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Cryptographic schemes, such as authentication, confidentiality, and integrity, rely on computations
in very large finite fields, whose hardware realization may require millions of logic gates. In a
straightforward design, even a single fault in such a complex circuit is likely to yield an incorrect
result and may be exploited by an attacker to break the cryptosystem. In this regard, we consider
computing over finite fields in presence of certain faults in multiplier circuits. Our work reported
here deals with errors caused by such faults in polynomial basis multipliers over finite fields of
characteristic two and presents a scheme to correct single errors. Towards this, pertinent theoretical
results are derived, and both bit-parallel and bit-serial fault tolerant multipliers are proposed.
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[Hardware]: Reliability, Testing, and Fault-Tolerance

General Terms: Algorithms, Security
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nomial basis multiplier, security

1. INTRODUCTION

Arithmetic operations in finite fields are extensively used in cryptography and
coding [Lidl and Niederreiter 1994; Menezes et al. 1993], and among them
multiplication is the main operation [Mastrovito 1991; Halbutogullari and Koc
2000; Zhang and Parhi 2001]. In cryptographic applications, the field size can
be very large (say, 21024). When VLSI technologies are used to implement a
processor, which can perform operations over a large field, millions of logic
gates may be needed. It is a formidable task to implement a processor for large
fields, which will be fault free.

There are two basic types of faults: permanent faults and transient faults.
Sophisticated testing schemes can identify permanent faults, but not transient
faults that commonly exist in integrated circuit [Pradhan 1996; Johnson 1989].
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The latter has motivated the development of fault-tolerant techniques, which
can tolerate all permanent and transient faults during the system operation.
Generally speaking, fault-tolerant arithmetic can be obtained by using time
and space redundancy. The time redundancy approach utilizes only one mod-
ule to provide error correction by repeating the operation at least three times.
It requires a 200% overhead in time, which is not appropriate or desirable
for many systems. Space redundancy uses coding techniques or modular re-
dundant schemes with voting to perform the corrective action. The most pop-
ular modular redundant schemes is the triple modular redundancy (TMR),
which produces the correct result despite any existing fault in one of the three
modules. The space overhead of the TMR is at least 200%. In coding tech-
niques, the correction process should be fault free or at least self-checking
[Rao and Fujiwara 1989].

A relatively less complex approach is to have error detection capability
only. Towards this, a few finite field arithmetic units have been reported in
the literature [see, e.g., Fenn et al. 1998; Reyhani-Masoleh and Hasan 2002].
While error detection may be adequate for some applications, error correction
can potentially offer certain crucial advantages, such as higher yield factors
and increased availability. In this article, we present multipliers for fields
GF(2m) whose operations are resistant to errors caused by certain faults. We
use the most widely used polynomial basis to represent the field elements
and develop an error correction scheme, which can be applied to both bit-
parallel and bit-serial type multipliers. To the best of our knowledge, no pre-
vious article has addressed this issue of correcting errors in the finite field
multiplier.

For the purpose of this investigation, first we investigate the multiplier cir-
cuit with single faults. Such a single-fault scenario simplifies our analysis. This
fault is modeled as a stuck-at fault, which appears to be the most common model
used for logical faults. For this model, a fault in a logical gate results in one
of its inputs or the output being fixed to either a logic 0 (stuck-at-0, or s-a-0 in
short) or a logic 1 (stuck-at-1, or s-a-1), respectively [Lala 1985]. In the sequel,
we also show that certain multiple faults, which produce a single-bit error at
the output, are also tolerated by the proposed multiplier structures.

The organization of this article is as follows. In Section 2, an architecture
of multiplication using the widely used polynomial basis is discussed and
fault-tolerent strategies are outlined. In Section 3, an error correcting code
is proposed and it is applied to the so-called α module of the multiplier. Error
correction in the other multiplier modules are considered in Section 4. Then Sec-
tion 5 puts together the fault-tolerent modules to yield a single error-tolerant
bit-parallel and bit-serial multiplier structures. Finally, Section 6 gives a few
concluding remarks.

2. REVIEW OF POLYNOMIAL BASIS MULTIPLICATION

In this section, we review polynomial basis multiplication over GF(2m) and
its basic bit-parallel structure. Later in this paper, we will investigate error
correction schemes for this multiplier structure.
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Let us construct the finite field GF(2m) using polynomial basis {1, α,
α2, . . . , αm−1} as

GF(2m) =
{

A =
m−1∑
i=0

aiα
i|ai ∈ GF(2), 0 ≤ i ≤ m − 1

}
(1)

where α ∈ GF(2m) is a root of an irreducible polynomial

F (z) = 1 +
ω−2∑
j=1

zρ j + zm (2)

of degree m over GF(2). In (2), ω is the Hamming weight of F (z) and ρ j ’s are
integers such that 1 ≤ ρ1 < ρ2 < ρ3 < · · · < ρω−2 ≤ m − 1. For convenience,
each element of A = ∑m−1

i=0 aiα
i ∈ GF(2m), ai ∈ {0, 1}, can be written in vector

notation as

a = [ a0, a1, a2, . . . , am−1] (3)

where ai ’s are the coordinates of A with respect to polynomial basis.
Let C be the product of two field elements A and B = ∑m−1

i=0 biα
i of GF(2m).

