
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012 1453

Efficient FPGA Implementations of Point
Multiplication on Binary Edwards and Generalized

Hessian Curves Using Gaussian Normal Basis
Reza Azarderakhsh, Student Member, IEEE, and Arash Reyhani-Masoleh, Member, IEEE

Abstract—Efficient implementation of point multiplication
is crucial for elliptic curve cryptographic systems. This paper
presents the implementation results of an elliptic curve crypto-pro-
cessor over binary fields �� � on binary Edwards and gen-
eralized Hessian curves using Gaussian normal basis (GNB). We
demonstrate how parallelization in higher levels can be performed
by full resource utilization of computing point addition and
point-doubling formulas for both binary Edwards and generalized
Hessian curves. Then, we employ the -coordinate differen-
tial formulations for computing point multiplication. Using a
lookup-table (LUT)-based pipelined and efficient digit-level
GNB multiplier, we evaluate the LUT complexity and time–area
tradeoffs of the proposed crypto-processor on an FPGA. We also
compare the implementation results of point multiplication on
these curves with the ones on the traditional binary generic curve.
To the best of the authors’ knowledge, this is the first FPGA
implementation of point multiplication on binary Edwards and
generalized Hessian curves represented by -coordinates.

Index Terms—Binary Edwards curves (BECs), elliptic curve
cryptography (ECC), Gaussian normal basis (GNB), generalized
Hessian curves (GHCs).

I. INTRODUCTION

T HE use of elliptic curve cryptography (ECC) has been
identified as an efficient and suitable methodology

to achieve public key cryptography in embedded and re-
source-constrained environments [1]. Miller [2] and Koblitz
[3] independently showed that a group of points on generic
(Weierstrass form) curves over finite fields can be used for el-
liptic curve cryptosystems. The main advantage of ECC is that
it offers a similar security level compared with the other tradi-
tional cryptosystems, employing smaller key size. The security
of ECC-based cryptosystems relies on the difficulty of solving
elliptic curve discrete logarithm problem (ECDLP) [1]. To date,
several forms of elliptic curves over finite fields of character-
istic two have been considered for hardware implementation
of such cryptosystems in the literature; see, for example,
[4]–[13]. They cover a wide variety of cases regarding dif-
ferent basis representations (e.g., polynomial basis and normal

Manuscript received November 30, 2010; revised April 05, 2011; accepted
May 10, 2011. Date of publication June 27, 2011; date of current version June
14, 2012. The work of A. Reyhani-Masoleh was supported in part by the Nat-
ural Sciences and Engineering Research Council (NSERC) through a Discovery
Grant.

The authors are with the Department of Electrical and Computer Engineering,
The University of Western Ontario, London, ON, Canada, N6A 5B9 (e-mail:
razarder@uwo.ca; areyhani@uwo.ca).

Digital Object Identifier 10.1109/TVLSI.2011.2158595

basis), different coordinate systems (e.g., affine, projective, or
mixed), and different curve forms (e.g., generic and Koblitz).
In these implementations, various hardware platforms such as
field-programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) have been utilized. For different
target applications, efficient implementations of ECC on these
platforms with a balance between complexity of computations
and availability of the resources are crucial to provide highly
efficient cryptographic systems.

Binary Edwards curves (BECs) have been introduced re-
cently by Bernstein et al. in [14]. They showed that all generic
elliptic curves over binary fields can be written in Edwards
form to obtain efficient complete and unified addition formulas
which work for all pairs of inputs. In [15], a generalized
form of binary Hessian curves is proposed which has similar
characteristics to the BECs. Both of these curves offer unified
and complete formulas for point operations which provides
resistance against side-channel attacks (SCAs). Despite the
efficiency of binary Edwards and generalized Hessian curves,
a limited number of articles in the literature such as [16]–[18]
have investigated their implementations. In [16], an ASIC
implementation of point multiplication on a special case of
BECs has been presented addressing energy consumption and
simple power analysis attacks over using polynomial
basis representation. An SCA resistance evaluation of BECs
has been discussed in [17] employing unified addition formula
for doubling. The work presented in [18] mainly focuses on
software implementation of point multiplication on these curves
employing different curve parameters.

