
Parallel and High-Speed Computations
of Elliptic Curve Cryptography Using

Hybrid-Double Multipliers
Reza Azarderakhsh,Member, IEEE, and Arash Reyhani-Masoleh,Member, IEEE

Abstract—High-performance and fast implementation of point multiplication is crucial for elliptic curve cryptographic systems.

Recently, considerable research has investigated the implementation of point multiplication on different curves over binary exten-

sion fields. In this paper, we propose efficient and high speed architectures to implement point multiplication on binary Edwards

and generalized Hessian curves. We perform a data-flow analysis and investigate maximum number of parallel multipliers to be

employed to reduce the latency of point multiplication on these curves. Then, we modify the addition and doubling formulations

and employ a newly proposed digit-level hybrid-double Gaussian normal basis multiplier to remove the data dependencies and

hence reduce the latency of point multiplication. To the best of our knowledge, this is the first time that one employs hybrid-double

multiplication technique to reduce the computation time of point multiplication. Moreover, we have implemented our proposed

architectures for point multiplication on FPGA and obtained the results of timing and area. Our results indicate that the proposed

scheme is one step forward to improve the performance of point multiplication on binary Edward and generalized Hessian curves.

Index Terms—Elliptic curve cryptography (ECC), double-hybrid multiplier, binary Edwards curves, generalized Hessian curves, Gaussian

normal basis

Ç

1 INTRODUCTION

IT has been shown by Miller [1] and Koblitz [2] indepen-
dently that a group of points on an elliptic curve over

finite fields can be used for elliptic curve cryptography
(ECC) as a public-key cryptography mehotd. In comparison
to the RSA, ECC offers the same level of security employing
smaller key size [3]. Therefore, efficient implementation of
ECC in terms of time-area trade-offs is crucial. For server
applications, high speed implementations are required
while for small and embedded devices area usage is the
main concern that needs to be considered.

There are several implementations available in the litera-
ture; see for example, [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], and [17]. In all of these implementations,
various hardware platforms such as field-programmable
gate arrays (FPGAs) and application-specific integrated cir-
cuit (ASIC) have been utilized. Binary Edwards and general-
ized Hessian curves have recently been introduced in [18]
and [19]. It has been shown that all generic elliptic curves
over binary fields can bewritten in Edwards and generalized
Hessian form to obtain complete and unified addition for-
mulas which work for all pairs of inputs [18]. However, few
works in the literature have considered the implementation

of point multiplication on these curves [20], and [17]. In [20],
an ASIC implementation of point multiplication on binary
Edwards curves (BECs) is presented for resource-con-
strained applications. In [17], lower level parallelization in
finite field arithmetic as well as parallelization in higher level
of curve formulations have been investigated to evaluate the
time-area trade-offs. Curve level parallelization results indi-
cate that although point multiplication on these curves is
unified and complete, but they are slow in comparison to the
point multiplication results on binary generic curves pro-
posed in [21] and [4]. This is due to the data dependency in
computing combined point addition (PA) and doubling
which require three levels ofmultiplication employing (max-
imum) four parallel finite field multipliers. Note that point
multiplication on binary generic curves require only two lev-
els of multiplication incorporating three or more parallel
multipliers as pointed out in [4] and [22].

Highly-parallel and fast computations of the widely-
used cryptographic algorithm ECC is required for high-per-
formance applications such as secure web servers and sys-
tems using big data. However, a challenge to cope with is
that most applications for which parallelism is essential,
have significantly large scale that is not commonly sup-
ported by today’s cryptographic algorithms. Therefore, new
techniques and architectures are required to investigate par-
allelization and scalability in all levels of computations of
ECC. The main purpose of this paper is to provide new
architectures to reduce the latency of the computation of
cryptographic primitives specifically point multiplication of
ECC targeting high-performance applications.

In this paper, we propose a new scheme to reduce the
latency of point multiplication on binary Edwards and
generalized Hessian curves using a hybrid-double multi-
plication technique proposed in [23]. The digit-level

� R. Azarderakhsh is with the Department of Computer Engineering,
Rochester Institute of Technology, Rochester, New York.
E-mail: rxaeec@rit.edu.

� A. Reyhani-Masoleh is with the Department of Electrical and Computer
Engineering, The University of Western Ontario, London, ON, Canada,
N6A 5B9. E-mail: areyhani@uwo.ca.

Manuscript received 12 Nov. 2013; revised 21 Mar. 2014; accepted 6 May
2014. Date of publication 11 May 2014; date of current version 8 May 2015.
Recommended for acceptance by H. Jin.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2323062

1668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

hybrid-double multiplier of [23] computes two consecutive
multiplications using the same latency as required for a
single traditional digit-level multiplier. Using this scheme
reduces the latency of point multiplication on these curves
to only two levels of hybrid-double multiplication and
hence increases the speed of point multiplication on binary
Edwards and generalized Hessian curves. It should be
noted that the scheme proposed in this paper is actually
more than just merging the previous works presented in
[23] and [17].

We first perform data-flow analysis for ECC computa-
tions to understand how data has to move between the dif-
ferent logic and computational elements such as field
multipliers, adders, and squarers over binary fields
GF ð2mÞ. Then, we perform a latency analysis to determine
where there are double field multiplications and hence we
can employ the hybrid-double multiplier (with small modi-
fications in the PA and PD formulae). The results indicate
that the speed of point multiplication on these curves are
competitive with binary generic curves as well as providing
completeness. To evaluate the practical performance of the
proposed scheme, we design two crypto-processors using
the hybrid-double multiplier and code it using VHDL and
implement it on Xilinx Virtex-4 and Virtex-7 FPGAs.

The rest of the paper is organized as follows. In Section 2,
preliminaries of Gaussian normal basis (GNB) representa-
tion and hybrid-double multiplication are presented. Also,
binary Edwards and generalized Hessian curves are briefly
explained in this section. In Section 3, a latency reduction
scheme for point multiplication is presented. In Section 4,
the proposed ECC crypto-processors are explained. In
Section 5, we implement the crypto-processors on two
FPGAs and their time and area results are presented.
Finally, we conclude the paper in Section 6.

