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Abstract—The extensive rise in the number of resource constrained wireless devices and the needs for secure communications with

the servers imply fast and efficient cryptographic computations for both parties. Efficient hardware implementation of arithmetic

operations over finite field using Gaussian normal basis is attractive for public key cryptography as it provides free squarings. In this

paper, we first present two low-complexity digit-level multiplier architectures. It is shown that the proposed multipliers outperform the

existing Gaussian normal basis (GNB) multiplier structures available in the literature. Then, for the first time, using these two

architectures, we propose a new digit-level hybrid multiplier which performs two successive multiplications with the same latency as

the one for one multiplication. We have studied the efficiency of the proposed hybrid architecture in terms of area and time delay for

different digit sizes. The main advantage of this new hybrid architecture is to speed up exponentiation and point multiplication

whenever double-multiplication is required and the traditional schemes fail due to the data dependencies. We have investigated the

applicability of the proposed hybrid structure to reduce the latency of exponentiation-based cryptosystems. Our analysis and timing

results show that the expected acceleration in double-exponentiation is considerable. Prototypes of the presented low-complexity

multiplier architectures and the proposed hybrid architecture are implemented and experimental results are presented.

Index Terms—Cryptosystems, Gaussian normal basis, double-multiplication, digit-level multiplier, double-exponentiation

Ç

1 INTRODUCTION

INFORMATION security in resource-constrained environ-
ments (such as smart cards and RFID tags) and high-

performance web server applications (such as secure
e-;commerce transactions and online banking) highly
requires efficient cryptographic computations. The former
applications are suffering from availability of silicon area,
while the latter ones are suffering from low speed of the
current security protocols. The arithmetic operations in the
finite fields over characteristic two GF ð2mÞ are largely
utilized for cryptographic algorithms such as point multi-
plication in elliptic curve cryptography (ECC) [1], [2] and
exponentiation-based cryptosystems [3], [4]. The exponen-
tiation is an important arithmetic operation for public key
cryptosystems such as ElGamal encryption scheme [3] and
Diffie-Hellman key agreement [4]. It mainly requires
successive field multiplications and squarings and its
efficiency relies on the computation of these operations
and the representation of field elements.

A finite field can be represented using different bases
such as polynomial (or standard) basis, normal basis, and
dual basis. Among them, normal basis is more efficient in
hardware implementations since squaring of a field element
over GF ð2mÞ can be performed by a simple cyclic shift. This

makes normal basis more attractive for the cryptosystems
that utilize frequent squarings (e.g., point multiplication on
Koblitz curves and exponentiation-based cryptosystems).
Gaussian normal basis (GNB) [5], is a special class of normal
basis and has received considerable attention in the literature
for its low complexity. GNB is included in various standards
such as IEEE [6] and NIST [7] for elliptic curve digital
signature algorithm (ECDSA). The implementation of finite
field multipliers using normal basis and more specifically
GNB can be categorized, in terms of their structures, into
three groups: 1) bit-level which includes: parallel-in serial-
out (PISO) [8], serial-in parallel-out (SIPO) [9], [10], [11], and
parallel-in parallel-out (PIPO) [12], [13], 2) digit-level
including the structures of: parallel-in serial-out [14],
parallel-in parallel-out [15], [16], [17], and serial-in parallel-
out [18], and 3) bit-parallel which includes: [19], [20], and
[21] multipliers.

Bit-level multipliers provide the lowest possible area
complexity. The first bit-level normal basis multiplier has
been invented by Massey and Omura [8] in which all
coordinates of both input operands should be presented
during multiplication operation. Bit-level SIPO multipliers
have been studied for normal basis and two different
structures, namely Least Significant Bit (LSB) first and Most
Significant Bit (MSB) first structures, have been proposed
by Beth and Gollmann in [10].

Digit-level multipliers are alternatives for bit-level and
bit-parallel multipliers in which the digit size can be chosen
depending on the amount of the resources available. A
digit-level PIPO version of Massey-Omura multiplier [22]
and its improved version [15] are used in ECC-based
crypto-processors in [23] and [24]. It has been mentioned
that in order to satisfy high-speed and low-complexity
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requirements of cryptographic applications, there is a need

to design efficient architectures for finite field multiplica-

tion using normal basis. In [16], two efficient digit-level

PISO and PIPO GNB multipliers are presented. In [25], a

subexpression sharing algorithm is introduced to obtain the

least number of gates for the digit-level PIPO multiplier. In

the following, we summarize the contributions of this work.

1.1 Our Contributions

In this paper, we present a new digit-level hybrid multiplier

which performs two multiplications together (double-

multiplication) with the same number of clock cycles

required as the one for one multiplication. It has advantages

for high-speed finite field arithmetic operations such as

exponentiation and elliptic curves point multiplication. The

hybrid structure is developed by connecting the output of

the proposed digit-level PISO GNB multiplier into the input

of a new digit-level SIPO multiplier. For the digit-level PISO

GNB multiplier, we first use a subexpression elimination

algorithm [25], to reduce its area complexity. Then, we

propose a low-complexity and fast least significant digit

(LSD)-first digit-level SIPO GNB multiplier based on the

bit-level SIPO multiplier presented in [10]. The complexities

of these multipliers are derived and compared with the

counterparts. It is shown that the presented improved LSD-

first digit-level SIPO multiplier outperforms its counter-

parts in terms of both time and area complexities.
To the best of the authors’ knowledge, this is the first

digit-level hybrid GNB multiplier which performs two

multiplications with the same latency as the one required

for one multiplier proposed in the literature. In order to

investigate the applicability of the proposed hybrid multi-

plier architecture, we employ it for double-exponentiation

which is the key operation for Schnorr [26] and ElGamal-

type signature verification algorithms [3]. We further note

that this scheme can be incorporated to reduce the latency

of point multiplication for ECC-based cryptosystems when

other schemes (such as parallelization and interleaving) fail

due to data dependencies. To obtain the actual implementa-

tion results, the proposed multiplier architectures are coded

using VHDL and then implemented on both Xilinx Virtex-4

field-programmable gate array (FPGA) and 65-nm CMOS

application-specific integrated circuit (ASIC) technology

(synthesized) for different digit sizes.
The organization of this paper is as follows: in Section 2, we

review preliminaries of multiplication in Gaussian normal

basis overGF ð2mÞ. In Section 3, an improved digit-level SIPO

architecture for GNB multiplication is presented and its area

complexity reduced. Also, we present a low-complexity

digit-level PISO multiplier architecture in this section. In

Section 4, a new hybrid structure, which is composed of a

digit-level PISO multiplier and a digit-level SIPO multiplier,

is presented. We also present the application of such hybrid

structure in this section. In Section 5, the performance of the

proposed structures are investigated by implementing each

multiplier as well as the hybrid structure on FPGA and ASIC.

Finally, we conclude the paper in Section 6.

2 PRELIMINARIES

In this section, we present the definition of Gaussian normal
basis and briefly explain bit-level and digit-level multiplier
architectures.

2.1 Multiplication Using Gaussian Normal Basis

GNB has been constructed by Ash et al. [5] and is a special
class of normal basis which is included in the IEEE 1363 [6]
and NIST [7] standards for ECDSA and exists for every
m > 1 that is not divisible by eight [27].