Then

C = A · B mod F (α) =
m−1∑
i=0

bi · X (i) (4)

where

X (i) = α · X (i−1) mod F (α), 1 ≤ i ≤ m − 1 (5)

and X (0) = A.

Based on equation (4), various structures for finite field multipliers are pos-
sible. One bit-parallel structure is shown in Figure 1(a), which consists of three
types of modules referred to as sum (S), pass-thru (P ), and α modules [Reyhani-
Masoleh and Hasan 2002]. Each sum module is to add two GF(2m) elements
while a pass-thru module, depending on its one-bit control (horizontal) input,
generates 0 ∈ GF(2m) or reproduces its input. The α module multiplies its input
by α and reduces the result modulo F (α). Denote the input and the output of the
α module as U and V respectively. Let us define the set � = {k|k = ρ j , 1 ≤ j ≤
ω−2} and its complement �′ = {k|0 ≤ k ≤ m−1, k �= ρ j , 1 ≤ j ≤ ω−2}, where
� and �′ correspond to the non-zero and zero coefficients of F (z), respectively.
Then, one can write

V = U · α mod F (α) =
m−1∑
i=0

uiα
i+1 mod F (α) =

m−1∑
i=1

ui−1α
i + um−1α

m mod F (α)

= um−1 +
∑
i∈�

(ui−1 + um−1)αi +
∑
i∈�′

ui−1α
i (6)

Thus from (6), the coordinates of V can be obtained as

vi =
{

uρ j −1 + um−1 i = ρ j , 1 ≤ j ≤ ω − 2,
ui−1mod m otherwise.

(7)
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Fig. 1. (a) Multiplication of two elements in GF(2m). (b–d) Details of the sum, pass-thru, and α

modules, respectively.
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Figures 1(b)-(d) show hardware implementations of the abovementioned
sum, pass-thru, and α modules using two-input logic gates. From these dia-
grams one can see that each sum, pass-thru, and α module requires m XOR
gates, m AND gates, and (ω − 2) XOR gates, respectively. Thus, unlike the sum
and pass-thru modules, the α module has a space (or circuit) complexity, which
depends on F (z). The space complexity is minimum when F (z) is of the mini-
mum Hamming weight (i.e., a trinomial). Similarly, the complexity is maximum
when F (z) is of the maximum Hamming weight (i.e., an all-one polynomial).

In the following sections, we investigate error correction schemes for GF(2m)
multiplication operation that relies on the architecture shown in Figure 1(a).
Towards this effort, first the three modules of the multiplier structure are con-
sidered, one at a time, for correcting single errors in them. This requires mod-
ification of the modules mainly by adding extra hardware to them. Then the
error-resistant modules are combined, at the expense of further hardware, to
develop an architecture for the entire multiplier that can operate and produce
correct results at the presence of an error caused by one or more faults in the
multiplier circuit.

3. FAULT TOLERANT α MODULE

In this section, we introduce a new single error correcting code whose generator
matrix is obtained by using the property of the α module. Later this code will
also be used for other modules of the multiplier.

3.1 Modeling and Encoding of Faulty α Module Output

In the fault-free situation, the relationship between the input and the output
of the α module is given by (6). Using the vector notation in (3), equation (6)
can also be written as

v = u · M (8)

where

M =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 . . . 1
1 f1 f2 · · · fm−1


�

[
µT

0
µT

1
. . . µT

m−1

]
(9)

and µT
j
, 0 ≤ j ≤ m − 1, is column j of M. In (9), fi is 1 if i ∈ � and 0 otherwise.

Note that a stuck-at fault in one of the (ω−2) XOR gates of the α module causes
at most one error in the output bits.

For j ∈ �, assume that the j th gate in Figure 1(d) is faulty. Then all the
output coordinates, except vj , are error free. If the upper input of the j th gate
is stuck, then the erroneous j th coordinate is

v̂ j =
{

um−1 for s-a-0
um−1 for s-a-1

(10)
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where u indicates complement of u. On the other hand, if the lower input is
stuck, then

v̂ j =
{

u j−1 for s-a-0
u j−1 for s-a-1.

(11)

In order to correct a single error in v (which is the vector representing the
output of the α module), a number of parity bits are needed. Let us assume
that there are r parity bits denoted as y0, y1, . . . , yr−1, and the corresponding
vector is y = [ y0, y1, . . . , yr−1]. This parity vector is combined with v to obtain
a codeword w = [v y].