2 PRELIMINARIES

2.1 Gaussian Normal Basis

The finite fields of characteristic two, GF ð2mÞ can be con-
structed by a normal basis N ¼ fb;b2;b22 ; . . . ;b2m�1g where
b 2 GF ð2mÞ is called a normal element of GF ð2mÞ. Then,
any element of GF ð2mÞ, say, A ¼ a0; a1; . . . ; am�1ð Þ, can be
represented as A ¼ Pm�1

i¼0 aib
2i ; where ai 2 GF ð2Þ [24]. In

normal basis, squaring can be achieved by simple right
cyclic shift of A, i.e., A2 ¼ Pm�1

i¼0 aib
2iþ1 ¼ am�1; a0; a1; . . . ;ð

am�2Þ [3]. Note that this operation is fast without any cost if
it is implemented in hardware. Gaussian normal basis is a
special class of normal basis which is included in the IEEE
1363 [25] and NIST [3] standards for elliptic curve digital
signature algorithm (ECDSA) and exists for every m > 1
that is not divisible by eight. The complexities of type T ,
GNB multiplier in terms of time and area depend on T > 1.
For the five binary fields recommended by NIST, i.e.,
m ¼ 163; 233; 283; 409; and 571, the values of T are even,
and are 4; 2; 6; 4; and 10, respectively.

2.2 Single Multiplication

Single multiplication is the computation of C ¼ A�B in
GF ð2mÞ and several research in the literature has been con-
ducted on its efficient computation and implementation
[28], [27], and [26].

GNB multiplication is based on a multiplication matrix
Rðm�1Þ�T [26]. Let A and B be two field elements repre-
sented by GNB over GF ð2mÞ. Then, their product in
GF ð2mÞ is [26]

C ¼ ðA� ðB � 1ÞÞ �
Xm�1

i¼1

ðA � iÞ � Sði; BÞ; (1)

where

Sði; BÞ ¼ B � Rði; 1Þð Þ � B � Rði; 2Þð Þ � � � �
� � � � B � Rði; T Þð Þ; 1 	 i 	 m� 1;

(2)

and ðX � iÞ is the i-fold left cyclic shift ofX 2 GF ð2mÞ and T
is the type of GNB over GF ð2mÞ. Also, X � Y ¼
ðx0y0; . . . ; xm�1ym�1Þ and X � Y ¼ ðx0 þ y0; . . . ; xm�1 þ
ym�1Þ denote bit-wise AND (�) and XOR (�) operations
between coordinates of X and Y , respectively. Rði; jÞ,
1 	 j 	 T denotes the entries of column i and row j of multi-
plication matrix Rðm�1Þ�T . Equation (1) can be implemented
in bit-level, digit-level, and bit-parallel, depending on the
available resources. In this paper, we choose digit-level par-
allel-in parallel-out (DL-PIPO) architecture to perform field
level multiplications of ECC. The time complexity of the
employed digit-level GNB multiplier is TA þ ðdlog2 Te þ
dlog2ðdþ 1ÞeÞTX , and its area complexity is dm AND gates

and 	 dðm�1Þ
2 ðT � 1Þ þ dm XOR gates. Note that TA and TX

are the delays of an AND gate and a XOR gate, respectively.

2.3 Hybrid-Double Multiplication

Let A, B, and C be three field elements of GF ð2mÞ repre-
sented by GNB. Double multiplication is the computa-
tion of D ¼ A�B� C, D 2 GF ð2mÞ. In [29], the idea of
hybrid double multiplication which requires the same
number of clock cycles as the one for one multiplication
is initially proposed. Then, in [23], a digit-level multi-
plier architecture using GNB has been proposed which
computes D with the latency as the one required for one
multiplication. The structure of the hybrid-double multi-
plier is depicted in Fig. 1. As one can see, it is composed
of a digit-level parallel-in serial-out (DL-PISO) GNB mul-
tiplier and a digit-level serial-in parallel-out (DL-SIPO)
GNB multiplier. For the operation of the hybrid-double
multiplier, the registers Xh i, Yh i, and Fh i should be pre-
loaded with the coordinates of operands A, B, and C,
respectively, and the register Zh i should be cleared to
0 2 GF ð2mÞ. The entire hybrid-double multiplier per-
forms two multiplications simultaneously, where the
results are available in parallel after M ¼ m

d

� �þ 1 clock
cycles, where d is the digit-size and one clock cycle is
used for storing and loading from the middle d-bit

Fig. 1. The architecture of digit-level hybrid-double multiplier of [23].

AZARDERAKHSH AND REYHANI-MASOLEH: PARALLEL AND HIGH-SPEED COMPUTATIONS OF ELLIPTIC CURVE CRYPTOGRAPHY USING... 1669

register. The critical-path delay of the hybrid-double
multiplier is equal to the maximum of the delays for the
DL-PISO (tsÞ and DL-SIPO (tpÞ multipliers i.e.,
tCP ¼ max tp; ts

� �
. Then, one can obtain the time of multi-

plication as T ¼ tCP �M [23].
In Table 1, we compare the time and space complexities

of different single digit-level multipliers (including DL-
PIPO, DL-PISO, and DL-SIPO) with the digit size d and 2d
with the hybrid-double multiplier with the digit size d
over GNB. As one can see, the presented hybrid-double
multiplier has smaller space complexity in comparison to
the DL-SIPO and DL-PISO multipliers and is comparable
to the DL-PIPO multiplier employing 2d digit size. Also,
its time complexity is equal to the DL-PISO multiplier and
is almost similar to the DL-PIPO and DL-SIPO multipliers
depending to the digit size. We note that for practical
implementations, increasing the digit size drastically
reduces the maximum operating clock frequencies and
hence employing hybrid-double multipliers seems to be
better choice to point multiplication on elliptic curves.
Therefore, in the next sections we employ the presented
hybrid-double multiplier to reduce the latency of point
multiplication on binary elliptic curves.