In this paper, we present efficient FPGA implementations of
point multiplication over newly proposed binary Edwards [14]
and generalized Hessian curves [15] as well as traditional bi-
nary generic curves using a pipelined low-complexity and fast
Gaussian normal basis multiplier. For theoretical aspects of all
the arithmetic operations over these curves, the reader is re-
ferred to [14], [15], and [19]. We have shown how combining
algorithmic techniques (such as parallelization) with platform-
dependent strategies (lookup-table (LUT)-based analysis) can
be used to develop an efficient FPGA implementation of ECC
crypto-processor. Moreover, we have examined completeness
of the mixed differential addition and doubling formulations for
every pair of points for binary Edwards and generalized Hessian
curves.

Similar to binary generic elliptic curves, the performance of
ECC computations on binary Edwards and generalized Hessian
curves is determined by an operation called point multiplication.

1063-8210/$26.00 © 2011 IEEE

1454 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

The efficiency of point multiplication depends mainly on the
lower level field arithmetic operations.

At arithmetic level, multiplication of two field elements in the
binary field of characteristic two, i.e., , is more com-
plicated than the other operations (e.g., addition and squaring)
and determines the performance of an ECC crypto-processor.
Several architectures for finite field multipliers are designed and
analyzed with different field representations mainly using poly-
nomial basis [5], [20], [21] and normal basis [22], [23]. Imple-
menting field multipliers using polynomial basis is more effi-
cient in software than normal basis [24]. In hardware implemen-
tations, both bases have efficient results and normal basis is a
suitable choice in applications with frequent squarings. Massey
and Omura (MO) [25] invented a bit-level, parallel-in serial-out

normal basis multiplier. Such a bit-level multiplier is
slow as it generates the results of multiplication after clock
cycles. The fastest type of multipliers is the bit-parallel one
whose results are available after the propagation delay through
the gates in one clock cycle. We note that, for type-2 GNB
(which is type-2 optimal normal basis), there are several effi-
cient multipliers available in the literature. For instance, in [26],
Sunar and Koç proposed a bit-parallel multiplier based on a per-
muted normal basis. An efficient and systolic type of their mul-
tiplier has been proposed later by Kwon [27] for type-2 GNB
which is highly regular. Also, subquadratic style multipliers
have been proposed in [28]–[30], which require smaller area but
higher delays.

A digit-level multiplier is in between (in terms of both space
and time complexities) the bit-serial and bit-parallel multipliers.
A digit-level version of the MO multiplier [25] is investigated
for FPGA implementation of ECC in [6]. Also, Kwon et al.
[22] proposed an improved digit-level GNB multiplier which
has been employed in [7] for FPGA implementation of ECC
over . In order to satisfy high-speed and low-com-
plexity requirements of an ECC crypto-processor, one needs
to design an efficient architecture for finite field multiplication
using normal basis [6]. Two digit-level GNB multipliers are pro-
posed in [23], one of which is modified in [31] by introducing a
subexpression sharing and complexity reduction algorithm for
type Gaussian normal bases. In this paper, we have used
a pipelined version of this multiplier for efficient FPGA imple-
mentations of point multiplication on binary Edwards, general-
ized Hessian, and binary generic curves.

The main contributions of this paper can be summarized here.
• We propose an efficient hardware architecture for point

multiplication on binary Edwards and generalized Hessian
curves incorporating higher level parallelization and op-
timum lower level scheduling. This increases the overall
performance considering maximum utilization of available
resources.

• We incorporate -coordinate version of Montgomery’s
ladder for point multiplication in binary Edwards and
generalized Hessian curves using mixed differential
representation.

• For the proposed crypto-processor architecture over
, we obtain the optimum digit sizes in terms of

time–area tradeoffs for the proposed fast and low-com-
plexity digit-level GNB multiplier.

• Finally, we perform efficient FPGA implementations of
point multiplication on binary Edwards and generalized
Hessian curves over on a Xilinx Virtex-5 de-
vice and investigate the LUT-based time–area efficiency
for different digit sizes. We have also implemented ECC on
binary generic curve and compared its FPGA implementa-
tion results with the ones obtained for binary Edwards and
generalized Hessian curves.