Let R be an m × r parity matrix that generates the parity vector from the α

module’s input, that is,

y = u · R. (12)

Then the codeword can be written as w = u ·G, where the m× (m+r) generator
matrix G is defined as

G = [M R]. (13)

By permuting the columns of G, one can obtain a more conventional form of the
generator matrix as follows:

G̃ = [Im B] (14)

where Im is the m×m unity matrix and B is an m×r matrix. Below, a method
for obtaining G̃ from G, that is, B from M and R, is given.

Let H and H̃ be the parity check matrices corresponding to G and G̃, respec-
tively. From the property of parity check matrices that every row vector of G̃ is
orthogonal to every row vector of H̃ [Lin and Costello 1983; Vanstone and van
Oorschot 1989], one has

G̃ · H̃T = 0. (15)

Combining (14) and (15), the parity check matrix H̃ can be written as

H̃ = [BT Ir]. (16)

If B is chosen such that no two columns of H̃ are identical, then H̃ is a single
error correcting parity check matrix [Lin and Costello 1983]. One can obtain
the corresponding H by applying the same permutation used for obtaining G
from G̃.

Below, we discuss how to determine the parity matrix R, which will enable
us to correct single errors of the α module output.

3.2 Parity Matrix R

Using (2), we introduce another notation eT
ρ j

, 1 ≤ j ≤ ω − 2, which is a unity
column vector of order (m − 1) having an entry of one in position ρ j and zeros
in the other (m − 2) entries. For example e3 = [0, 0, 1, 0, . . . , 0]. Using such
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unity vectors, we can write the m × m unity matrix as

Im =
[

eT
1
0

eT
2
0

. . .

. . .

eT
m−1

0
µT

0

]
where µT

0
is column 0 of M.

Note that G = [M R] is to be transformed to G̃ = [Im B] by column permu-

tation and M (refer to (9)) has µT
j
= [

eT
j

0
] only if f j = 0, for 1 ≤ j ≤ m−1. Thus

the parity matrix R can have the following form

R = [E0 R′] (17)

where E0 is an m × (ω − 2) matrix given as follows:

E0 =
[

eT
ρ1

eT
ρ2

. . . eT
ρω−2

0 0 . . . 0

]
(18)

and R′ is an m × (r − ω + 2) matrix that is to be determined such that G is the
generator matrix of a single error correcting code.

By substituting (9) and (17) in (13) and then permuting columns to get G̃,
we have

B = [E1 R′] (19)

where E1 is an m × (ω − 2) matrix, which is similar to E0 except that it has all
one’s in the last row, that is,

E1 =
[

eT
ρ1

eT
ρ2

. . . eT
ρω−2

1 1 . . . 1

]
. (20)

3.3 Properties of Parity Matrix

For a single error correcting codes, we have to find an R′ such that H̃ does not
have two identical columns. Depending on the values of m and ω, there are
more than one R′ (and hence R) that one can choose to satisfy this condition.
Towards this, we have the following lemma whose proof is given in Appendix
A.

LEMMA 3.1. The total number of single error correcting parity check matrices
H (and hence R) is

N =


2n(2n − 1)ω−2 ∏m−ω+1

j=1 (2n − (n + j )), 3 < ω ≤ m
(2n − 1) (2n − 2)

∏m−2
j=1 (2n − (n + j )), ω = 3

2n(2n − 1)m−1, ω = m + 1
(21)

where n = r − (ω − 2) and ω is the Hamming weight of F (z).

In (21), the parameter n refers to the number of columns in R′. The value of
n determines the number of parity bits, since

r = n + (ω − 2). (22)

For a given F (z), by reducing n, we can reduce r. Towards this effect, we have
the following theorem.
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THEOREM 3.2. The lower bound on the number of columns in R′ is the small-
est nonzero positive integer n that satisfies the following inequality

2n > n + m − ω + 1. (23)

PROOF. From Lemma 3.1, N is minimum when n is minimum. Since N is a
nonzero positive integer, one must have N ≥ 1. Then, from (21) one can write

For 3 < ω ≤ m : (
2n(2n − 1)ω−2

m−ω+1∏
j=1

(2n − (n + j ))

)
≥ 1

where each factor of the LHS must be nonzero. Thus, for j = 1, 2, . . . , m−ω + 1,
one must have 2n − (n + j ), that is,

2n − (n + m − ω + 1) > 0. (24)

For ω = 3: like the previous case ((2n − 1) (2n − 2)
∏m−2

j=1 (2n − (n + j ))) ≥ 1
implies that

2n − (n + m − 2) > 0. (25)

For ω = m + 1 : 2n(2n − 1)m−1 ≥ 1, that is,

2n − 1 > 0. (26)

For any nonzero positive n, (26) is always true. Combining (24) and (25), we
have

2n − (n + m − ω + 1) > 0 for 3 ≤ ω ≤ m. (27)

Since the solution to (27) for ω = m + 1 is also the solution to (26), so (27) can
also be used for ω = m + 1 and the proof is complete.