Definition 1 ([27]). Let p ¼ mT þ 1 be a prime number and
gcdðmT=k; mÞ ¼ 1, where k is the multiplication order of
2 modulo p. Then, the normal basis N ¼ f�; �2; . . . ; �2m�1g
over GF ð2mÞ is called the Gaussian normal basis (GNB) of
type T , T > 1.

The complexities of type T GNB multiplier in terms of
time and area depend on T > 1. In this paper, we only
consider the GNBs with odd values of m which implies that
T is an even number.

Let A ¼ ða0; a1; . . . ; am�1Þ ¼
Pm�1

i¼0 ai�
2i and B ¼ ðb0;

b1; . . . ; bm�1Þ ¼
Pm�1

j¼0 bj�
2j be two field elements over

GF ð2mÞ and assume C 2 GF ð2mÞ be their product, i.e.,
C ¼ ðc0; c1; . . . ; cm�1Þ ¼ AB. Then, the first coordinate of C,
i.e., c0 can be obtained from an explicit formula given in [6]
as follows:

c0 ¼ a0b1 þ
Xp�2

k¼2

aF ðkÞbF ðkþ1Þ

¼ a0b1 þ
Xm�1

i¼1

ai
X
F ðkÞ¼i

bF ðkþ1Þ

0
@

1
A; 2 � k � p� 2;

ð1Þ

where in (1), the sequence F ð1Þ; F ð2Þ; . . . ; F ðp� 1Þ can be
obtained by precomputation using

F ðkÞ ¼ F ð2iuj mod pÞ ¼ i; 1 � i � m� 1; 0 � j < T; ð2Þ

where u is an integer of order T mod p and p ¼ Tmþ 1 [6].
It is noted that for each i, 1 � i � m� 1, F ðkþ 1Þ, 2 � k �
p� 2 in (1), can be used as entries of a ðm� 1Þ � T
matrix R. Let us denote the ði; jÞth element of this matrix
as Rði; jÞ, 0 � Rði; jÞ � m� 1, 1 � i � m� 1, 1 � j � T .
Each row of the matrix R, contains T entries of integer in
½0;m� 1�. Then, one can write c0 as [16]

c0 ¼ a0b1 þ
Xm�1

i¼1

ai
XT
j¼1

bRði;jÞ

 !
: ð3Þ

Note that, to obtain the lth coordinates of C, i.e., cl one
needs to add “l mod m” to all indices in (3).

Remark 1. From (2) one can realize that for T > 2 there are
situations (for example, F ðkÞ ¼ m�1

2 and F ðkÞ ¼ mþ1
2 for

T ¼ 4) where matrix R contains (two) equal entries.

2.2 Bit-Level GNB Multiplication

Massey and Omura (MO) [8] and Beth and Gollmann in
[10], respectively, proposed bit-level PISO and bit-level
SIPO multiplier architectures for normal basis multiplica-
tion. The former generates every bit of the multiplication in
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each clock cycle, whereas the latter provides all output
coordinates in parallel after m clock cycles. There are two
type of bit-level SIPO multipliers named least significant bit
(LSB)-first and most significant bit (MSB)-first. In the
following, we review the LSB-first SIPO multiplier archi-
tecture using GNB. In this paper, this architecture is
extended to digit level and then the area complexity of
the digit-level multiplier is reduced. In an LSB-first bit-level
multiplication, having all elements of one operand, say B, to
be present, the other operand, i.e., A, is processed from its
LSB, i.e., a0, and in each clock cycle one bit is processed.

Lemma 1 ([10]). Let A and B be two elements of GF ð2mÞ and C
be their multiplication, i.e., C ¼ AB, then similar to Horner’s
rule one can obtain

C ¼
��
� � �
��
a0�B

�2�1

þ a1�B
2�1�2�1

þ � � �
�2�1

þ am�1�B
2�ðm�1Þ�2�1

:
ð4Þ

Let us denote P ðBÞ ¼ �B 2 GF ð2mÞ as a field element in
GNB. In [16], P ðBÞ is obtained for a PIPO GNB multiplier
and similarly one can obtain it for SIPO GNB multiplier-
based on the R matrix as

P ðBÞ ¼ ðb1; s0ð1; BÞ; s0ð2; BÞ; . . . ; s0ðm� 1; BÞÞ; ð5Þ

where s0ði; BÞ ¼
PT

j¼1 bRði;jÞ 2 f0; 1g, 1 � i � m� 1. Then
using (5) and Lemma 1, we can state the following.

Corollary 1. For GNB, the product of A ¼ ða0; a1; . . . ; am�1Þ 2
GF ð2mÞ, given in bit-serial fashion, and B 2 GF ð2mÞ can be
written as

C ¼ ðð� � � ðða0P ðBÞÞ � 1þ a1P ðB� 1ÞÞ � 1

þ � � �Þ � 1þ am�1P ðB� m� 1ÞÞ � 1;
ð6Þ

where B2�i is realized by B� i which denotes i-fold left cyclic
shift of the coordinates of B.

Equation (6) can be realized by an architecture depicted
in Fig. 1a. The implementation of P ðBÞ 2 GF ð2mÞ given in
(5) is performed by a P module shown in Fig. 1b for type T
GNB. The product of aiP ðBÞ in Fig. 1a denotes bitwise
AND operation between ai and elements of P ðBÞ and is
performed using m 2-input AND gates. Also the sum

(adder block in Fig. 1a) is implemented using m 2-input
XOR gates. As one can see from Fig. 1a all bits of the
operand B are available, while the coordinates of the
operand A should be available in serial fashion with the
LSB first, i.e, a0. In this architecture, both m-bit registers
Yh i ¼ y0; y1; . . . ; ym�1h i and Zh i ¼ z0; z1; . . . ; zm�1h i should

be initialized with operand B ¼ ðb0; b1; . . . ; bm�1Þ and 0 ¼
ð0; 0; . . . ; 0Þ (i.e., Y ð0Þ ¼ B and Zð0Þ ¼ 0), respectively. Let
Zð0Þ denote the initial value of the register Zh i and ZðiÞ,
1 � i � m, be the content of the register Zh i in the clock
cycle i. After one clock cycle the content of Zh i is
Zð1Þ ¼ a0P ðBÞ 2 GF ð2mÞ. Then, the registers Yh i and Zh i
are cyclically shifted to the left according to (6). As one can
verify, after mth clock cycle the register Zh i contains the
coordinates of ZðmÞ ¼ C2 ¼ ðcm�1; c0; c1; . . . ; cm�2Þ (see (6)).
Thus, C can be obtained by a left cyclic shift of register Zh i,
i.e., C ¼ ðZðmÞ � 1Þ. The presented architecture requires at
most ðT � 1Þðm� 1Þ XOR gates in the P module, m XOR
gates for the adder, m AND gates, and two m-bit registers.
Also, its critical-path delay due to delays through the
P module ( log2 Td eTX), AND gates (TAÞ, and XOR gates
(TX) is TA þ ð1þ log2 Td eÞTX .

2.3 Digit-Level PISO GNB Multiplier

In [16], a digit-level PISO GNB multiplier architecture is
proposed. This architecture is depicted in Fig. 2 which
requires both input operands A and B be available through
multiplication. Assume the registers Xh i and Yh i are
preloaded with the operands A and B, respectively. Then,
the formulations to perform multiplication are stated as
follows based on (5).