2.4 Trace and Quadratic Equation Solution

The trace function Tr: GF ð2mÞ ! GF ð2Þ is a linear map and
for an element A ¼ ða0; a1; . . . ; am�1Þ 2 GF ð2mÞ is defined as
TrðAÞ ¼ Pm�1

i¼0 A2i 2 0; 1f g. For normal basis, the trace of
element A can be computed as TrðAÞ ¼ Pm�1

i¼0 ai, which is
bit-wise XOR operation of all bits of vector A.

The quadratic equation X2 þX ¼ A for X ¼ ðx0; x1; . . . ;
xm�1Þ 2 GF ð2mÞ has a solution if and only if TrðAÞ ¼ 0, and
hence if X is a solution, then X þ 1 is a solution. In normal
basis the solution can be found bit-wise. However, in poly-
nomial basis it is complicated and needs half-trace compu-
tations which requires m� 1 squarings and ðm� 1Þ=2
additions [30]. The cost of solving quadratic equation using
normal basis is onlym� 2 additions.

2.5 Arithmetic over Binary Edwards and
Generalized Hessian Curves

It is well known that a non-supersingular binary generic
(short Weierstraß) elliptic curve can be defined by a set of

points ðx; yÞ and a special point at infinityO (group identity)
that satisfy the following equation

Ea;b=GF ð2mÞ : y2 þ xy ¼ x3 þ ax2 þ b; (3)

where a; b 2 GF ð2mÞ and b 6¼ 0 [30]. Binary Edwards curves
belong to a special class of generic elliptic curves defined
over binary field when m
 3 [18]. The merit of binary
Edwards curves over generic curves is that their point addi-
tion formulas are complete and their implementations are
comparable with the traditional ones of [21].

Definition 1 ([18]). Let K be a finite field of characteristic two,
i.e., charðKÞ ¼ 2 and d1 and d2 be the elements of K with
d1 6¼ 0 and d2 6¼ d21 þ d1. The binary Edwards curve with
coefficients d1 and d2 is the affine curve

EB;d1;d2=GF ð2mÞ : d1ðxþ yÞ þ d2ðx2 þ y2Þ
¼ xyþ xyðxþ yÞ þ x2y2;

(4)

where d1; d2 2 GF ð2mÞ.
Given a point P ¼ ðx; yÞ, its negation, �P , is obtained as

ðy; xÞ which has no cost [18]. The point ð0; 0Þ is the neutral
element and ð1; 1Þ has order 2 [18]. The binary Edwards
curves are complete if Trðd2Þ ¼ 1, i.e., d2 cannot be written
as e2 þ e for any e in K, where Tr is the absolute trace of
GF ð2mÞ over GF ð2) [18].
Definition 2 ([19]). Let c and d be elements of K such that c 6¼ 0

and d3 6¼ 27c. The generalized Hessian curve (GHCs) Hc;d

over K is defined by the equation

Hc;d=GF ð2mÞ : x3 þ y3 þ c ¼ dxy; (5)

where c ¼ 1 results in a Hessian curve, i.e., Hd. Note that the
GHCs are complete if and only if c is not a cube in K.

The standard formulas on generic curves in [21] and [31]
fail in computing addition of two points on curves if one of
the points or their addition is at infinity. These possibilities
should be tested before designing an elliptic curve crypto-
system. Note that point addition and doubling formulas on
binary Edwards and generalized Hessian curves work for
all input pairs, this characteristic is called completeness.

TABLE 1
Comparison of the Upper Bound of the Space and Time Complexities of Different Digit-Level Type T GNB Multipliers over GF ð2mÞ

1670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

3 NEW TECHNIQUE FOR LATENCY REDUCTION IN

POINT MULTIPLICATION

The efficiency of point multiplication, i.e., Q ¼ k � P;
depends on finding the minimum number of steps to reach
kP from a given point P . Point multiplication on binary
Edwards and generalized Hessian curves is efficient when
one uses w-coordinate differential addition and doubling
formulas and Montgomery’s ladder. In this case, for every
bit of scalar k, one needs to perform combined point addi-
tion and doubling. In [17], parallel computation of point
multiplication on binary Edwards and generalized Hessian
curves have been investigated employing two finite field
multipliers considering area-time trade-offs. In [17], the
maximum parallelization over those curves is not consid-
ered for the purpose of high speed implementations. This
idea can be explored deeply to investigate the area-time
trade-offs for different applications. Another idea is to opti-
mize the size of the finite field multipliers in terms of differ-
ent digit sizes. In this effect, one can employ different digit
sizes (some multipliers with smaller digit sizes and some
with larger digit sizes) and further reduce the occupied area.
We note that in theory one may keep the latency unchanged
and reduce the required area but in practice the multipliers
with the larger digit sizes dominate the critical path and
reduce the maximum operating clock frequencies.

In this section, we first study the maximum number of
multipliers to achieve high speed computations of point
multiplication. Then, we employ a new hybrid-double mul-
tiplier presented in Section 2.3. This reduces the overall
latency of point multiplication on BECs and GHCs.

3.1 Binary Edwards Curves

In binary Edwards curves, mixed w-coordinate has been
incorporated to compute mixed differential point addition
and point doubling (PD) for Montgomery point multiplica-
tion [18]. Differential addition [32] is the computation of
Qþ P , given points of Q, P , and Q� P . Let us assume w to

be a linear and symmetric function in terms of the coordi-
nates x and y of the point P and is defined as wi ¼ xi þ yi,
where wðP Þ ¼ wð�P Þ. Bernstein et al. [18] have defined
w-coordinate differential addition for computing wðQþ P Þ
given wðQÞ, wðP Þ, and wðQ� P Þ. Similarly, the w-coordi-
nates differential doubling is the computation of wð2P Þ
given wðP Þ. Therefore, using w-coordinates of differential
addition and doubling formulas, wðð2nþ 1ÞP Þ and wð2nP Þ
can be computed given wðnP Þ and wððnþ 1ÞP Þ, recursively
[18]. The combined point addition and doubling formula
with d1 6¼ d2 is given as

C ¼ W1 � ðZ1 þW1Þ; D ¼ W2 � ðZ2 þW2Þ; E ¼ Z1 � Z2;

F ¼ W1 �W2; V ¼ C �D;W3 ¼ V þ w0 � Z3;