The remainder of this paper is organized as follows. In
Section II, preliminaries of Gaussian normal basis represen-
tation and arithmetics on the binary Edwards and generalized
Hessian curves are presented. In Section III, point multiplication
and parallelization of PA and PD are explained. The proposed
hardware architecture for elliptic curve crypto-processor is pre-
sented in Section IV. Here, a modified and pipelined digit-level
GNB multiplier is also presented and analyzed in terms of
time–area tradeoffs for different digit sizes. Section V presents
the results of FPGA implementations for the proposed ECC
crypto-processor. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

A. Gaussian Normal Basis

It is well known that, for any positive integer ,
there exists a normal basis of over [32].

Let be a normal basis of

for . Then, is called a normal el-
ement of such that the set is the normal basis of

. Therefore, the representation of any element in ,
say, , is , where
coefficient [33]. In normal basis, squaring
can be achieved by simple right cyclic shift of , i.e.,

[1]. Note
that this operation is fast without any cost if it is implemented
in hardware. GNB is a special class of normal basis which
is included in the IEEE 1363 [34] and NIST [1] standards
for elliptic curve digital signature algorithm (ECDSA) and
exists for every that is not divisible by eight [32]. The
complexities of type- GNB multipliers in terms of time and
area depend on . For the five binary fields recommended
by NIST, i.e., 163, 233, 283, 409, and 571, the values of

are even and are 4, 2, 6, 4, and 10, respectively.
The use of type-4 GNB to obtain high-performance elliptic

curve cryptosystem has been received much attention in [6], [7],
and [9]. Also, in [35], type-2 normal basis is incorporated as part
of global distributed effort to solve ECDLP over .

B. Arithmetic Over Binary Edwards and Generalized Hessian
Curves

It is well known that a nonsupersingular binary generic (short
Weierstraß) elliptic curve can be defined by a set of points
and a special point at infinity (group identity) that satisfy the
following equation:

(1)

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1455

where and [36]. These curves are also
called anomalous binary curves or Koblitz curves if
and , i.e., defined over [3].

BECs belong to a special class of generic elliptic curves de-
fined over the binary field when [14]. The merit of BECs
over generic curves is that their PA formulas are complete and
their implementations are comparable with the traditional ones
of [19].

Definition 1: [14] Let be a finite field of characteristic two,
i.e., and and be the elements of with

and . The BECs with coefficients and
is the affine curve

(2)

where . Given a point , its negation
is obtained as , which has no cost [14]. The point

is the neutral element and has order 2 [14]. The
BECs are complete if , i.e., cannot be written as

for any in , where is the absolute trace of
over) [14].

Definition 2: [15] Let and to be elements of such that
and . The generalized Hessian curve (GHC)

over is defined by the equation

(3)

where results in a Hessian curve, i.e., . Note that the
GHCs are complete if and only if is not a cube in .

The standard formulas on generic curves [19] fail in com-
puting the addition of two points on curves if one of the points or
their addition is at infinity. These possibilities should be tested
before designing an elliptic curve cryptosystem. Note that point
addition and doubling formulas on binary Edwards and general-
ized Hessian curves work for all input pairs. This characteristic
is called completeness. In what follows, we discuss the point
addition and doubling using -coordinates for binary Edwards
and generalized Hessian curves.

C. Point Addition and Doubling Using Differential
Formulations in -Coordinates

Differential addition [37] is the computation of , given
points of , , and . In [14] and [15], the idea of Mont-
gomery’s ladder [37] is used to present fast formulas for -coor-
dinate differential addition on binary Edwards and generalized
Hessian curves, respectively. Let us assume to be a linear and
symmetric function in terms of the coordinates and of the
point and is defined as , where .
Bernstein et al. [14] have defined -coordinate differential addi-
tion for computing given , , and .
Similarly, the -coordinates differential doubling is the compu-
tation of given . Therefore, using -coordinates of
differential addition and doubling formulas, and

can be computed given and , re-
cursively [14]. In the following, we revisit the differential addi-
tion and doubling formulas for binary Edwards and generalized
Hessian curves using -coordinates [14] and [15].