Lemma 2. For a digit-level multiplier architecture one needs to
implement all d entries of P ðBÞ as

PlðBÞ ¼
�
blþ1 mod m; S

l
0ð1; BÞ; Sl0ð2; BÞ; . . . ; Sl0ðm� 1; BÞ

�
;

ð7Þ

where 0 � l � d� 1 and

Sl0ði; BÞ ¼
XT
j¼1

blþRði;jÞ mod m; 1 � i � m� 1; ð8Þ

and as both operand A and B are fully available, one can
obtain the multiplication output as

cl ¼ alblþ1 mod m þ
Xm�1

i¼1

alþi mod m

XT
j¼1

blþRði;jÞmod m

 !
; ð9Þ
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Fig. 1. (a) The architecture of LSB-first bit-level normal basis multiplier
with parallel output [10]. (b) The architecture of P module for type T GNB.

Fig. 2. The architecture of the digit-level PISO GNB multiplier [16].



and implement d copies of cl in hardware to achieve a digit-
level architecture for l, 0 � l � d� 1. Then the registers Xh i
and Yh i should be d-fold cyclically shifted to the left to obtain
the consecutive d coordinates of C ¼ AB. This multiplier
requires q ¼ m

d

� �
; 1 � q � m, 1 � d � m, clock cycles to

generate all the m coordinates of C ¼ AB.

In the architecture which realizes (7) and (9), a d-fold left

cyclic shift is denoted by “�
d

” in Fig. 2.

3 LOW-COMPLEXITY ARCHITECTURES FOR

DIGIT-LEVEL GNB MULTIPLIERS

In this section, we first extend the bit-level SIPO multiplier
presented in Section 2.2 to propose a low-complexity LSD-
first digit-level SIPO (DL-SIPO) GNB multiplier. Then, we
propose an improved low-complexity architecture for the
digit-level PISO (DL-PISO) GNB multiplier presented in
Section 2.3.

3.1 An Improved Architecture for Digit-Level SIPO
GNB Multiplier

In a digit-level SIPO multiplier, the bits of an operand are
grouped into digits and in each clock cycle one digit is
processed. We extend the architecture of the LSB-first bit-
level GNB multiplier architecture presented in Section 2.2
and propose a low-complexity LSD-first digit-level SIPO
multiplier architecture. In the following, we present
formulation, architecture, and complexity of the proposed
multiplier architecture.

3.1.1 Formulation

Let us assume A ¼
Pm�1

i¼0 ai�
2i ¼ ða0; a1; . . . ; am�1Þ, then one

can group the bits into q ¼ m
d

� �
digits denoted by Ai, 0 �

i � q � 1 as ða0; . . . ; ad�1Þ for the first digit followed by
ðad; . . . ; a2d�1Þ for the second digit and finally ðadðq�1Þ; . . . ;
am�1Þ for the qth digit where d, 2 � d � m� 1, is denoted as
the number of bits in each digit. Note that if the last digit
does not have d bits, it will be appended by zeros at its most
significant bit ends. Then, each digit can be represented as

Ai ¼ ðaid; aidþ1; . . . aidþd�2; aidþd�1Þ

¼
Xd�1

j¼0

ajþid�
2j ; Ai 2 GF ð2mÞ

with respect to the GNB and thus operand A can be
written as

A ¼
Xq�1

i¼0

A2id

i ¼ ðA0; A1; . . . ; Aq�1Þ:

Therefore, one can write their product AB ¼ C 2 GF ð2mÞ
as [28]

C ¼ AB

¼
Xq�1

i¼0

A2id

i � B ¼
Xq�1

i¼0

ðAi �B2�idÞ2
id

¼
Xq�1

i¼0

ðCðiÞÞ2
id

;
ð10Þ

where

CðiÞ ¼ AiB
2�id : ð11Þ

In order to derive a formulation for multiplication whose

implementation is more hardware-oriented we state the

following.

Corollary 2. Given the ith digit of A, i.e., Ai with d bits and a

field element B2�id 2 GF ð2mÞ, their product CðiÞ 2 GF ð2mÞ
can be obtained as

CðiÞ ¼
Xd�1

j¼0

J2j
�
ajþid; B

2�ðidþjÞ
�
;

where Jðx; Y Þ ¼ x � P ðY Þ 2 GF ð2mÞ.
Proof. Using (11), one has

CðiÞ ¼
Xd�1

j¼0

ajþid�
2j �B2�id ¼

Xd�1

j¼0

ðajþid � �B2�id�jÞ2
j

: ð12Þ

Now we define Jðx; Y Þ as a function of the product of a

bit x 2 GF ð2Þ and a field element P ðY Þ 2 GF ð2mÞ as

Jðx; Y Þ ¼ x � P ðY Þ: ð13Þ

Then, using (5) and Corollary 1, one can write �B ¼
P ðBÞ to simplify CðiÞ in (12) as follows:

CðiÞ ¼
Xd�1

j¼0

ðajþid � P ðB� ðidþ jÞÞÞ2
j

¼
Xd�1

j¼0

J2jðajþid; B2�ðidþjÞ Þ:
ð14Þ

This completes the proof. tu
Then, the multiplication of A and B can be obtained from

C ¼ AB ¼
Xq�1

i¼0

ðCðiÞ � idÞ: ð15Þ

In the following, we present the architecture of the

proposed DL-SIPO GNB multiplier.

3.1.2 New Architecture

In order to map the formulation obtained in the previous

section to hardware, an architecture for the LSD-first DL-

SIPO GNB multiplier is depicted in Fig. 3. Initially, the

register Yh i is loaded by B ¼ ðb0; b1; . . . ; bm�1Þ and the

register Zh i is cleared to 0. The d-fold left cyclic shifts

are realized by “�d” as shown in Fig. 3. Also, as one can

see in this figure, the last digit of operand A, i.e., Aq�1, is

appended by r ¼ qd�m, 0 � r � d� 1, zeros at its most

significant bit ends.
The DL-SIPO GNB multiplier architecture, has several

P blocks shown as p0 to pd�1 in Fig. 3a as a P array inside

the Q block. As shown in this figure, P blocks use the

shifted combination of P ðY Þ 2 GF ð2mÞ defined in (5) for the

input operand B (preloaded in register Yh i). Therefore, we

first determine these combinations and after these combi-

nations are computed, we use their results in different

computations to optimize the area complexity by reducing

the number of signals and consequently number of

XOR gates. We propose a method to combine the computa-

tions of the P blocks into a Q block as illustrated in Fig. 3b.
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The Q block is generated for the digit size d and type T
GNB for operand B as QðY Þ ¼ ðP ðY Þ; P ðY Þ � 1; . . . ;

P ðY Þ � d� 1Þ as illustrated in Fig. 3 where P ðY Þ � l, 0 �
l � d� 1 denotes l-fold right cyclic shift of P ðY Þ 2
GF ð2mÞ. As shown in this figure, ylþ1, 0 � l � d� 1 are
removed from the block Q as they are correspond to the
lines on vs-bus connected to the register Yh i. The Q block
can also be represented by the Q matrix as

Q ¼

Rð0Þ

Rð1Þ

Rð2Þ

..