For the two special classes, namely trinomials (ω = 3) and pentanomials
(ω = 5), one can apply Theorem 3.2 to obtain the minimum value of n (hence
minimum of r) for a given m. This is shown in Table I. Also, when F (z) is an
all-one polynomial, the minimum value of n is one and hence the lower bound
on the number of parity bits needed is m. This can also be seen in the third row
of Table I, where the trinomial for m = 2, that is, z2 + z + 1, and pentanomial
for m = 4, that is, z4 + z3 + z2 + z + 1, are also all-one polynomials.

Below, we present an example to illustrate the formulation of a parity matrix
using the above results.

Example 1. Let F (z) be z4 + z + 1, which is an irreducible polynomial over
GF(2), and let α ∈ GF(24) be its root. For this F (z), we have m = 4 and ω = 3.
By using (23) and (22), the lower bound of n and number of parity bits are 3
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Table I. Minimum Parity Bits in Terms of m for Trinomials and
Pentanomials

Trinomials ω = 3 Pentanomials ω = 5

m min. n min. r m min. n min. r
2 1 2 4 1 4
3 2 3 5 2 5

4 ≤ m < 7 3 4 6 ≤ m < 9 3 6
7 ≤ m < 14 4 5 9 ≤ m < 16 4 7

14 ≤ m < 29 5 6 16 ≤ m < 31 5 8
29 ≤ m < 60 6 7 31 ≤ m < 62 6 9
60 ≤ m < 123 7 8 62 ≤ m < 125 7 10

123 ≤ m < 250 8 9 125 ≤ m < 252 8 11
250 ≤ m < 505 9 10 252 ≤ m < 507 9 12

and 4, respectively. Then H̃T is

H̃T =
[

B
I4

]
=

[
E1 R′

I4

]
=



1
... r ′

00
r ′

01
r ′

02

0
... r ′

10
r ′

11
r ′

12

0
... r ′

20
r ′

21
r ′

22

1
... r ′

30
r ′

31
r ′

32

. . . . . . . . . . . . . . .

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



where r ′
ij
, 0 ≤ i ≤ 3 and 0 ≤ j ≤ 2, are entries of R′. The values of these entries

are to be determined such that we have a single error correcting code. Among
the total N = 7 · 6 · 4 · 3 = 504 choices of different parity check matrices, one is

H̃T =



1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


. (28)
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Fig. 2. (a) The block diagram of the code generator. (b) The circuit of Example 1

From H̃T, one can then write

G =


0 1 0 0 1 1 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1
1 1 0 0 0 0 1 0

 , H =


1 1 0 0 1 0 0 0
0 0 0 1 1 1 0 0
1 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1

 .

Using this G, a circuit to generate the codeword is shown in Figure 2.

Comments:

—The solution shown in (28) is selected so that the total number of ones in
R′ is minimal resulting in the least number of gates in the architecture.
Among other possible selections, one may select an R′ such that the maximum
number of ones in any column of R′ is minimal to minimize the time delay.
This is further discussed in Section 3.4.

—As an alternative to the proposed error correction scheme, one may use the
single-bit error correcting Hamming code [Rao and Fujiwara 1989]. In this
case, the R module of Figure 2(a) should be replaced with a module, say RH,
which generates parity bits of the Hamming code. In this case the inputs
of the RH module should come from the outputs of the α module. Also, the α

module has to be fault free because a single stuck-at fault produces more than
one error at the output of the RH module. Although the number of parity bits
of the Hamming code-based scheme is less than that of the scheme presented
here,1 the former requires more XOR gates. For example, when m = 4, the
realization of the RH module requires three parity bits and nine XOR gates.

1In the case of trinomials, the difference of the number of parity bits of two schemes is at most 1.
This is because the minimum number of parity bits for the Hamming code, that is, rH , satisfies the
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This gate count is more than that of the scheme presented here (refer to
Example 1).
Another advantage of the proposed scheme is that one can apply the following
selection criteria to achieve certain VLSI design goals.

3.4 Selection Criteria for R

As stated in Lemma 3.1, there are N possible choices for the parity matrix R.
Let us denote such possibilities as R′

j , 1 ≤ j ≤ N , where N can be obtained
from (21). For the purpose of implementation, one particular parity matrix can
be better than the others. Below we list a number of rules for obtaining R′ (and
hence R) for achieving optimal space, delay and power designs.

Rule 1 (Space Optimization). Let Sj , 1 ≤ j ≤ N , be the number of 1’s in
R′

j . Then choose R′
k such that Sk is minimum, that is, Sk ≤ Sj ∀ j �= k.

Rule 2 (Delay Minimization). Let t j , 1 ≤ j ≤ N , be the maximum number
of 1’s in a column of R′

j . Then, choose R′
k such that tk is minimum, that is,

tk ≤ t j ∀ j �= k.

Rule 3 (Path Equalization). Let g j , 1 ≤ j ≤ N , be the maximum difference
in the number of 1’s in columns of R′

j . Then, choose R′
k such that gk is minimum,

that is, gk ≤ g j ∀ j �= k.