Let and be two affine points
on the BEC . Let us define ,

, and
. Then, one can write

, , and as defined
above. In the mixed coordinate representation, can be written
as the fractions in projective, as
and , and is given as an affine field
element. Then, the mixed -coordinate addition of
these two points can be obtained from [14] as

(4)

and the formulas for -coordinate doubling [14] are

(5)

For the GHCs, the -coordinate differential addition for-
mulas can be written as follows [15]:

(6)

and, similarly for doubling, those are presented as follows [15]:

(7)

The costs of different coordinates to compute differential addi-
tion and doubling are given in Table I for binary Edwards [14],
generalized Hessian [15], and generic curves [19]. Let , ,
and be the costs of multiplication of two field elements, a
squaring, and a multiplication by a constant curve parameter, re-
spectively. As illustrated in this table, the mixed -coordinate
offers fast and comparable PA and PD formulas. Therefore, we
use the mixed -coordinate differential addition and doubling
formulas [14]. Note that the difference of two points for dif-
ferential addition is given in affine, i.e., .

1456 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

TABLE I
COST OF POINT OPERATIONS ON BECS, GHCS, AND BINARY GENERIC CURVES

(BGCS) OVER �� �� � [14], [15], AND [19]

Moreover, the mixed -coordinate addition and doubling for-
mulas are complete which means there is no need to check for
the exceptional cases [14]. In order to have efficient computa-
tion of point operations, i.e., PAs and PDs, one needs to employ
an efficient point multiplication algorithm. In the Section III,
we give an explanation of using Montgomery’s ladder for point
multiplication.

III. POINT MULTIPLICATION ON BINARY EDWARDS AND

GENERALIZED HESSIAN CURVES

Here, we consider Montgomery’s ladder [37] and its modi-
fied version [19] to present a point multiplication algorithm over

-coordinates for binary Edwards, generalized Hessian, and bi-
nary generic curves. Using combined PA and PD formulations,
we explain how parallelization can increase the performance of
point multiplication. At the end, the cost of recovering final co-
ordinates of point multiplication is derived.

A. Point Multiplication

The elliptic curve point multiplication is defined in the
Abelian group as (times),
where is a positive integer, and and are two points on
the elliptic curve [19]. The efficiency of
point multiplication depends on finding the minimum number
of steps to reach from a given point . In binary
Edwards and generalized Hessian curves, point multiplication
can be defined similar to the one on generic curves [19]. Let
be a point on a BEC and let us assume and

, are known. Therefore, one can use
the -coordinate differential addition and doubling formulas
to compute their sum as and double of
as .

Among different algorithms to perform point multiplication
on elliptic curves, the Montgomery’s ladder [37] is widely used
in the literature. It has a uniform double-and-add structure which
makes it secure against nondifferential (simple) side-channel at-
tacks [14], [17]. In [19], an efficient version of Montgomery’s
algorithm is proposed over . The Montgomery’s ladder
algorithm for point multiplication using mixed -coordinates is
provided in Algorithm 1. As shown in in Step 1 of this algorithm,
the point is converted to the mixed -coordinates
by computing and setting
and . Assume the scalar is represented in binary, i.e.,

, . Then, the initialization steps, i.e.,
Steps 1a and 1b of Algorithm 1 , produce and

using (5) [38]. For BECs, the formulations

of (4) and (5) are implemented in the and
functions of Algorithm 1 , respectively. Therefore, after
iterations as presented in Steps 2a and 2b of Algorithm 1, the

-coordinates of and , i.e.,
and , will be available. Similarly, for
GHCs , is computed in Step 1
and is initialized in Step 1a for point mul-
tiplication [15]. For this curve, the formulations of (6) and (7)
are implemented in and functions of Algo-
rithm 1, respectively.

Algorithm 1 Montgomery’s Algorithm [37]for Point
Multiplication Using -Coordinates.