.

RðlÞ

0
BBBBB@

1
CCCCCA
vs�T

; 0 � l � d� 1; ð16Þ

where using (9), RðlÞ can be obtained by adding the ði; jÞth,

1 � i � m� 1, 1 � j � T , entry of the matrix R ¼ Rð0Þ, i.e.,

Rði; jÞ, 0 � Rði; jÞ � m� 1 with “l mod m,” asRði; jÞ þ lmod

m. Also, vs ¼ dðm� 1Þ � dðd�1Þ
2 is the total number of rows

inside the Q matrix. This is due to the fact that every two Rði
0Þ

and Rði
00Þ, 0 � i0; i00 � d� 1, have a common row with the

total of ðd2Þ ¼
dðd�1Þ

2 in the Q matrix [16]. Then, as one can see,

the multiplication of every bit of Ai in (14) by the outputs of

the Q block which is connected to vs-bus, is performed by J ,

(J0 to Jd�1) blocks, using (13) where each J block includes

m two-input AND gates as shown in Fig. 3a. After the first

clock cycle, the content of the register Yh i is B2�d and in

general it contains B2�id after ith clock cycle. Let ZðqÞ 2
GF ð2mÞ denotes the field element after the qth clock cycle

whose coordinates stored in the m-bit register Zh i. Then,

after one clock cycle, with the use of (14) the register Zh i
contains

Cð0Þ ¼ A0B ¼
Xd�1

j¼0

J2jðaj; B2�jÞ: ð17Þ

Then, both registers Yh i and Zh i should be d-fold cyclically

shifted to the left to obtain Cð1Þ; Cð2Þ; . . . ; Cðq�1Þ, accordingly.

The sum of d m-bit intermediate results with onem-bit initial

results in the register Zh i is performed in the accumulator

using the GF ð2mÞ adder shown in Fig. 3. Therefore, one can

verify that considering (15), after qth clock cycle, the register

Zh i contains

ZðqÞ ¼
�
� � �
���

Cð0Þ
�2�d þ Cð1Þ

�2�d þ Cð2Þ
�2�d þ � � �

�2�d

þ Cðq�1Þ:
ð18Þ
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Fig. 3. (a) The proposed architecture for LSD-first DL-SIPO multiplier. (b) An example of the proposed multiplier for type 4 GNB over GF ð27Þ with
d ¼ 2.



By comparing (15) with (18) one can write ZðqÞ ¼
C2�dðq�1Þ ¼ C2mþðd�rÞ ¼ C2d�r . Thus, the coordinates of C ¼ AB
can be obtained by ðd� rÞ-fold left cyclic shift of the register

Zh i, i.e., C ¼ ðZðqÞ � d� rÞ.
Remark 2. Using the above formulation, one can design

similar architecture for the MSD-first digit-level SIPO
GNB multiplier.

3.1.3 Complexities

In this section, the complexity of the proposed digit-level
SIPO multiplier is given in terms of gate counts and critical-
path delay.

The number of rows in the matrix which builds Q is
vs ¼ dðm� 1Þ � dðd�1Þ

2 and each row consists of at most T
2

pairs. We divide the Q block into two blocks of Q1 and Q2.
The block Q1 contains at most ns, ns � vs � T

2 , XOR gates
with the delay of an XOR gate as shown in Fig. 3b. The block
Q2 consists trees of XOR gates for the GNB, with T > 2. The
Q2 block connects its input bus to the vs-bus having each of
its output to be addition of at most T coordinates of Yh i
which can be obtained by adding at most T2 signals from the
output of Q1. Therefore, if no common subexpression in the
Q block are reused, the number of XOR gates in Q1 and Q2

of Fig. 3b are at most vs
T
2 and vsðT2 � 1Þ, respectively. It is

noted that for the case where d ¼ m (i.e., bit-parallel
architecture), the upper bound for ns can be obtained as
ðm2 Þ ¼

mðm�1Þ
2 and hence in general ns � minfvsT2 ; ðm2 Þg. Also,

the number of XOR gates in the GF ð2mÞ adder (which adds
dþ 1 m-bit inputs together) is dm XOR gates. Moreover, the
J blocks require dm two-input AND gates. Therefore, based
on the above discussions, the following can be stated to
obtain the gate count and time complexity of the proposed
multiplier architecture.

Proposition 1. The gate complexities of the proposed LSD-first
DL-SIPO multiplier architecture is

#AND ¼ dm;
#XOR � vsðT � 1Þ þ dm:

Remark 3. The area complexity of proposed LSD-first DL-
SIPO multiplier can be further reduced by incorporat-
ing a common subexpression elimination algorithm to
ns þ vs � ðT2 � 1Þ þ dm XOR gates whose ns is upper
bounded by ns � minfvsT2 ; ðm2 Þg and its exact number
can be obtained by simulation.

To obtain the maximum clock frequency for the
proposed multiplier, one can see that the critical-path
delay of the proposed multiplier architecture includes
those for the Q1 and Q2 blocks (i.e., TX and dlog2

T
2eTX,

respectively), the J blocks, (i.e., TA) and the GF ð2mÞ adder
(i.e., log2ðdþ 1Þd eTX). Then, the total critical-path delay
due to delays through the above mentioned blocks is
TA þ ðdlog2 Te þ dlog2ðdþ 1ÞeÞTX.

3.1.4 Complexity Reduction

As explained in the previous section, the number of rows
inside the Q matrix is vs ¼ dðm� 1Þ � dðd�1Þ

2 to generate all
signals at the output ofQðY Þ. As mentioned in Remark 1, the
matrix R contains rows with two equal entries (these entries
cancel each other in the formulation). Then, the Q matrix has
some rows with only two entries (i.e., one pair). Based on

this fact and the number of times that these pairs are
repeated, a subexpression sharing method presented in [25]
is used here to obtain the optimized number of pairs in Q1,
i.e., ns. In the following, we give an illustrative example for
the proposed multiplier architecture.

3.2 An Illustrative Example

We consider the multiplication matrix R for type T ¼ 4
GNB over GF ð27Þ as follows:

R ¼

0 2 5 6
1 3 4 5
2 5 3 3
2 6 0 0
1 2 3 6
1 4 5 6

0
BBBBBB@

1
CCCCCCA
ð6�4Þ

: ð19Þ

This matrix can be obtained from the location of
nonzero entries (excluding the first row) of the multi-
plication matrix M as

M ¼

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 0 0 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA

7�7

:

Having the digit size to be d ¼ 2, the matrix Qð11�4Þ can be
generated as

In this matrix, Rð1Þ is obtained by adding the ði; jÞth
entry of R ¼ Rð0Þ by “1 mod 7.” As one can see, the
number of rows in this matrix is vs ¼ 2� ð7� 1Þ � ð22Þ ¼ 11
(as Rð0Þ and Rð1Þ have a common row which is removed
from this matrix) and it has 2d ¼ 4 rows with just two
entries (as the equal underlined entries cancel each other in
those four rows). Then, we first collect these pairs (in rows
with two entries), i.e., (2, 5), (2, 6), (3, 6), and (3, 0) as a
pairset to initialize Q1 matrix. The numbers of times that
these pairs are repeated are 2, 3, 2, and 2, respectively.
Then, applying the common subexpression elimination
algorithm presented in [25], one can obtain the pairs inside
the matrix Q1 as Q1 ¼ fy25; y26; y36; y30; y05; y13; y45; y16; y24g,
where yij ¼ yi þ yj and ns ¼ 9 are the number of pairs in
Q1. Also, as each row in Q needs ðT2 � 1Þ gates excluding
the rows with only two entries (which is 2d here) and there
are vs rows in total, then vsðT2 � 1Þ � 2d ¼ 7 XOR gates in
block Q2 is required to produce the outputs of QðY Þ. The
architecture of the proposed multiplier over GF ð27Þ for d ¼
2 is depicted in Fig. 3c. Therefore, the complexity of the
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presented improved DL-SIPO multiplier is ns þ vsðT2 � 1Þ �
2dþ dm ¼ 30 XOR gates. Note that the unoptimized
structure (without common subexpression sharing) re-
quires ðdðm� 1Þ � dðd�1Þ

2 ÞðT � 1Þ � 2dþ dm ¼ 43 XOR gates
and the architecture proposed in [28] requires mðdT þ 1Þ �
d ¼ 61 XOR gates. Also, the critical-path delay is TA þ 4TX.

For the multiplier operation, as one can see in Fig. 3c,
operand A is grouped into four digits as A0 ¼ ða0; a1Þ,
A1 ¼ ða2; a3Þ, A2 ¼ ða4; a5Þ, and A3 ¼ ða6; 0Þ, each with the
size of 2 bits, i.e., d ¼ 2. Before starting the clock, the
register Yh i is loaded with the coordinates of B ¼
ðb0; b1; . . . ; b6Þ and the register Zh i is cleared to zero, i.e.,
Zh i ¼ ð0; 0; . . . ; 0Þ. Then, in the first clock cycle, two LSD

bits, i.e., a0 and a1 of operand A, are the inputs of the
corresponding AND gates. One can realize that after q ¼
d72e ¼ 4 clock cycles, the result of C2d�r ¼ C2 is available in
parallel at the register Zh i. The contents of registers are
given in Table 1 for A ¼ B ¼ ð11000011Þ. Note that as
mentioned before, the result of multiplication C ¼ AB is
obtained after one (d� r ¼ 1) left cyclic shift of the

content of register Zh i at the last clock cycle, i.e.,
C ¼ ðZðqÞ � 1Þ ¼ 1110001.

3.2.1 Simulations

In an effort to obtain the exact complexity of the improved
multiplier, a Matlab code is written to generate common
pairs and signals used in the blocks Q1 and Q2 of the
proposed architectures in Fig. 3a. As shown in Figs. 4a, 4b,
and 4c, we first plot the upper bound of the number of
required XOR gates (i.e., for the architectures without
applying common subexpression sharing) given in Proposi-
tion 1 versus the digit-size for the three fields GF ð2163Þ
(T ¼ 4Þ, GF ð2283Þ (T ¼ 6Þ, and GF ð2233Þ (T ¼ 2), recom-
mended by NIST for ECDSA [7] and compare to the original
architectures. Then, for T ¼ 4 over GF ð2163Þ and T ¼ 6 over
GF ð2283Þ the exact number of XOR gates after applying
common subexpression sharing (applicable only for T > 2Þ
are obtained and plotted for the improved DL-SIPO GNB
multiplier in Figs. 4a and 4c, respectively. For a given
number of clock cycle, q, 1 � q � m, the least value of digit
sizes in the form of d ¼ dmq e; 1 � d � dm2 e, is incorporated so
that the area complexity is optimized. From Figs. 4a and 4c,
one can see that as the digit size increases, more common
pairs are found. For the digit size d ¼ m ¼ 163, the total
number of XOR gates required in the original DL-SIPO
multiplier is 66,178 gates, whereas, the modified one
requires 50,401 XOR gates for GF ð2163Þ. This means that
the complexity of the proposed improved DL-SIPO multi-
plier architecture is about 24 percent less than the original
multiplier for the bit-parallel structure. In Figs. 5a, 5b, and
5c we plot the delay (in terms of number of cycles) versus
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TABLE 1
Contents of Variables in the Proposed Architecture for
LSD-First DL-SIPO Type 4 GNB Multiplier over GF ð27Þ

Fig. 4. Comparison among the numbers of XOR gates required in [28], the new architecture, and improved digit-level SIPO multiplier architectures
for (a) type T ¼ 4 GNB over GF ð2163Þ and (b) type T ¼ 2 GNB over GF ð2233Þ and (c) type T ¼ 6 GNB over GF ð2283Þ.

Fig. 5. Comparison of the latency (number of clock cycles) in terms of area (number of XOR gates) for the architecture of [28], the new architecture,
and improved digit-level SIPO multiplier architectures for (a) type T ¼ 4 GNB over GF ð2163Þ, (b) type T ¼ 2 GNB over GF ð2233Þ and (c) type T ¼ 6
GNB over GF ð2283Þ.



the area (in terms of number of XOR gates) for the fields
GF ð2163ÞðT ¼ 4Þ, GF ð2233ÞðT ¼ 2Þ, and GF ð2283ÞðT ¼ 6Þ.

3.3 Low-Complexity Digit-Level PISO GNB
Multiplier

In this section, we present a low-complexity architecture for
the digit-level PISO GNB multiplier [16] presented in
Section 2.3. The improvement of the new architecture is
based on a formulation of the multiplication operation,
which is given in the following.

3.3.1 Improved Architecture

In this section, similar to the previous section, we present
an improved architecture for DL-PISO GNB multiplier
and reduce its area complexity. As shown in Fig. 2, the
digit-level PISO multiplier architecture has several P
blocks that use the same combination of the input operand
B (preloaded in the register Yh i). We combine the
computations of the parallel computed functions into a
Q block (which is the same as the one presented in
previous section for DL-SIPO architecture) as illustrated in
the architecture in Fig. 6. As shown in this figure, y1þds
are removed from the block Q as they correspond to the
lines on vs-bus connected to the register Yh i. The vs-bus
contains all signals to generate all different terms required
in (7). These signals are implemented by the blocks of Q1

and Q2 inside the Q block. We first use the block Q1 to
implement all pairs required for all signals in (7). In this
architecture, each J block consists of m 2-input AND
gates to implement (8). Then, a level of XOR trees are
utilized to implement all z0; z1; . . . ; zd�1 coordinates in (8).
The proposed improved architecture provides the LSD of
multiplication at the first clock cycle (LSD-first).

For the purpose of illustration, the improved architecture
of DL-PISO (d ¼ 2) for type 4 GNB over GF ð27Þ is shown in
Fig. 6b. As shown in this figure, the Q1 and Q2 blocks are
generated for the given matrix R in (19). The registers Xh i
and Yh i should be initialized with the coordinates of A and
B and then after each clock cycle 2 bits of C ¼ AB become
available at the output.

In the following, we derive the complexity of the
improved LSD-first DL-PISO GNB multiplier.

3.3.2 Complexities

To determine the area and time complexities of the
presented architecture, the following is stated.