Rule 1 yields the minimum number of XOR gates to generate the parity bits
and more details about it are given in Section 5.1. Rule 2 results in the circuit
for generating the parity bits with the lowest propagation delay caused by XOR
gates. Rule 3 allows us to minimize power by path equalization [Benini et al.
2001]. This technique ensures that signal propagation from inputs to outputs
of the parity generator block follows paths of similar length.

4. FAULT-TOLERANT SUM AND PASS-THRU MODULES

The sum module of Figure 1(a) is a finite field adder, which produces sum of
the two elements of GF(2m) as its output. Let A = (a0, a1, . . . , am−1) and
B = (b0, b1, . . . , bm−1) be two inputs to this module as shown in Figure 1(b).
Then the output is C = A + B = (c0, c1, . . . , cm−1), where ci = ai + bi for
0 ≤ i ≤ m − 1. An architecture of this module using m two-input XOR gates is
shown in Figure 1(b).

In order to correct a single error in the sum module, a number of parity bits
are needed. Suppose r parity bits are added to each of the two original m-bit
inputs to form a codeword of m + r bits so that a single error can be corrected.
The procedure for producing r parity bits is similar to the one described earlier
for the α module. If we extend the size of the sum module from m to m + r and
apply two (m + r)-bit inputs as codewords, then the output of the sum module
will be a codeword as shown in Figure 3(a). In this figure, PA, PB, and PC denote
the parity bits associated with A, B, and C, respectively. Each of which has a
length of r bits. The vector associated with PA is calculated as pA = a · R and

inequality 2rH ≥ rH + m + 1, which implies 2rH > rH + m − 2. When the latter is compared with
(23), we have rH = n = r − 1.
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Fig. 3. (a) Single error correcting sum module. (b) Single error correcting pass-thru module.

similarly for PB. By appending PA to A, the codeword of A, which is denoted WA
is obtained. Similarly, WB is obtained from PB and B. It is worth to emphasis
here that single fault in the above new sum module (which is shown by S′)
changes only a single bit of the output of the circuit. Thus, the error due to a
single fault in the new sum module can be corrected using the same method
described with the α module.

The pass-thru module of Figure 1(c) multiplies an element A ∈ GF(2m) by a
single bit b ∈ GF(2), which can be implemented using m two-input AND gates.
Thus, the output of this module C is zero when b = 0 and A when b = 1.
For correcting a single error due to a single stuck-at fault in this module, the
codeword WA of A is fed to the new pass-thru module that has m + r two-input
AND gates as shown in Figure 3(b). The single bit b is connected to the second
input of each of these AND gates. So, the output of this new pass-thru module
WC is zero if b = 0 and WA if b = 1. Since zero and WA are codewords, WC is a
codeword, which can correct single errors. Since a single stuck fault in the new
pass-thru module causes a single-bit error in the output of this module, this
error can be corrected by again applying the same method discussed earlier in
connection with the α module.

5. FAULT-TOLERANT POLYNOMIAL BASIS MULTIPLIER

The discussions of the previous sections dealt with the correction of errors in
individual modules. Here, we combine the results of the previous sections for
correcting errors in the entire multiplier.

5.1 Bit-Parallel Polynomial Basis Multiplier

In order to find a bit-parallel multiplier with a single error correction capability,
all the α modules in Figure 1(a) can be replaced by the G module of Figure 2(a).
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Fig. 4. The architecture of the bit-parallel polynomial basis multiplier with correction capability.

This is shown in Figure 4. The A input is also multiplied with the G matrix to
obtain a codeword. The new sum and pass-thru modules of Figure 4 are from
Figures 3(a) and (b), respectively.

Let wc be the row vector associated with WC in Figure 4. Then we have

wc = b0aG + b1aMG + · · · + bm−1aMm−1G
= (b0a + b1aM + · · · + bm−1aMm−1)G.

(29)

Using (8) and (4), we have

c = b0a + b1aM + · · · + bm−1aMm−1. (30)

Combining (29) and (30), yields

wc = c · G. (31)

It is easily seen that wc is a codeword and so one error in any of its coordinates
can be corrected. One can also see that a single stuck-at fault in any gate of
the new sum, pass-thru (S′ and P ′) modules, all R modules and the rightmost
α module of Figure 4, causes only one-bit error at the output, which can be
corrected. To only detect the errors due to such faults in the polynomial basis
multiplier, one can see Reyhani-Masoleh and Hasan [2002].

It is worth mentioning here that not only a single fault in the abovementioned
modules of Figure 4 produces a single error at the output but also any number
of faults on a single coordinate (say j th coordinate, 0 ≤ j ≤ m − 1) affects only
c j at the output and hence this incorrect c j can be corrected using the single
error correcting method proposed here.