Inputs: A point on a binary
curve and an integer .
Output: .
1: and initialize

a: and
b:

2: for from down to 0 do
a: if then

i):
ii):

b: else
i):
ii):

end if
end for

3: return and

B. Parallelism in Point Multiplication Algorithm

Parallelism is an approach to reduce the number of field arith-
metic operations, mainly multiplications, in the critical path by
using multiple multipliers concurrently [6]. In addition, merging
point operations, i.e., the PA and PD, can result in less data de-
pendency and can reduce the latency of the point multiplica-
tion over binary Edwards and generalized Hessian curves. Com-
puting the -coordinates of PA and PD for BECs together in one
step of the Montgomery’s algorithm requires six general finite
field multiplications and four field multiplications by constants,
as reported in Table I. As summarized in this table, for GHCs,
the cost of combined PA and PD is five field multiplications and
two multiplications by constants [15]. In the following, we ex-
plain how parallel field operations can be utilized to reduce the
latency of the point multiplication operation.

1) Scheduling Field Operations for PA and PD: We have
obtained the data dependency graphs for the combined PA and
PD on binary Edwards and generalized Hessian curves as illus-
trated in Fig. 1 (Fig. 1(a) for and Fig. 1(b) for)
and Fig. 2(a), respectively. As shown in these figures, the la-
tency (in terms of number of clock cycles) of each step is the
latency of an operation with the longest latency. As one can see
in Fig. 1(a) and (b), the first four operations of PA, i.e., Step 0
to Step 3, on BEC should be performed before any PD opera-
tion. This is because computation of PD depends on the PA. For
generalized binary Hessian curve [Fig. 2(a)], operations of PA

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1457

Fig. 1. Data dependency graphs for parallel computing of the combined PA and PD operations on BECs. (a) � �� � and (b) � � � assuming� � �.
It requires five registers of � � � � � � � , and � . The constant parameters, � �

�
� , � � � �� � �, � �

�
� , and � �

�
� are assumed to be

precomputed and stored in the memory.

and PD can be performed in parallel at any time. Note that the
latency of field additions and field squarings are negligible in
comparison to the latency of the field multipliers. Therefore, we
calculate the latency of the critical path in terms of number of
field multiplications. Let be the latency (in terms of number
of clock cycles) for multiplying two field elements and be the
latency of multiplication of a field element by a constant (e.g.,
curve parameters, or). Let us denote as the number of
parallel finite field multipliers. In the following, we investigate
the parallelization using different numbers of multipliers
1,2, and 3.

2) BEC: For BECs with and one available multiplier
(), the latency of the combined PA and PD is
as reported in Table I. Utilizing two multipliers, i.e., ,
reduces the latency to and for
[Fig. 1(a)] and [Fig. 1(b)], respectively. As one can
see in Steps 3, 5, 6, 7, and 10 of Fig. 1(a), two independent
multipliers are fully utilized. Thus, the utilization factor of two
multipliers in Fig. 1(a) is 100%. Similarly, in Steps 3, 4, and 6
of Fig. 1(b), two multipliers are fully utilized. However, in Step
8 of Fig. 1(b), only one of the two multipliers is utilized [shown
in Fig. 1(b)] and the other one is idle (not shown in Fig. 1(b)].
Therefore, the utilization factor of two multipliers in Fig. 1(b)
is .

If three parallel multipliers, i.e., , are employed, the
latency will become and for and ,
respectively. Therefore, adding one multiplier only reduces the
latency by one multiplication by a constant. Moreover, one can
figure out, the utilization factors for and will

TABLE II
MULTIPLIER UTILIZATION FACTORS FOR DATA

DEPENDENCY GRAPH OF DIFFERENT CURVES

reduce to and , re-
spectively. In addition, employing four multipliers reduces the
latency to for and has no impact for the case
where . Note that employing more multipliers, i.e.,

, does not decrease the latency. As a result, one can
see the maximum utilization of the multipliers with low latency
for the combined PA and PD operations is achieved only by
choosing . Multiplier utilization factors for data depen-
dency graph of different curves are summarized in Table II. It
is also worth noting that employing two multipliers for the case
where reduces the latency nearly 50% as compared to
the case where only one multiplier is utilized.