Proposition 2. For type T GNB over GF ð2mÞ, the improved
digit-level PISO GNB multiplier requires dm AND gates and
ns þ vs � ðT2 � 1Þ þ dðm� 1Þ XOR gates. Also, the critical-
path delay of the improved architecture is the same as the
original structure, i.e., TA þ ð log2 Td e þ log2 md eÞTX .

Proof. The proof is similar to the one presented in
Section 3.1.3. tu
We further optimize the number of XOR gates required

for the improved LSD-first DL-PISO GNB multiplier
incorporating a complexity reduction algorithm proposed
in [25]. The results of simulations obtained for different
digit-size are plotted in Figs. 7a, 7b, and 7c, for m ¼ 163,
m ¼ 233, and m ¼ 283, respectively. It is noted that our
proposed improved architecture requires fewer number of
XOR gates for type T > 2. However, it provides no
reduction in the number of XOR gates for type T ¼ 2 in
comparison to the original architecture as shown in Fig. 7b.
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Fig. 6. (a) The architecture of the improved digit-level PISO GNB multiplier architecture with the LSD-first output. (b) The improved architecture of
type 4 GNB multiplier over GF ð27Þ with d ¼ 2.

Fig. 7. Comparison among the numbers of XOR gates required in the original [16] and improved digit-level PISO multiplier architectures for (a) type
T ¼ 4 GNB over GF ð2163Þ, (b) type T ¼ 2 GNB over GF ð2233Þ, and (c) type T ¼ 6 GNB over GF ð2283Þ.



3.4 Complexity Comparison

In Table 2, the time and area complexities of the presented
DL-SIPO multiplier (before applying common subexpres-
sion elimination algorithm) are compared with the ones,
namely, DL-SIPO [28], DL-PISO [16], and DL-PIPO [17]
multipliers as they appear to be the most recently proposed
works as well as the old ones available in the literature. It is
noted that our presented multiplier architecture (Fig. 3)
requires fewer number of gates than the previously
proposed ones DL-SIPO [28] and DL-PIPO [17]. Also, as
seen in this table, in terms of time complexity our
presented multiplier (Fig. 3) is favorably comparable with
the DL-SIPO [28]. Moreover, in Fig. 4, the area complexity
of the improved architecture over GF ð2163Þ and GF ð2283Þ
after applying the common subexpression elimination
algorithm [25] is illustrated in terms of different digit sizes
and compared with the ones of its counterpart [28]. As
illustrated in Figs. 4 and 7, the presented improved
architectures require fewer XOR gates than the one
proposed in [28] and the original one proposed in [16],
respectively.

It is interesting to note that the � matrix presented in [25]
is for the DL-PIPO architecture and its size is dðm�1Þ

2 � T .
Also, its both input operands are available and the results
are obtained in parallel after q ¼ dmde clock cycles. This
results in reducing the size of � matrix. However, in this
work, for DL-SIPO and DL-PISO architectures, the size of
matrix Q is ðdðm� 1Þ � ðd2ÞÞ � T . Note that in the DL-SIPO
multiplier, only one operand is fully available and for the
DL-PISO multiplier, every digit of the output should be
obtained in every clock cycle. Therefore, the multiplication
matrix is not the same as the one proposed for � matrix in

[25]. Furthermore, the pairs (XOR gates) that build the blocks

� and Q are different for each digit size. It is worth

mentioning that the proposed DL-SIPO multiplier architec-

tures can be easily scaled up to the bit-parallel type. In Table

3, the area and time complexity of bit-parallel version of our

presented multiplier is compared with the counterparts. As

one can see, our architecture requires at most Tþ4
4 mðm� 1Þ

XOR gates (without employing complexity reduction algo-

rithm) which is the smallest one in terms of number of

required XOR gates having the same critical-path delay.
In the following section, we propose a new hybrid

multiplier which is composed of the DL-PISO and DL-SIPO

multiplier architectures presented in this section.

4 A NEW HYBRID STRUCTURE FOR DOUBLE

MULTIPLICATION

4.1 Hybrid Multiplication

The discussion of the previous section is dealt with low-

complexity and improved DL-SIPO and DL-PISO GNB

multipliers. Based on the information provided there,

we here present a new hybrid structure by connecting the

output of the DL-PISO multiplier to the serial input of the

DL-SIPO multiplier and build a new hybrid multiplier. This

entire hybrid multiplier performs two multiplications

simultaneously, where the results are available in parallel

after m
d

� �
þ 1 clock cycles assuming that one clock cycle is

required to load the output of the first multiplier (stored in

the register) to the input of the second multiplier. The

structure of the proposed hybrid multiplier is illustrated in

Fig. 8a. It computes E ¼ A�B�D over GF ð2mÞ.
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TABLE 2
Comparison of Digit-Level Type T GNB Multipliers over GF ð2mÞ

1. vp ¼ dðm�1Þ
2 and vs ¼ dðm� 1Þ � dðd�1Þ

2 .
2. Without applying common subexpression elimination algorithm.

TABLE 3
Area and Time Complexity Comparison of Bit-Parallel Type T GNB Multiplier Architectures over GF ð2mÞ

1. Without applying common subexpression elimination algorithm.



4.1.1 Traditional Multiplication Scheme

In Fig. 8b, two digit-level multipliers with parallel output
(DL-PIPO) are employed to compute E ¼ A�B�D,
E 2 GF ð2mÞ. Let us assume that registers Xh i, Yh i, and
Fh i are preloaded with the operands A, B, and D,

respectively. Also, the register Zh i should be initialized
with 0 2 GF ð2mÞ. The top multiplier (of Fig. 8b) requires
q clock cycle to compute C ¼ A�B and store the results to
the m-bit register. Also, the bottom multiplier requires
q clock cycles to perform ðABÞ �D and store it to the
register Zh i. Therefore, to obtain the results in register Zh i,
2q þ 1 clock cycles are required. It should be noted that the
critical-path delay is equal to tp which is the delay of a digit-
level GNB multiplier with parallel output. Then, the
required time to compute E is T ¼ tp � ð2q þ 1Þ.

4.1.2 Hybrid Multiplication Scheme

Now, we consider Fig. 8c, which depicts the use of a
hybrid multiplier which is composed of a digit-level PISO
GNB multiplier and a LSD-first digit-level SIPO multiplier.
This multiplier performs two dependent multiplications to
reduce the latency to the one of one multiplication. Let us
assume that C 2 GF ð2mÞ be the product of A and B, i.e.,
C ¼ AB. Based on the output of digit-level PISO multi-
plier, C will be available from its LSD as C0; C1; . . . ; Cq�1

in each clock cycle. In the first clock cycle it provides the
first digit of C, i.e., C0 ¼ ðc0; c1; . . . ; cd�1Þ. In the second
clock cycle, the bottom multiplier (i.e., DL-SIPO) multi-
plies the first digit of C, i.e., C0 by D (stored in register
Fh i) and the top multiplier computes the second digit of
C, i.e., C1 ¼ ðcd; cdþ1; . . . ; c2d�1Þ. Then, one can realize that
after q þ 1 clock cycles, register Zh i contains the result of
multiplication of E ¼ A�B�D. The critical-path delay of
the hybrid multiplier is equal to the maximum of the

delays for the DL-PISO and DL-SIPO multipliers, i.e.,

ts ¼ maxftp; tsg, and consequently one can obtain the time

of multiplication as T ¼ ts � ðq þ 1Þ.
Based on the information provided above, one can state

the following to obtain the area and time complexities of the

presented hybrid multiplier.