In order to calculate the overhead cost of the multiplier shown in Figure 4,
one needs to consider overheads in each new module. Let S be the number of 1’s
in the R′ matrix. Recall that r = n+ω−2 is the number of parity bits generated
by matrix R = [E0

...R′]. Thus, each fault-tolerent α module needs S − n extra
XOR gates. Since we have r parity bits, the number of extra gates related to
each fault-tolerent pass-thru and sum modules are r AND gates and r XOR
gates, respectively. Therefore, the overhead of the fault-tolerent PB multiplier
would be mr AND gates and m(S − n + r) = m(S + ω − 2) XOR gates (that is,
m(S + r + ω − 2) gates in total). Note that, the three rules stated in Section
3.4 to select R′ yield fault-tolerent multipliers with the minimum number of
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Fig. 5. Plot of H ′ versus m′.

XOR gates, time delay and power consumption. However, in order to minimize
the total number of gates in the proposed fault-tolerent multiplier, one should
obtain R′ such that (S + r + ω − 2) is minimum.

It is noted that the overhead of the TMR multiplier based on Figure 1(a) is at
least twice the cost of the basic multiplier, that is, 2m(2m+ω−3) gates in total.
Therefore, for space efficiency, we have to choose R′ such that the overhead
of the proposed multiplier in Figure 4 is less than that of the TMR, that is,
S < 4m − n − 2. Below, we present a lemma for minimum on S for a given n
that satisfies Theorem 3.2.

LEMMA 5.1. For a given n that satisfies Theorem 3.2, a minimum value of
S is

min{S} =


2 + H ′ for ω = 3
ω − 2 + H ′ for 3 < ω ≤ m
m − 1 for ω = m + 1

where H ′ is a piecewise linear function of m′ = m−ω + 1 whose breakpoints are
functions of n as

H ′ =
{

2m′ if m′ ≤ (n
2

)
j m′−∑ j−1

i=2 ( j − 2)
(n

i

)
if 0 < m′−∑ j−1

i=2

(n
i

) ≤
(

n
j

)
, 3 ≤ j ≤ n.

(32)

A proof of this lemma is given in Appendix B for convenience. Figure 5 shows
a parametric plot of H ′ versus m′.

5.2 Correction Procedure

For the sake of simplicity, we use Ŵ and corresponding vector ŵ instead of
ŴC and ŵc, respectively. A block diagram for correcting an error in the fault-
tolerent polynomial basis multiplier is shown in Figure 6(a), where Ŵ denotes
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Fig. 6. (a) Correction module. (b) The complete circuit of Example 2.

the erroneous multiplier output. In the absence of any fault, ŵ is the same as
w of (31). So, the w and ŵ vectors are the outputs of the fault-free and faulty
polynomial basis multiplier (Figure 4), respectively. We assume that the error
due to a single fault in the original circuit changes w to ŵ based on the following
equation:

w = ŵ + ê (33)

where ê is the error row vector related to the output row vector ŵ. The length
of ê is m + r and its entry is one where the error has occurred. To correct ŵ to
w, we can apply the following procedure commonly used in the decoding of a
linear block code [see, e.g., Reed and Chen 1999].

The H module computes the syndrome of the received vector as s = ŵ · HT.

Using (33) and w · HT = 0, we have s = ê · HT.

If there is no error in ŵ, s is 0. If one error has occurred, ê has only a 1 in the
position of the error. Then, s is equal to one column of H whose position deter-
mines the position of the nonzero entry in ê. This is realized by the K module
in Figure 6(b). In the first part of the K module, ê is obtained by comparing s
with columns of H and in the next part, ŵ is corrected to w using (33), which is
implemented by (m + r) two-input XOR gates.

The following example shows how the above procedure works in response to
certain faults in the circuit given in Figure 4.

Example 2. The correction module including the H and K modules of the
polynomial basis multiplier used in Example 1 is shown in Figure 6(b).

Using H from Example 1, we can write
s = ŵ · HT = [ŵ0 + ŵ1 + ŵ4, ŵ3 + ŵ4 + ŵ5, ŵ0 + ŵ2 + ŵ6, ŵ2 + ŵ3 + ŵ7].
The K module consists of a combinational logic K ′ and a sum module S′.

The combinational logic K ′, whose truth table is shown in Table II, compares
the vector s with the columns of H to produce ê. Then, using (33), ŵ is corrected
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Table II. Truth Table of Combinational Logic K ′ of Figure 6

s0 s1 s2 s3 ê0 ê1 ê2 ê3 ê4 ê5 ê6 ê7 fW

1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0

Otherwise x x x x x x x x 1

x = do not care.

to w. This is accomplished by the sum module S′ in K . If s does not match any
column of H, then a flag, fW , is activated to indicate that more than one error
has occurred. In this case, the output w is ignored.

Now, we want to show how this architecture can correct the error due
to multiple faults in either lines of Nd1 or Nd2 in Figure 6(b). Let w =
[1, 1, 1, 0, 0, 0, 0, 1] be the output vector of the multiplier of Figure
4 for Example 1. Suppose the bit 1 of the output, that is, node Nd1, is
changed to 0. Then, ŵ = [1, 0, 1, 0, 0, 0, 0, 1] and s = [1, 0, 0, 0]. Using
Table II, ê = [0, 1, 0, 0, 0, 0, 0, 0] and the second error bit in ŵ is corrected to
w = ŵ + ê = [1, 1, 1, 0, 0, 0, 0, 1].