3) GHC: For a GHC with , the latency of combined
PA and PD algorithm is . In such a case, the multiplier
is always performed the operation and hence the utilization of
multiplication for is 100%. The data dependency graph
for GHC is illustrated in Fig. 2(a) using the combined PA and
PD. In this figure, two multipliers, are available, i.e., .
As shown in Steps 2, 3, and 4 of Fig. 2(a), two multipliers op-
erate in parallel, whereas, in Step 5 only one multiplier per-

1458 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 2. Data dependency graph for parallel computing of the combined PA and PD operations for� � � available multipliers on (a) GHCs, assuming � � � ,
and � � ��

�
� and (b) BGCs [39].

forms the multiplication. Therefore, the utilization for
is . Also, the latency of computing the com-
bined PA and PD operations in parallel is . Note that
employing three parallel multipliers () reduces the la-
tency to . However, one can figure out that only in a
new step (including combination of Steps 2 and 3 in Fig. 2(a)) all
three multipliers will be utilized and in Step 4, i.e., multiplica-
tion by constant, only one multiplier will perform the operation
and the other two multipliers are idle. As a result, the utilization
factor will reduce to . As one can figure
out, increasing the number of multipliers from two to three re-
duces latency only 14% while increasing the required area about
33%.

4) Binary Generic Curve (BGC): For the sake of compar-
ison, we have included a data dependency graph for BCGs em-
ploying two multipliers in Fig. 2(b) [39]. As seen from
this figure, the latency of the combined PA and PD operations in
parallel is . Incorporating three multipliers reduces
the latency to with multiplier utilization of 100% [7]. It is
worth mentioning that employing more than three multipliers,
i.e., , will not reduce the latency of point multiplication.
This has been investigated in a different way with to
parallelize PA and PD operations as well as parallelizing finite
field operations in [39]. We note that parallel computation of
point multiplication over binary generic curves has been widely
studied in the literature, for instance one can refer to [4]–[7],
[11], and [39].

In the proposed architecture, multiplication by a constant is
performed using one of the available multipliers. As a result, its
cost is calculated the same as one of a multiplier.

As illustrated in Figs. 1 and 2, in each step, two words
[e.g., and in Step 0 of Fig. 1(a) and (b)] are read
from the memory as the inputs (this is discussed in detail in
Section IV-C). Consequently, this reduces the memory require-
ments. Scheduling has been made by two multipliers (),
two adders, and two squarers for efficient implementations.
Also, addition and squaring can be performed in one clock

cycle and multiplication using digit-level multiplier requires
several clock cycles with an additional clock
cycles for loading the inputs. Note that the order of operations
are scheduled to achieve optimum number of clock cycles as
illustrated in each step of data dependency graphs. At the end of
point multiplication (the bottoms of data dependency graphs),
the results of PAs and PDs for point multiplication are written
to the memory. In what follows, we explain how to recover

from , , and at the end of the
proposed Montgomery’s point multiplication.

C. Recovering the Final Coordinates of and

In this paper, having -coordinates in the last step of point
multiplication, one can obtain and

. The procedure of recovering
the final point from -coordinates is presented in [14]. At the
end of differential addition, one has , , and

for the base point . First, one needs to check if
and then obtain from the equation given

in [14]. Since [14], then employing linear half-
trace H: computation over , one
has or as the output. With solving the curve equation
for (or), one can get (or) whose cost is

for . Note that inversion
can be computed efficiently in normal basis using Itoh-Tsujii’s
scheme [40]. It requires
multiplications and squarings, where is the
Hamming weight (number of ones) of the binary representation
of . Thus, for , the cost of an inversion is

, where and are the costs (in terms of number of clock
cycles in our analysis) to perform a finite field multiplication and
squaring, respectively. Then, the total cost of recovering
coordinates of as a final point is clock cycles.