Proposition 3. The proposed hybrid multiplier architecture

requires � 2vsðT � 1Þ þ 2dm� d XOR gates, 2dm AND

gates, four m-bit registers, and one d-bit register. Also, its

critical-path delay is equal to TA þ ð log2 Td e þ log2 md eÞTX
which is due to the delays through logic gates in the path with

longer critical-path delay (i.e., DL-PISO architecture).

4.1.3 Analysis

In Table 4, the latency and time delay of the proposed hybrid

multiplier is investigated in terms of different digit sizes for

type 4 GNB over GF ð2163Þ. As shown in this table, the

latency, critical-path delay (CPD), and time to perform the

entire multiplication are given for different digit sizes d,

7 < d < 128. For the traditional method, i.e., the structure of

Fig. 8b, the latency is 2q þ 1 while for the hybrid structure,

i.e., Fig. 8c, the latency is q þ 1. The time of multiplication for

the proposed hybrid structure is T ¼ ðq þ 1ÞTA þ ð10q þ
10ÞTX which is about 17 percent less than the general method

for smaller digit sizes, e.g., 7 < d � 15 and is 38 percent less

while choosing larger digit sizes, e.g., 31 < d � 63. Therefore,

the proposed hybrid structure in Fig. 8c reduces the latency

and consequently the total time of multiplication and

outperforms the one depicted in Fig. 8b.
The proposed hybrid architecture is particularly applic-

able for reducing the latency whenever there are repeated

multiplications with data dependency.
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TABLE 4
Time Delay Evaluation of the Proposed Structure for Type 4 GNB over GF ð2163Þ

Fig. 8.(a) Proposed structure for the hybrid multiplier. (b) Two digit-level multipliers with parallel output operating in two separate steps. (c) A hybrid
multiplier operating in one step using the proposed DL-PISO and DL-SIPO multipliers.



4.2 Applications of the Proposed Hybrid Multiplier

In this section, we provide some of the applications of the
proposed hybrid multiplier architecture whenever high-
speed double-multiplications are required.

4.2.1 Double-Exponentiation

The exponentiation on an Abelian group (e.g., finite fields)
is one of the most important arithmetic operations for
public key cryptography such as Diffie-Hellman [4] key
agreement, RSA, and encoding the Reed Solomon codes
[30], [31], and [32]. The exponentiation is usually accom-
plished by performing repeated field multiplications and
squarings [30]. Let A andB be two field elements and K and
H be two integers. Then, the computation of AKBH

(denoted by double-exponentiation) is a crucial operation
for cryptographic applications such as Schnorr- and
ElGamal-like signature verifications [26] and [3]. Comput-
ing double-exponentiation is presented in [30] by multi-
plying the result of single exponentiations. Such an scheme
is not the most efficient method and efficient computation
of double-exponentiation is required [32].

As explained before, under normal basis representation
of field elements squarings are free. Thus, to speed up
double-exponentiation one requires to reduce the total
number of field multiplications as well as the complexity of
each multiplication. The former reduces the latency (in
terms of number of clock cycles) while the latter improves
the execution time of a multiplier (in terms of propagation
delay through logic gates). Based on the discussion
regarding low-complexity multipliers presented in the
previous sections, we reduce the latency of double-
exponentiation using the proposed hybrid multiplier
architecture. The following is used in [31] to compute the
double exponentiation.

Lemma 3 ([31]). Let A and B be two field elements on GF ð2mÞ
and represented by normal basis and assume K and H be the
two positive integers represented by K ¼ ðkm�1; . . . ; k1; k0Þ2
and H ¼ ðhm�1; . . . ; h1; h0Þ2, respectively. Double-exponen-
tiation of the form AKBH is computed by

AKBH ¼ Ak0þk12þ���þkm�12m�1

Bh0þh12þ���þhm�12m�1

¼ ðAk0Bh0ÞðAk1Bh1Þ2 � � � ðAkm�1Bhm�1Þ2
m�1

¼ ð. . . ðAkm�1Bhm�1Þ2Akm�2Bhm�2Þ2 . . .Þ2Ak0Bh0 :

The architecture of a multiplexer-based double-exponentia-
tion using one multiplier is given in Fig. 9a. It is assumed in
[31] that AB is precomputed. As seen in this figure, the
result of double-exponentiation is available after m� 1
iterations, i.e., ðm� 1Þ � q, q ¼ dmde clock cycles. In Fig. 9b,
we have proposed a new architecture by employing our
proposed hybrid multiplier architecture. This hybrid multi-
plier performs two multiplications with the latency of one
multiplication and as seen the double-exponentiation
results will be in the register Zh i available after dm�1

2 e
iterations, i.e., dm�1

2 e � ðq þ 1Þ clock cycles. This is due to the
fact that in each iteration 2 bits of K, kikiþ1 and H, hihiþ1 are
processed from their LSB in parallel. One should note that
as the representation of field elements are under normal
basis, thus computation of repeated squarings is free.
Therefore, our proposed scheme reduces the latency of
the double-exponentiation based on choosing efficient
values for digit-size d. It is noted that the fast operation is
achieved at the expense of extra area. More importantly,
one can obtain a tradeoff between time and area by
choosing suitable values for d. The presented architectures
for double-exponentiation can be easily modified to
eliminate the multiplication by 1, i.e., ð1; . . . ; 1; 1Þ in normal
basis, whenever hi and ki are both zero. However, for the
sake of simplicity we do not investigate it here.

In Table 5, the proposed architecture for double-
exponentiation is compared to the counterparts. As one
can see from this table, our scheme employing the hybrid
multiplier has the smallest latency at the cost of increasing
the area. As a result, one can obtain a tradeoff between the
latency and area with choosing the digit-size d.

In [32], a new exponentiation algorithm based on split
exponents is proposed. Using normal basis representation
and the proposed hybrid multiplier architecture, it can be
improved.

4.2.2 Attacking ECC2K-130

In [33], Fan et al. have performed an extensive investigation
to solve one of the Certicom elliptic curve discrete logarithm
problem (ECDLP) challenges, ECC2K-130 using Pollard’s
rho method [34]. They have focused on Koblitz curves over
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Fig. 9. Architectures for multiplexer-based double-exponentiation. (a)
With one multiplier. (b) With incorporating the proposed hybrid multiplier.

TABLE 5
Comparison of the Proposed Double-Exponentiation Scheme over GF ð2mÞ with the Counterparts

1. Note that d should be chosen smaller in comparison to the counterparts.



GF ð2131Þ and because of performing several squarings,
normal basis is incorporated [33]. Each iteration of their
method requires five multiplications that cannot be reduced
by employing parallel multipliers due to data dependen-
cies. However, our proposed hybrid multiplier for GNB (for
type 2) can be incorporated to reduce the latency of each
iteration to four multiplications and improve the overall
speed of the attack.

It is worth mentioning that the proposed hybrid multi-
plier architecture can be used in other applications. For
example, after small modifications it could be employed to
reduce the latency of computing multiplicative inversion
using Itoh-Tsuji’s method [35] (based on Fermat’s Little
Theorem). Also, it can be used to reduce the latency of point
multiplication over binary elliptic curves for ECC-based
cryptography.