Z3 ¼ V þ ðc1 � E þ c2 � F Þ2;W4 ¼ D2;

Z4 ¼ W4 þ ððc3 � Z2 þ c4 �W2Þ2Þ2;

(6)

where w0 ¼ x0 þ y0, c1 ¼
ffiffiffiffiffi
d1

p
, c2 ¼

ffi
d2=d1 þ 1

p
, c3 ¼ ffiffiffiffi

c1
p

,
and c4 ¼ ffiffiffiffi

c2
p

. Also, P1 ¼ ðW1; Z1Þ, P2 ¼ ðW2; Z2Þ, P3 ¼ P1 þ
P2, and P4 ¼ 2P2. As seen from the above formulations, the
cost of the combined PA and PD operations is 10M, where
M is the cost of a multiplication. For achieving highest
degree of parallelization, we employ maximum number of
parallel multipliers. The data dependency graph is
depicted in Fig. 2a employing four DL-PIPO multipliers.
In Steps S2 and S3 of Fig. 2a, four DL-PIPO multipliers
operate in parallel and in S7, only two multipliers perform
the operation. Therefore, the multiplier utilization is
ð4þ4þ2Þ

3�4 � 100 ¼ 83:33%; . As one can see, the smallest
latency for the combined PA and PD is achieved by
employing four multipliers as 3M þ 12: Note that employ-
ing more than four multipliers does not reduce the latency
due to data dependencies.

For binary Edwards curves, we modify the combined PA
and PD formulations in (6) in such a way to incorporate the
proposed hybrid-double multiplier and remove the data
dependencies to further reduce the number of multipliers in

(a) (b)

Fig. 2. Data dependency graph for fast computation of combined PA and PD for binary Edwards curves (a): employing four DL-PIPO multipliers.
(b): employing three DL-PIPO and two hybrid-double multipliers. Note that c1 ¼

ffiffiffiffiffi
d1

p
, c2 ¼

ffi
d2=d1 þ 1

p
, c3 ¼ ffiffiffiffiffi

c1
p

, and c4 ¼ ffiffiffiffiffi
c2

p
.

AZARDERAKHSH AND REYHANI-MASOLEH: PARALLEL AND HIGH-SPEED COMPUTATIONS OF ELLIPTIC CURVE CRYPTOGRAPHY USING... 1671

the data path (i.e., reduce the latency). The modified formu-
lations are as follows:

C ¼ W1 � ðZ1 þW1Þ; D ¼ W2 � ðZ2 þW2Þ;
E ¼ Z1 � Z2 � c1; F ¼ W1 �W2 � c2;
G ¼ c3 � Z2; V ¼ C �D � w0;

Z3 ¼ C �Dþ ðE þ F Þ2; H ¼ c4 �W2;

W3 ¼ V þ ðE þ F Þ2 � w0 þ CD;

W4 ¼ D2; Z4 ¼ W4 þ ððGþHÞ2Þ2:

(7)

The corresponding data dependency graph for the
modified formulations for the combined PA and PD is
illustrated in Fig. 2b for binary Edwards curves. As
shown in this figure, we employ the proposed hybrid-
double multiplier in Steps S2 and S5. In Step S2, we
combined computation of field multiplications by con-
stants (c1 and c2) and performed them in one step with
the latency of M þ 2 using two hybrid-double multi-
pliers. Three traditional digit-level PIPO multipliers are
also operating in this step. In Step S5, we modified for-
mulation of the PA operation in computing (W3 and Z3)
to take the advantage of the hybrid-double multiplier as
much as possible. As one can see, in this step the com-
putation of V ¼ C �D � w0 is done using one hybrid-dou-
ble multiplier with the latency of M þ 2. As a result, the
latency of the overall point multiplication over binary
Edwards curves is reduced to 2M þ 12. Therefore, apply-
ing the proposed technique reduces the latency of com-
putation of combined PA and PD by about 33 percent.
We further note that the proposed approach is a new
method to reduce the latency of point multiplication
while parallelization fails due to data dependency.
Therefore, one can achieve higher speeds in computing
of point multiplication for high speed applications.

3.2 Generalized Hessian Curves

Similar to BECs, mixed w-coordinate has been incorporated
to compute mixed differential PA and PD for Montgomery

point multiplication as follows [19]:

A ¼ W1 � Z2; B ¼ W2 � Z1; Z4 ¼ W 2
2 � Z2

2 ;

Z3 ¼ ðAþBÞ2; D ¼ W 2
2 þ Z2

2 ; E ¼ w0 � Z3;

F ¼ ðA � BÞ; G ¼ D � c2; H ¼ F � c1;
W3 ¼ E þH; W4 ¼ ðZ4 þGÞ2;

(8)

where c1 ¼ d3, and c2 ¼ 1ffiffiffiffi
d3

p . As one can figure out the cost

of combined PA and PD is 7M. In Fig. 3a, the data depen-

dency graph for combined PA and PD is depicted employ-

ing three parallel multipliers. As illustrated in this figure,

the latency is 3M þ 9 and employing more than three mul-

tipliers will not reduce the latency. This is the maximum

possible number of parallel multipliers that can be used to

accelerate the computation of combined PA and PD. In

Fig. 3b, we employ a hybrid-double multiplier to reduce

the latency. First, as one can see in Step S5 one should com-

pute A �B � c1 and employing a hybrid multiplier can com-

pute it in M þ 2 clock cycles. Moreover, in this step we

need two parallel multipliers as well. In Step S2, we employ

a hybrid multiplier having one of its inputs to be 1 to com-

pute a single multiplication. This increases the latency 1

clock cycle but results in reducing the area. Therefore, the

utilization factor for single and hybrid-double multipliers is

100 percent. Further, we reduce the latency to 2M þ 11

clock cycles as shown in Fig. 3b. Hence, the architecture of

point multiplication on generalized Hessian curves requires

two single multipliers and a hybrid-double multiplier. In

Table 2, we summarize the cost of combined point addition

and doubling for binary Edwards and generalized Hessian

curves. As one can see, the costs are given in terms of num-

ber of single digit-level and hybrid-double multipliers. The

cost (latency in terms of number of multipliers in the criti-

cal-path) reduction for both binary Edwards and general-

ized Hessian curves is about 33 percent.