D. Latency of Point Multiplication Operations

The latency of point multiplication operations are summa-
rized in Table III for . The total latency consists

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1459

TABLE III
LATENCY OF THE OPERATIONS IN THE POINT MULTIPLICATION WITH � � �� �� �, WHERE � IS THE

NUMBER OF CLOCK CYCLES REQUIRED FOR MULTIPLICATION OF TWO ARBITRARY FIELD ELEMENTS

of latencies of initialization (), computing PA and PD in
the main loop (), and recovering the final point () for
binary Edwards and generalized Hessian curves as follows:

(8)

As shown in Table III, is the number of clock cycles to mul-
tiply two field elements as well as a multiplication of a field
element by a constant curve parameter. As an example, the la-
tency of combined PA and PD with is calculated from
Fig. 1(a) as , by adding all clock cycles in 15 steps
shown in Fig. 1(a), with an assumption of .

IV. ARCHITECTURE OF THE ELLIPTIC CURVE

CRYPTO-PROCESSOR

Here, we propose a hardware architecture for point multipli-
cation over BECs, GHCs, and BGCs. A generic structure for the
implementation of the point multiplication on FPGA platform
is depicted in Fig. 3. The architecture is comprised of several
blocks: a finite field arithmetic unit (FAU), a control unit, and
memory. The FAU includes two field multipliers, two adders,
and two squarers, as well as five 163-b registers to store inter-
mediate results. The controller uses program instructions and
implements finite state machine (FSM). The memory includes
Block RAMs (BRAMs) and ROM to store the intermediate/final
results and program instructions. The lower level (finite field)
arithmetics are implemented in FAU and higher levels, i.e., PA
and PD, are implemented in control logic as a FSM. In the fol-
lowing, we explain these blocks in detail.

A. FAU

In the binary field with characteristic two, , addi-
tion is a bit-wise XOR and can be computed in one clock cycle.
In normal basis, squaring of a field element is almost free (in
hardware) in terms of both timing and area as it is equivalent to
rewiring. The finite field multiplier plays the main role in deter-
mining the performance as it dominates the costs of point oper-
ations. Therefore, it is essential to design an efficient multiplier.

Bit-parallel multipliers can perform the finite field multipli-
cation in one clock cycle. These multipliers are fast but require
a large area complexity. Bit-serial multipliers require clock
cycles for the entire multiplication operation and they are effi-
cient in terms of area but they are slow. Digit-level multipliers
are the most suitable ones because the digit-size can be chosen
for specific cryptographic applications based on the available
resources. In this paper, we use a digit-level multiplier which is
explained in the following.

Fig. 3. Architecture of the proposed elliptic curve crypto-processor for BECs,
GHCs, and BGCs.

B. Fast and Low-Complexity Digit-Level GNB Multiplier Over

Here, we first present a pipelined low-complexity hardware
architecture for digit-level GNB multiplier over .
Then, we evaluate the practical time–area efficiency of the
presented multiplier by implementing it on a Xilinx Virtex-5
FPGA device.

1) Hardware Architecture: Let and
be the field elements represented by

type GNB over . Let denote
their multiplication, i.e., . Reyhani–Masoleh in [23]
has proposed a digit-level GNB multiplier with parallel output
and digit-size , . It requires ,

clock cycles to generate all the coordinates of
simultaneously at the end of the final clock cycle. In [31], a
modified and low-complexity version of the digit-level GNB
multiplier proposed in [23] is presented. Here, we pipeline this
architecture to make a faster VLSI architecture which operates
at very high clock frequencies.

The used pipelined multiplier is depicted in Fig. 4. It consists
of a block, blocks in Path-1, and the pipelined
adder in Path-2. The block includes two sub-blocks and

and its structure depends on type , , of GNB and
multiplication matrix. Each block consists of two-input
AND gates and each adder consists of binary trees of
XOR gates. As illustrated in Fig. 4, the multiplier is pipelined by
adding a stage of pipelined registers inside the adder

1460 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 4. Pipelined architecture of the low-complexity type � digit-level GNB multiplier with parallel-output [31].