5 FPGA AND ASIC IMPLEMENTATIONS

In this section, we implement the presented architectures in
the previous sections to evaluate their area and time
requirements. We have selected the Xilinx Virtex-4
xc4vlx100-ff1148 device as the target FPGA. The proposed
multiplier architectures are modeled in VHDL and synthe-
sized for different digit sizes using XST of Xilinx ISE
version 12.1 design software. Also, 65-nm Complementary
Metal-Oxide-Semiconductor (CMOS) library has been cho-
sen for the synthesis on application-specific integrated
circuit (ASIC) technology. The proposed architectures
synthesized using Synopsys Design Vision which is a GUI
for Synopsys Design Compiler tools. The correctness of the
multiplier architectures is verified by Xilinx ISE Simulator
(ISim). For the FPGA implementations, the optimization
goal is set to the speed (i.e., default) and optimization effort
is set to normal and the area (Slices, LUTs, and FFs) and
timing (ns) for the critical-path delays (CPD) are obtained
for different digit sizes. It is noted that the results of the

implementations on FPGA, are all after post place and route
results. For the ASIC implementations, the map effort is set
to medium with a target clock period of 5 ns and the area
(�m2Þ and timing (ns) are obtained for each of the designs.
We have implemented the proposed architectures for digit-
level PISO and LSD-first SIPO multipliers for different digit
sizes on FPGA and synthesized for ASIC. The results of the
implementations for different digit sizes are reported in
Tables 6 and 7 for FPGA and ASIC, respectively. As one
can see, the total time of multiplication is computed by
multiplying the number of clock cycles q, by the critical-
path delay. Also, the proposed hybrid multiplier architec-
ture is implemented and the area and timing results are
reported in Table 8. The total time of double-multiplication
(i.e., multiplying three field elements together) is calculated
by multiplying the number of clock cycles q þ 1, by the
critical-path delay for the different digit sizes. We note that
one can reduce the critical-path delay of the proposed
hybrid architecture by pipelining the multiplier architec-
tures and maintain high-throughput performance. It should
be noted that for any particular application the digit-size
should be chosen in such a way to achieve highest
performance considering the time-area tradeoffs.

6 CONCLUSIONS

In this paper, we have presented a low-complexity digit-
level SIPO GNB multiplier and an improved digit-level
PISO multiplier architecture over GF ð2mÞ. Then, we have
proposed a new hybrid architecture by connecting the
output of the digit-level PISO multiplier to the input of the
digit-level SIPO multiplier. The proposed hybrid multiplier
architecture performs double-multiplication with the same
number of clock cycles required as the one for one
multiplication. The proposed hybrid multiplier has been
employed to reduce the latency of double-exponentiation.
We have evaluated the performance of the proposed hybrid
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TABLE 6
FPGA Implementation Results for the Presented Multiplier Architectures for Type 4 GNB

over GF ð2163Þ for Different Digit Sizes Using Xilinx Virtex-4 xc4vlx100-ff1148 Device

TABLE 7
ASIC Synthesis Results for the Presented Improved Multiplier Architectures for Type 4 GNB

over GF ð2163Þ for Different Digit Sizes Using 65-nm CMOS Standard Technology



architecture for different digit sizes and for practical
purposes it has been implemented in FPGA and ASIC and
the area and timing results have been presented.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
constructive comments. This work has been supported in
part by a Natural Sciences and Engineering Council
(NSERC) discovery grant awarded to Arash Reyhani-
Masoleh. The authors would like to thank Canadian
Microelectronics Corporation (CMC) Microsystems for
providing the required infrastructure and CAD tools that
have been used in this work.

REFERENCES

[1] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc.
Advances in Cryptology (Crypto), pp. 417-426, 1986.

[2] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computation,
vol. 48, pp. 203-209, 1987.

[3] T.E. Gamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Information Theory,
vol. 31, no. 4, pp. 469-472, July 1985.

[4] W. Diffie and M. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644-654, Nov. 1976.

[5] D.W. Ash, I.F. Blake, and S.A. Vanstone, “Low Complexity Normal
Bases,” Discrete Applied Math., vol. 25, no. 3, pp. 191-210, 1989.

[6] IEEE Std 1363-2000, “IEEE Standard Specifications for Public-Key
Cryptography,” Jan. 2000.

[7] US Dept. of Commerce/NIST, “National Institute of Standards
and Technology,” Digital Signature Standard, FIPS Publications
186-2, Jan. 2000.

[8] J. Massey and J. Omura, Computational Method and Apparatus for
Finite Arithmetic, US Patent 4587627, Washington, D.C., 1986.

[9] G. Feng, “A VLSI Architecture for Fast Inversion in GF ð2mÞ,”
IEEE Trans. Computers, vol. 38, no. 10, pp. 1383-1386, Oct. 1989.

[10] T. Beth and D. Gollman, “Algorithm Engineering For Public Key
Algorithms,” IEEE J. Selected Areas in Communications, vol. 7, no. 4,
pp. 458-466, May 1989.

[11] C. Lee, P. Meher, and J. Patra, “Concurrent Error Detection in Bit-
Serial Normal Basis Multiplication Over GF ð2mÞ Using Multiple
Parity Prediction Schemes,” IEEE Trans. Very Large Scale Integra-
tion (VLSI) Systems, vol. 18, no. 8, pp. 1234-1238, Aug. 2010.

[12] W. Geiselmann and D. Gollmann, “Symmetry and Duality in
Normal Nasis Multiplication,” Proc. Sixth Symp. Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes (AAECC), pp. 230-
238, July 1989.

[13] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone,
“An Implementation for a Fast Public-Key Cryptosystem,”
J. Cryptology, vol. 3, no. 2, pp. 63-79, 1991.

[14] A. Reyhani-Masoleh and M.A. Hasan, “Efficient Digit-serial
Normal Basis Multipliers over Binary Extension Fields,” ACM
Trans. Embedded Computing Systems, vol. 3, no. 3, pp. 575-592, Aug.
2004.

[15] S. Kwon, K. Gaj, C.H. Kim, and C.P. Hong, “Efficient Linear Array
for Multiplication in GF ð2mÞ Using a Normal Basis for Elliptic
Curve Cryptography,” Proc. Workshop Cryptographic Hardware and
Embedded Systems (CHES), pp. 76-91, Aug. 2004.

[16] A. Reyhani-Masoleh, “Efficient Algorithms and Architectures for
Field Multiplication Using Gaussian Normal Bases,” IEEE Trans.
Computers, vol. 55, no. 1, pp. 34-47, Jan. 2006.

[17] A.H. Namin, H. Wu, and M. Ahmadi, “A Word-Level Finite Field
Multiplier Using Normal Basis,” IEEE Trans. Computers, vol. 60,
no. 6, pp. 890-895, June 2010.

[18] C. Lee and P. Chang, “Digit-Serial Gaussian Normal Basis
Multiplier over GF ð2mÞ Using Toeplitz Matrix-Approach,” Proc.
Int’l Conf. Computational Intelligence and Software Eng. (CiSE), pp. 1-
4, 2009.
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