(a) (b)

Fig. 3. Data dependency graph for generalized Hessian curves with c1 ¼ d3, and c2 ¼ 1ffiffiffiffi
d3

p , (a) employing three single DL-PIPO multipliers and (b)
employing two single DL-PIPO multipliers and one hybrid-double multiplier.

1672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

It should be noted that the values of M ¼ m
d

� �þ 1
depend to the digit-size and should be chosen carefully.
For smaller ds, the hybrid-double multiplier is not effi-
cient (as shown in [23], Table 4). On the other hand, for
larger ds the latency reduction for the computation of
PA and PD in the main loop of point multiplication is
not significant. Therefore, one needs to do a trade-off
between the latency reduction for multiplier and the
whole architecture of ECC choosing larger digit sizes. It
is worth mentioning that the occupied area and maxi-
mum operating clock frequency should be considered
when one chooses the digit-size.

4 PROPOSED CRYPTO-PROCESSORS FOR POINT

MULTIPLICATION

The crypto-processors for point multiplication are com-
posed of four main units including finite field arithmetic
unit (FAU), control unit, register file, and conversion unit.
In FAU of BEC, we employ three single digit-level paral-
lel-in parallel-out GNB multipliers and two hybrid-dou-
ble multipliers (M ¼ 3 and H ¼ 2) to perform double
multiplications as explained in Section 3. In FAU of GHC,
two single DL-PIPO multipliers and a hybrid-double mul-
tiplier (M ¼ 2 and H ¼ 1) are employed. The architec-
tures of the proposed crypto-processors are depicted in
Fig. 4. In FAU, squaring is simply rewiring without any
time and area cost in normal basis. Addition is bit-wise
XORing of the coordinates of the two operands. This
requires only one clock cycle to store the results in the
registers. In a digit-level parallel-in parallel-out GNB
multiplier both input operands, A and B should be

present through multiplication process and the results
will be available in parallel after M ¼ q þ 1, q ¼ m

d

� �
,

1 	 d 	 m, clock cycles. Where one clock cycles is due to
pipelining the multiplier. For the given field size m ¼ 163,
digit-size d is chosen in such a way to reduce the latency
while increasing d. Therefore, we choose the digit sizes
from the set d 2 11; 21; 33f g for m ¼ 163. As explained in
Section 2, the hybrid-double multiplier computes a dou-
ble multiplication with the same number of clock cycles
as the one requires for a single multiplication. The single
and hybrid-double multipliers are efficiently pipelined
(one level) to achieve maximum operating clock frequen-
cies. The architectures of proposed crypto-processors for
different curves are different mainly in terms of number
of employed single and hybrid-double multipliers, regis-
ter file, and the control unit.

4.1 Control Unit

The control units are designed with finite state machine
(FSM) to perform the point multiplication with other
units. Scheduling the computation tasks is done by gener-
ating the signals and switching the operands for FAU.
The intermediate results are stored in the register file.
This eliminates the overhead of communication between
memory and FAU. Several multiplexers are employed to
choose appropriate registers and connect to the FAU.
Also, for binary Edwards and generalized Hessian curves
we obtained the affine coordinates employing linear half-
trace and Itoh-Tsujii’s scheme [33] which its implementa-
tion is very efficient using Gaussian normal basis as stated
in Section 2.4.

TABLE 2
Comparison of the Cost of Combined Point Addition and Doubling on BEC and GHC with and without Employing Hybrid Multipliers,

whereM is the Number Single Digit-lezel Multipliers andH is the Number of Hybrid-Double Multipliers

(a) (b)

Fig. 4. The architecture of proposed crypto-processors for point multiplication on (a) binary Edwards and (b) generalized Hessian curves.

AZARDERAKHSH AND REYHANI-MASOLEH: PARALLEL AND HIGH-SPEED COMPUTATIONS OF ELLIPTIC CURVE CRYPTOGRAPHY USING... 1673

4.2 Register File

The register file includes 12 m-bit registers to store inputs,
outputs, curve parameters, and intermediate results for
binary Edwards and generalized Hessian curves, respec-
tively. For instance for binary Edwards curves, we have five
intermediate results that need to be stored in the registers
file, four registers to store internal input parameters (i.e.,
W1;W2; Z1; Z2Þ, two registers to store coordinates of affine
input point (i.e., x and y), and a shift register to store scalar
k. The curve parameters are stored in a separate registers as
to be fixed including d1; d2; c1; c2; c3 and c4. Our proposed
data dependency graphs are efficiently hand-optimized to
ensure we occupy optimal number of registers. We
employed flip-flops available in each slice to construct regis-
ter files as they are available as a decentralized resources.
These flip-flops are put close to their usage and hence we
reduced the routing constraints. For instance the employed
DL-PIPO and Hybrid-double multipliers require sequential
computations (with shift and accumulate operations) and
hence we were able to place the registers close to these oper-
ators. We note that these flip-flops are available without
additional area requirements. The register file is composed
of several multiplexers to chose appropriate registers and
connect them to the arithmetic unit.

5 FPGA IMPLEMENTATIONS RESULTS AND

COMPARISONS

The proposed architecture for point multiplication on BECs
and GHCs are implemented on FPGA. To be able to make
fair comparisons with the previous work available in the
literature, we have chosen same platform for our imple-
mentations. The proposed architectures for BECs and
GHCs (in Figs. 4a and 4b) are modeled in VHDL [34] and
are synthesized using XST of Xilinx ISE version 12.1 design
software and are implemented on Xilinx Virtex-4
XC4VLX160 FPGA. In terms of available resources it con-
tains 67,584 Slices (135,168 LUTs and 135,168 FFs). The
implementation results for different digit sizes d; d 2
11; 21; 33f g and d 2 13; 26f g are reported in Table 3 after

place and route (PAR) for the proposed architectures over

GF ð2163Þ and GF ð2233Þ. As one can see, for m ¼ 163 the
fastest point multiplications take 17.5 ms and 15.9 ms, and
require 27,778 Slices and 15,992 Slices for BEC and GHC,
respectively. For m ¼ 233 the fastest point multiplication is
computed in 36.3 and 33.1 ms occupying 29,252 Slices and
16,940 Slices, respectively. In Table 3, we also provide the
results of area-time products as a parameter to measure the
efficiency of the proposed architectures for practical appli-
cations. Further, as illustrated in Fig. 5 we plot the area-
time for different digit sizes and compare it to the previous
work presented in [17].

