/terms/b/box-jenkins-model.asp
http://dx.doi.org/10.1016/S0378-7796(03)00150-0
http://dx.doi.org/10.1016/j.energy.2016.04.009
http://dx.doi.org/10.5829/idosi.wasj.2013.22.11.2891
http://dx.doi.org/10.4310/SII.2016.v9.n4.a1
http://dx.doi.org/10.13140/RG.2.1.4876.9049
http://dx.doi.org/10.1016/j.apenergy.2018.12.042
http://dx.doi.org/10.1016/j.apenergy.2021.118197
http://dx.doi.org/10.3390/app12104882
http://dx.doi.org/10.1007/978-981-16-3067-5_53
http://dx.doi.org/10.1109/BIGCOMP.2017.7881726
http://dx.doi.org/10.1109/ACCESS.2021.3060654
http://dx.doi.org/10.1109/IECON.2016.7793413
http://dx.doi.org/10.1016/j.ijepes.2021.107627
http://dx.doi.org/10.1109/ICIOT.2019.00029
http://dx.doi.org/10.1109/ACCESS.2020.2975738

Energies 2022, 15, 4993 23 of 23

38. Fekri, M.N.; Grolinger, K.; Mir, S. Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural
Networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107669. [CrossRef]

39. Wu, N.; Green, B.; Ben, X.; O’banion, S. Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case.
arXiv 2020, arXiv:2001.08317.

40. Zhao, Z.; Xia, C.; Chi, L.; Chang, X.; Li, W.; Yang, T.; Zomaya, A.Y. Short-Term Load Forecasting Based on the Transformer Model.
Information 2021, 12, 516. [CrossRef]

41. Williams, R.J.; Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Comput. 1989,
1, 270–280. [CrossRef]

42. Peng, Y.; Wang, Y.; Lu, X.; Li, H.; Shi, D.; Wang, Z.; Li, J. Short-term Load Forecasting at Different Aggregation Levels with
Predictability Analysis. In Proceedings of the IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China,
21–24 May 2019.

43. Kaggle. Global Energy Forecasting Competition 2012—Load Forecasting. Available online: https://www.kaggle.com/c/global-
energy-forecasting-competition-2012-load-forecasting/data (accessed on 1 April 2021).

44. Kingma, D.P.; Lei Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980
45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
46. Biewald, L. Experiment Tracking with Weights and Biases. 2020. Available online: https://www.wandb.com/ (accessed on 1

May 2021).
47. Bachlechner, T.; Majumder, B.P.; Mao, H.H.; Cottrell, G.W.; Mcauley, J. ReZero is All You Need: Fast Convergence at Large Depth.

arXiv 2020, arXiv:2003.04887.
48. Huang, X.S.; Pérez, F.; Ba, J.; Volkovs, M. Improving Transformer Optimization Through Better Initialization. In Proceedings of

the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020.
49. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
50. Son, H.; Kim, C.; Kim, C.; Kang, Y. Prediction of government-owned building energy consumption based on an RReliefF and

support vector machine model. J. Civ. Eng. Manag. 2015, 21, 748–760. [CrossRef]
51. Hu, Y.; Qu, B.; Wang, J.; Liang, J.; Wang, Y.; Yu, K.; Li, Y.; Qiao, K. Short-term load forecasting using multimodal evolutionary

algorithm and random vector functional link network based ensemble learning. Appl. Energy 2021, 285, 116415. [CrossRef]
52. Bellahsen, A.; Dagdougui, H. Aggregated short-term load forecasting for heterogeneous buildings using machine learning with

peak estimation. Energy Build. 2021, 237, 110742. [CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2021.107669
http://dx.doi.org/10.3390/info12120516
http://dx.doi.org/10.1162/neco.1989.1.2.270
https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
https://www.wandb.com/
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.3846/13923730.2014.893908
http://dx.doi.org/10.1016/j.apenergy.2020.116415
http://dx.doi.org/10.1016/j.enbuild.2021.110742

	Introduction
	Related Work
	Load Forecasting with Transformers
	Model Training
	Contextual Module
	N-Space Transformation Module
	Transformer Module

	Load Forecasting with Trained Transformer
	Contextual Module
	N-Space Transformation Module
	Transformer Module

	Evaluation and Results
	Evaluation Methodology
	Data Set and Pre-Processing
	Model Structure and Hyperparameter Tuning
	Results
	Overall Performance
	Stream-Based Performance

	Conclusions
	References