This architecture also corrects an error in the parity bits of the output. Let
a s-a-1 be the fault at node Nd2, or any other multiple faults that result in the
same error, then ŵ = [1, 1, 1, 0, 0, 0, 1, 1], s = [0, 0, 1, 0], ê = [0, 0, 0, 0, 0, 0, 1, 0],
and w = [1, 1, 1, 0, 0, 0, 0, 1], which is the correct codeword.

Finally, assume that both of the above errors have occurred. The vectors
would be as follows:

ŵ = [1, 0, 1, 0, 0, 0, 1, 1], s = [1, 0, 1, 0], ê = [1, 0, 0, 0, 0, 0, 0, 0], and
w = [0, 0, 1, 0, 0, 0, 1, 1].

In this case, the output is wrong, that is, the circuit only corrects single errors
and detects some of the double errors.

5.3 Extension to Bit-Serial Multiplier

Using the architecture of Figure 4, a bit-serial polynomial basis multiplier with
a single error correction capability is shown in Figure 7. In this figure, Z is an
m + r bit register, which is initialized by the codeword of A where the top m
bits of this register are the coordinates of A and other r bits are the parity bits.
The correction module is the same as shown in Figure 6(a) and is assumed to
be fault free. It can correct any single error that occurs in its input during a
clock cycle. Thus, in the fault-free situation, the output of this block is the same
as its input and one can easily find that after m clock cycles the top m bits of
the correction module will contain the coordinates of finite field multiplication
C = AB. Suppose a single stuck-at fault occurs in bit j of any module of Figure 7
(except in the correction module), then only the j th coordinate of Z , that is, zj,
may be erroneous and is corrected by the correction module. In the next clock
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Fig. 7. The architecture of the bit-serial polynomial basis multiplier with the correction capability.

cycle, we may have an error in the j th coordinate and is corrected again by
the correction module. In spite of having an error in the j th coordinate in each
clock cycle, the output of correction module is error free. Thus, after the mth
clock cycle the top m bits of the output of the correction module will contain the
coordinates of C.

6. CONCLUDING REMARKS

Finite field arithmetic is extensively used in a number of cryptosystems. Faults
in a hardware unit of such field arithmetic reduce yield factors and, more impor-
tantly, may make the cryptosystem vulnerable against side-channel attacks. In
this article, we have considered fault-tolerent multiplication in the finite field
GF(2m). To the best of our knowledge, no previous article has addressed this
issue of correcting errors in the finite field multiplier. Here we have presented
pertinent theoretical results for correcting single errors caused by one or more
faults in the multiplier circuits.

For the error-correction scheme, we have given a lower bound on the number
of parity bits needed and an exact expression for the total number of parity
check matrices. For better hardware implementation, we have listed a set of
rules for space optimization, logic gate delay minimization, and signal path
equalization. It has been shown that by using a parity matrix of low Hamming
weight, the overhead cost of the fault-tolerent multiplier can be lower than that
of a conventional TMR based multiplier.

The results presented here are quite generic in the sense that they can be ap-
plied to any binary polynomials used for defining the field. We have presented
fault-tolerent architectures for both bit-parallel and bit-serial field multipli-
ers. By combining the proposed fault-tolerent bit-serial and bit-parallel multi-
pliers, one can develop fault-tolerent hybrid multipliers over composite finite
fields.

APPENDIX

A. PROOF OF LEMMA 3.1

For having single error correction capability, no two columns of H (or H̃) would
be the same. For the purpose of this proof, it appears easier to deal with rows.
So, instead of H̃, here we use H̃T, that is,

H̃T =
[

B
Ir

]
. (A.1)
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Since the (ω − 2) columns of E1 are known, the rows of B can be categorized
into the following three groups:

(1) One row whose first (ω − 2) entries are all 1’s.
(2) (ω − 2) rows each with only one 1 in the first (ω − 2) entries. The position of

this 1 is ρ j , 1 ≤ j ≤ ω − 2.
(3) m − (ω − 1) rows with zeros in the first (ω − 2) entries.

Let b1 be the row vector associated with group 1, that is,

b1 =
[

1 1 . . . 1︸ ︷︷ ︸ r ′
1

]
.