It should be noted that for any particular application the
digit-size should be chosen in such a way to achieve highest
performance considering the time-area trade-offs. As
explained in the above sections, the novelty of the proposed
architectures for point multiplication in this paper is based
on employing a new hybrid-double multiplier architecture
proposed in [23]. This scheme reduces the latency of point
multiplication on previous work which parallelization fails
due to data dependencies.

TABLE 3
Implementation Results of Point Multiplication on BECs (withM ¼ 3 andH ¼2) and GHCs (withM ¼ 2 andH ¼ 1) over GF ð2163Þ

and GF ð2233Þ in Xilinx Virtex-4 XC4VLX160 FPGA

Fig. 5. Comparison of time-area results for the point multiplication on
binary Edwards and generalized Hessian curves over GF ð2163Þ on Xilinx
Virtex-4 XC4VLX160 FPGA.

1674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

5.1 Discussion and Comparison

In this section, the implementation results of the pro-
posed crypto-processors for point multiplication in this
paper are compared to the counterparts in the literature
as illustrated in Table 4. As explained in the previous
sections, the novelty of the proposed architectures for
point multiplication in this paper is based on employing
a new hybrid-double multiplier architecture proposed in
[23]. This scheme reduces the latency of point multiplica-
tion on previous work which parallelization fails due to
data dependencies. The work presented in [17] and [12],
are the only available works in the open literature on
BECs and GHCs and hence we mainly compare our
results to them on the same platform and field sizes.
Comparisons to the other works which have not
employed unified and complete formulae (i.e., implemen-
tations on BGCs and BKCs) is presented only in terms of
performance results.

The point multiplication architecture presented in [17],
employs two finite field multipliers and investigates the
time-area trade-offs and multiplier utilization. As reported
in [17], the point multiplication takes 23.3 and 20.8 ms
employing two parallel finite field multipliers for binary
Edwards and generalized Hessian curves, respectively.

In [36], J€arvinen and Skytt€a have employed four parallel
normal basis multipliers for point multiplication on binary
generic and Koblitz curves. The point multiplication
requires 51.56 and 35.1 ms for binary generic and Koblitz
curves, respectively. Also, in [35], a new scheme has been
proposed employing interleaving which reduces the time
of point multiplication on Koblitz curves to 9.48 ms on
Altera StratixII. However, in our proposed architecture for
point multiplication on Koblitz curves requires 8.6 ms on
the same platform. We note that one can reach higher
speeds by combining our scheme with the one proposed in
[35] utilizing data interleaving. In [13], Roy et al. proposed
a parallel architecture for scalar multiplication on Koblitz

curves. They have employed a hybrid Karatsuba multi-
plier for field multiplications and have implemented their
parallel architecture on Xilinx Virtex-5 FPGA. The point
multiplication requires 12.1 ms and occupies 12,430 Slices
over GF ð2163Þ. In [14], Rebeiro et al. proposed a high speed
architecture based on pipelined hybrid Karatsuba multi-
plier (using polynomial basis) for computing point multi-
plication on binary generic curves. Similar to [17], they
employed a LUT-based pipelining technique to achieve
maximum operating clock frequency. Their architecture is
coming with a careful data scheduling for computing dif-
ferential point addition and doubling in the main loop of
computing point multiplication. They have implemented
their proposed architecture on different FPGA platforms.
For instance, their architecture requires 9.7 ms and occu-
pies 8,070 Slices on Xilinx Virtex-4 over GF ð2163Þ. In [11],
Chatterjee and Sengupta. proposed a similar architecture
for computing point multiplication on binary Huff curves
which have been recently proposed by Devigne and Joye
[37]. Their proposed architecture is efficiently imple-
mented over GF ð2233Þ which is unified and complete.
They have also investigated side channel resistivity of
point multiplication architecture on binary Edwards
curves implemented on Xilinx Virtex-4 over GF ð2233Þ in
[12]. Their architecture requires 21,816 Slices and com-
putes a single point multiplication in 190 ms. This architec-
ture operates in 47.3 MHz clock frequency which is fairly
low due to the usage of Karatsuba multiplier and requires
about 9,006 clock cycles in total. In addition, one should
note that binary Edwards curves requires 10 multiplication
operations and it seems that parallelization is more effi-
cient as we have employed in our proposed scheme. We
note that their proposed method is one step forward in
investigating the side channel analysis of proposed archi-
tectures for point multiplication on binary Edwards curves
which motivates more research in this direction for other
curves such as generalized Hessian curves.

TABLE 4
Comparison of ECC Implementations on FPGA over GF ð2163Þ and GF ð2233Þ

AZARDERAKHSH AND REYHANI-MASOLEH: PARALLEL AND HIGH-SPEED COMPUTATIONS OF ELLIPTIC CURVE CRYPTOGRAPHY USING... 1675

The point multiplication scheme proposed in [4] has been
performed on binary generic curves over GF ð2163Þ employ-
ing three digit-serial GNB multipliers. The computation of
point multiplication takes 10.11 ms on Xilinx Virtex-4 plat-
form [4].

As summarized in Table 3, we have employed smaller
digit sizes and reduced the latency of point multiplication
based on the newly proposed crypto-processors. As a result,
we have increased the speed of point multiplication compu-
tation on binary Edwards and generalized Hessaian curves
about 25 percent in comparison to the ones presented in
[17]. As one can see in Fig. 5, our results for binary Edwards
curves are faster than the previous work on the same plat-
form and are more efficient in terms of time-area products
for GHCs.

Note that the idea of employing hybrid-double multiplier
to speed up point multiplication on binary curves can also
be employed for the case when field elements are repre-
sented by polynomial basis. Therefore, similar improve-
ments will be achieved for increasing the speed of point
multiplication using any basis. One should note that the
point multiplication on BECs and GHCs are complete and
work for all pairs of inputs. However, for the other curves
one needs to check points at infinity and avoid them for
practical applications. Therefore, it is not fair to compare
our implementation results to the counterparts using
generic and Koblitz curves quantitatively. In addition, if
security against side-channel attacks plays the main role,
uniform formulas certainly do have an advantage which we
have investigated in this work. Further, in this paper, our
target is high-performance applications as we speed up the
time of point multiplication at the cost of increasing the
area. We stress that one could have used Karatsuba method
for multiplication over GF ð2mÞ for computing point multi-
plication, but as indicated in [38], for smaller field sizes
digit-serial normal/polynomial basis multipliers can oper-
ate in higher clock frequencies occupying similar area in
comparison to the Karatsuba multiplier.

6 CONCLUSIONS

In this paper, we have proposed a new scheme to speed up
the point multiplication on binary Edwards and generalized
Hessian curves employing a digit-level hybrid-double mul-
tiplier of [23] which performs two multiplications with the
latency as the one requires for one multiplication. We have
performed a data-flow analysis for point multiplication to
understand how data has to move between the different
logic and computational elements such as field multipliers,
adders, and squarers. Then, we have investigated how the
hybrid-double multiplier can be employed to reduce the
latency of point multiplication. We have obtained that
employing hybrid-double multiplier can reduce the latency
of point multiplication on binary Edwards and generalized
Hessian curves and speed up the computation time. We
have evaluated the performance of the proposed crypto-
processors for different digit sizes with implementing on
FPGA and have reported the area and timing results. Our
proposed architecture performs a point multiplication on
binary Edwards and generalized Hessian curves 25 percent
faster than the previous fastest results appearing in [17].

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their con-
structive comments. This work has been supported in part by
a Natural Sciences and Engineering Council (NSERC) grants
awarded to Arash Reyhani-Masoleh. Also, the first author
would like to thankA.Ava-Azarderakhsh for kind support.

REFERENCES

[1] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. Adv.
Cryptol., 1986, pp. 417–426.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
pp. 203–209, 1987.

[3] U.S. Department of Commerce/NIST, “National Institute of
Standards and Technology,” Digital Signature Standard, FIPS
Publications 186-2, Jan. 2000.

[4] C. H. Kim, S. Kwon, and C. P. Hong, “FPGA implementation of
high performance elliptic curve cryptographic processor over
GF ð2163Þ,” J. Syst. Arch., vol. 54, no. 10, pp. 893–900, 2008.

[5] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-
curve-based security processor for RFID,” IEEE Trans. Comput.,
vol. 57, no. 11, pp. 1514–1527, Nov. 2008.

[6] J. Adikari, V. S. Dimitrov, and L. Imbert, “Hybrid binary-ternary
number system for elliptic curve cryptosystems,” IEEE Trans.
Comput., vol. 60, no. 2, pp. 254–265, Feb. 2011.

[7] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
FPGA,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 2,
pp. 198–205, Feb. 2008.

[8] J. Adikari, V. Dimitrov, and K. Jarvinen, “A fast hardware archi-
tecture for integer to t-NAF conversion for koblitz curves,” IEEE
Trans. Comput., vol. 61, no. 5, pp. 732–737, May 2011.

[9] M. Keller, A. Byrne, andW. P. Marnane, “Elliptic curve cryptogra-
phy on FPGA for low-power applications,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 2, no. 1, pp. 1–20, 2009.

[10] G. Sutter and J. Deschamps and J. Imana, “Efficient elliptic curve
point multiplication using digit serial binary field operations,”
IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 217–225, Jan. 2013.

[11] A. Chatterjee and I. Sengupta, “High-speed unified elliptic curve
cryptosystem on FPGAs using binary huff curves,” in Proc. 16th
Int. Symp. Prog. VLSI Des. Test, 2012, pp. 243–251.

[12] A. Chatterjee and I. Sengupta, “Design of a high performance
binary Edwards curve based processor secured against side chan-
nel analysis,” Integr., VLSI J., vol. 45, no. 3, pp. 331–340, 2012.

[13] S. Roy, C. Rebeiro, and D. Mukhopadhyay, “A parallel architec-
ture for Koblitz curve scalar multiplications on FPGA platforms,”
in Proc. 15th Euromicro Conf. Digit. Syst. Des., 2012, pp. 553–559.

[14] C. Rebeiro, S. S. Roy, andD.Mukhopadhyay, “Pushing the limits of
high-speedGF ð2mÞ elliptic curve scalar multiplication on FPGAs,”
in Proc. Cryptographic Hardware Embedded Syst., 2012, pp. 494–511.

[15] V. S. Dimitrov, K. U. J€arvinen, M. J. JacobsonJr, W. F. Chan, and Z.
Huang, “Provably sublinear point multiplication on koblitz
curves and its hardware implementation,” IEEE Trans. Comput.,
vol. 57, no. 11, pp. 1469–1481, Nov. 2008.

[16] R. Azarderakhsh and A. Reyhani-Masoleh, “High-performance
implementation of point multiplication on koblitz curves,” IEEE
Trans. Circuits Syst. II, vol. 60-II, no. 1, pp. 41–45, Jan. 2013.

[17] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA imple-
mentations of pointmultiplication on binary Edwards and general-
ized Hessian curves using Gaussian normal basis,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 20, no. 8, pp. 1453–1466, Aug. 2012.

[18] D. Bernstein, T. Lange, and R. Farashahi, “Binary Edwards
curves,” in Proc. Workshop Cryptographic Hardware Embedded Syst.,
2008, vol. 5154, pp.244–265.

[19] R. Farashahi and M. Joye, “Efficient arithmetic on Hessian
curves,” in Proc. 13th Int. Conf. Pract. Theory Public Key Cryptogra-
phy, 2010, pp.243–260.

[20] U. Kocabas, J. Fan, and I. Verbauwhede, “Implementation of binary
Edwards curves for very-constrained devices,” in Proc. 21st Int.
Conf. Appl.-Specific Syst. Arch. Processors, 2010, pp.185–191.