ω − 2
(A.2)

Let B2 and B3 denote two matrices obtained by using the rows of groups 2 and
3, respectively. Thus

B2 = [
Iω−2 R′

2

]
(A.3)

B3 = [
0m−(ω−1)×(ω−2) R′

3

]
. (A.4)

Since r = n + (ω − 2), we also have

Ir =
[

Iω−2 0(ω−2)×n
0n×(ω−2) In

]
. (A.5)

Case 1 (3 < ω ≤ m)
Group 1: The only row of H̃T that has all 1’s in the first (ω − 2) entries is

shown in (A.2). Thus the n entries of r ′
1

can be any combination of 0 and 1.
Thus, the number of different selections for this group is

N1 = 2n. (A.6)

Group 2: Referring to (A.3) and (A.4), it is clear that (ω − 2) × n matrix R′
2

cannot have a row with all entries being 0. Thus the possible number choices
for any row is 2n − 1. Since selection of all (ω − 2) rows of R′

2
are independent

from each other, the number of different selections for this group is

N2 = (2n − 1)ω−2. (A.7)

Group 3: From (A.4) and (A.5), one can see that R′
3

should have at least two
1’s in each row. We have to multiply the number of selections of m− (ω−1) rows
to get the total number of selection for R′

3
. Let us start from row 0. Since row 0

cannot be any rows of In and cannot have all zero entries, there are 2n − (n+ 1)
possible selections for this row. For row 1, the additional constrain is that it
cannot be row 0. So, the number of selections for this row is 2n − (n + 2). In
general, the number of selections for row i, 0 ≤ i ≤ m − ω, is 2n − (n + 1 + i). By
multiplying these numbers and changing i + 1 to j , the number of selections
for this group is calculated as

N3 =
m−ω+1∏

j=1

(2n − (n + j )). (A.8)
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Therefore, the total number of different parity check matrices H is obtained
by multiplying all possible selections of the three groups, that is,

N = N1 · N2 · N3

which completes the proof of the first case of (21).

Case 2 (ω = 3):
This is the case of trinomials. Without any loss of generality, assume that

F (z) = zm + z + 1. Then, group 2 has only one row whose first entry is a single
1 similar to group 1 (refer to Case 1). As a result, there are two rows with a
single one in the first column of B. Then the number of selections of these two
rows is found by extracting the selections of zero entries which are different,
that is,

N1,2 = (2n − 1) (2n − 2). (A.9)

Using (A.9) and (A.8),

N = N1,2 · N3 ,

and the proof is done for ω = 3.

Case 3 (ω = m + 1):
For ω = m+1 (that is, all-one-polynomial), we only have the first and second

groups of Case 1. So,

N = N1 · N2 ,

and the proof is complete.

B. PROOF OF LEMMA 5.1

Let us recall the transposition of the parity check matrix which is

H̃T =
[

E1 R′

Ir

]
. (B.1)

We should obtain the m × n matrix R′ such that no two rows of (B.1) are the
same and the number of 1’s in R′, that is, S, is minimum. Based on the three
different rows of E1 in (20) (see Appendix A for more information), we can fill
entries of R′ as follows.

For ω > 3 :

(1) All entries of the last row of R′ should be zero, because all entries of the
last row of E1 are 1s and there is no such a row in H̃T of (B.1).

(2) In E1, ω − 2 rows have only one ‘1’ each. The corresponding ω − 2 rows in
R′ also need to have only one ‘1’ each. This is because these rows should be
different from ω − 2 rows of Ir, which have only one ‘1’ in each row.

(3) The remaining m′ = m − ω + 1 rows of R′ should have at least two 1s each.
This is to ensure that the corresponding rows of H̃T are different from other
rows. To minimize S, first we fill the entries of these rows with only two 1s.
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The maximum number of possibilities of doing so is ( n
2 ). If m′ > ( n

2 ), then
we should fill the remaining m′ − ( n

2 ) rows of R′ with three 1s. If there still
exists any row, that is, if m′−( n

2 ) > ( n
3 ), we should filling the remaining rows

with four 1s, and so on. Based on the above discussions, one can obtain the
total number of 1s in the mentioned m′ rows as follows:

H ′ =



2m′ if m′ ≤ (n
2

)
3m′ − (n

2

)
if 0 < m′ − (n

2

) ≤ (n
3

)
4m′ − 2

(n
2

) − (n
3

)
if 0 < m′ − (n

2

) − (n
3

) ≤ (n
4

)
5m′ − 3

(n
2

) − 2
(n

3

) − (n
4

)
if 0 < m′ − (n

2

) − (n
3

) − (n
4

) ≤ (n
5

)
...

...
which simplifies to (32).

Thus, by adding 1s in the above three parts of R′, one can obtain min{S} =
ω − 2 + H ′.

For ω = 3: The ρ1th row and the last row of R′ should have only one 1 in
two different entries. Thus, one can obtain the minimum on S as 2 + H ′ (see
Example 1 for more details).

For ω = m + 1: For an all-one polynomial, ω = m + 1; thus in Theorem 3.2,
the lowest value of n is 1. For an all-one polynomial, we also have, ρ j = j , 1 ≤
j ≤ m − 1.

For n = 1, two possibilities of the m×m parity matrix [E1
...R′] can be obtained

as

[E1
...R′] =



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 1 . . . 1

...

1
1
...
1
r ′


, (B.2)

where r ′ is either 0 or 1. Thus, for r ′ = 0, there are m − 1 1’s in R′. It is noted
that if n > 1 is chosen, the minimum number of 1s in R′ does not change.
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