[21] J. L�opez and R. Dahab, “Fast multiplication on elliptic curves over
GF ð2mÞwithout precomputation,” in Proc. Workshop Cryptographic
Hardware Embedded Syst., 1999, pp. 316–327.

[22] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customizable ellip-
tic curve cryptosystems,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 13, no. 9, pp. 1048–1059, Sep. 2005.

1676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

[23] R. Azarderakhsh and A. Reyhani-Masoleh, “Low complexity mul-
tiplier architectures for single and hybrid-double multiplications
in Gaussian normal bases,” IEEE Trans. Comput., vol. 62, no. 4,
pp. 744–775, Apr. 2013.

[24] A. Menezes, I. Blake, S. Gao, R. Mullin, S. Vanstone, and T.
Yaghoobian, Applications of Finite Fields. Norwell, MA, USA:
Kluwer, 1993.

[25] IEEE Standard Specifications for Public-Key Cryptography, IEEE Std
1363-2000, Jan. 2000.

[26] A. Reyhani-Masoleh, “Efficient algorithms and architectures for
field multiplication using Gaussian normal bases,” IEEE Trans.
Comput., vol. 55, no. 1, pp. 34–47, Jan. 2006.

[27] R. Azarderakhsh and A. Reyhani-Masoleh, “A modified low com-
plexity digit-level Gaussian normal basis multiplier,” in Proc. 3rd
Int. Workshop Arithmetic Finite Fields, 2010, vol. 6087, pp. 25–40.

[28] J. Massey and J. Omura, “Computational method and apparatus
for finite arithmetic,” US Patent 4 587 627, 1986.

[29] A. Reyhani-Masoleh, “A new bit-serial architecture for field multi-
plication using polynomial bases,” in Proc. 10th Int. Workshop
Cryptographic Hardware Embedded Syst., 2008, vol. 5154, pp. 300–
314.

[30] D. Hankerson, S. Vanstone, and A. Menezes, Guide to Elliptic Curve
Cryptography. New York, NY, USA: Springer-Verlag, 2004.

[31] M. Stam, “On montgomery-like representations for elliptic curves
over GF ð2kÞ,” in Proc. 3rd Int. Conf. Pract. Theory Public Key Cryp-
tography, 2003, pp.240–254.

[32] P. Montgomery, “Speeding the pollard and elliptic curve methods
of factorization,”Math. Comput., vol. 48, pp. 243–264, 1987.

[33] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplica-
tive inverses in GF ð2mÞ using normal bases,” Inform. Comput.,
vol. 78, no. 3, pp. 171–177, 1988.

[34] F. J. Azcondo, A. de Castro, and C. Branas, “Course on digital
electronics oriented to describing systems in VHDL,” IEEE Trans.
Ind. Electron., vol. 57, no. 10, pp. 3308–3316, Oct. 2010.

[35] K. J€arvinen and J. Skytt€a, “Fast point multiplication on koblitz
curves: Parallelization method and implementations,” Microproc-
essors Microsyst., vol. 33, no. 2, pp. 106–116, 2009.

[36] K. J€arvinen and J. Skytt€a, “On parallelization of high-speed pro-
cessors for elliptic curve cryptography,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 16, no. 9, pp. 1162–1175, Sep. 2008.

[37] J. Devigne and M. Joye, “Binary huff curves,” in Proc. Topics Cryp-
tol. Cryptographers’ Track RSA Conf., 2011, pp. 340–355.

[38] M. Morales-Sandoval, C. F. Uribe, R. Cumplido, and I. Algredo-
Badillo, “An area/performance trade-off analysis of a GF(2m)
multiplier architecture for elliptic curve cryptography,” Comput.
Elect. Eng., vol. 35, no. 1, pp. 54–58, 2009.

Reza Azarderakhsh received the BSc degree in
electrical and electronic engineering in 2002, the
MSc degree in computer engineering from the
Sharif University of Technology in 2005, and the
PhD degree in electrical and computer engineer-
ing from the University of Western Ontario in
2011. He was with the Department of Electrical
and Computer Engineering, University of Western
Ontario, as a Limited Duties Instructor, in 2011.
He was a recipient of the Natural Sciences
and Engineering Research Council of Canada

(NSERC) Post-Doctoral Research Fellowship in 2012. He has been an
NSERC post-doctoral research fellow with the Center for Applied Cryp-
tographic Research at the Department of Combinatorics and Optimiza-
tion, University of Waterloo. Currently, he is a faculty member with the
Department of Computer Engineering at Rochester Institute of Technol-
ogy. His current research interests include finite field and its application,
high-performance computation, elliptic curve cryptography, and pairing
based cryptography. He is a member of the IEEE.

Arash Reyhani-Masoleh received the BSc
degree in electrical and electronic engineering
from the Iran University of Science and Technol-
ogy in 1989, the MSc degree in electrical and elec-
tronic engineering from the University of Tehran in
1991, both with the first rank, and the PhD degree
in electrical and computer engineering from the
University of Waterloo in 2001. From 1991 to
1997, he was with the Department of Electrical
Engineering, Iran University of Science and Tech-
nology. From June 2001 to September 2004, he

was with the Centre for Applied Cryptographic Research, University of
Waterloo, where he was awarded a Natural Sciences and Engineering
Research Council of Canada (NSERC) Postdoctoral Fellowship in 2002.
In October 2004, he joined the Department of Electrical and Computer
Engineering, University of Western Ontario, London, Canada, where he
is currently a tenured associate professor. His current research interests
include fault-tolerant computing, algorithms and VLSI architectures for
computations in finite fields, cryptography, and error control coding. He
has been awarded a NSERC Discovery Accelerator Supplement (DAS)
in 2010. Currently, he serves as an associate editor for Integration,
the VLSI Journal (Elsevier). He is a member of the IEEE and the IEEE
Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

AZARDERAKHSH AND REYHANI-MASOLEH: PARALLEL AND HIGH-SPEED COMPUTATIONS OF ELLIPTIC CURVE CRYPTOGRAPHY USING... 1677

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