TABLE IV
CRITICAL-PATH DELAY OF THE PIPELINED AND NONPIPELINED ARCHITECTURE OF PRESENTED DIGIT-LEVEL TYPE-4 GNB MULTIPLIER OVER �� �� �

in order to allow the multiplier to operate at very high clock
frequencies. Therefore, instead of performing addi-
tion of inputs (as shown in Fig. 4), which are connected to
the outputs of AND gates in blocks, we perform the additions
in two stages, i.e., over -inputs. The first stage contains

adders, each of which has at most -bit
inputs and are depicted by to in the architecture. The
outputs of the first adders are added with the output of the reg-
ister using another adder in the second stage. Choosing
the optimum value of plays an important role in designing
the fast multiplier. This will be considered later in this section.
It is shown in [23] and [31] that the critical-path delay of the
non-pipelined multiplier is composed of the delays of the com-
ponents located in Path-1 and path-2, i.e.,
and for , respectively. Note that
these are functions of the type of the multiplier and the digit
size . As shown in Fig. 4, Path-2 is divided into Path-2a and
Path-2b by inserting a stage of pipelined registers in between
(hereafter we call it -level of accumulation). This technique re-
duces the number of logic gates in the critical-path and simpli-
fies the routing.

2) Complexities: Here, we give the number of registers and
time complexities of the pipelined digit-level GNB multiplier
over . The gate counts of the pipelined multiplier
remains the same as the ones of the nonpipelined modi-
fied architecture presented in [31]. This requires AND

gates and XOR gates, where ,
[31].

Proposition 1: The pipelined multiplier structure of Fig. 4
requires registers and its critical-path delay is

(9)

where is the level of accumulation and .
Proof: As one can see from Fig. 4, registers are

required between Path-2a and Path-2b for the pipeline pur-
poses. As a result, the -bit registers required in
the presented multiplier. The critical-path delay of Path-1,

is composed of the delays of the components in
Path-1, i.e., , , and . The delay of Path-2a,

is the delay of an -bit adder with at
most -bit inputs, i.e., , and the
delay of Path-2b, is . There-
fore, the critical-path delay of the presented architecture is

which completes
the proof.

The critical-path delay of the pipelined and nonpipelined
architecture of the presented multiplier in terms of number of
levels of accumulation, and digit-size, are illustrated in
Table IV. It is noted that employing the proposed -level of ac-
cumulation using one stage of pipelined registers increases the
latency of the multiplication by one clock cycle to .

3) LUT-Based Critical-Path Delay Analysis: Here, we
investigate the critical-path delay of the presented pipelined

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1461

TABLE V
LUT-BASED CRITICAL-PATH DELAY (CPD) �� � OF THE

PRESENTED PIPELINED MULTIPLIER FOR DIFFERENT DIGIT SIZES ���
AND LEVELS OF ACCUMULATION ��� FOR TYPE-4 GNB

MULTIPLIER OVER �� �� � WHERE � � �����

scheme based on the six-input programmable LUTs avail-
able in Xilinx Virtex-5 FPGA device. To estimate resource
consumption and critical-path delay, we need to convert the
gate-oriented schematics to LUT-based schematics. Then,
when the tree of XOR gates are converted into -input (
in this case) LUT-oriented schematics the XOR gates
can be replaced by one LUT in the best case. For type ,
each output of the block is obtained by adding (XORing)
of inputs and considering the block which includes an
additional input for the AND operation. Therefore, such outputs
can be implemented using six-input LUTs in delay.
Then, the LUT-based critical-path delay of the Path-1 is
for type . The critical-path delay of Path-2 is summarized
in Table V in terms of different levels of accumulation, and
digit-size . The critical-path delay of Path-2a and Path-2b
are and , respectively.
Therefore, and should be chosen in such a way to have a
balance for the LUT-based critical-path delay. For example,
assume digit-size, then the critical-path delay of the
nonpipelined multiplier is .
Employing levels of accumulation results to have at
most inputs for each adders in
Path-2a. Then, the critical-path delay of the presented multi-
plier is

. Therefore, for practical implementations one needs
to obtain optimum level of pipelining considering number of
inputs of LUTs.

In this work, we have proposed an LUT-based pipelining
scheme. We have tried several different pipelining techniques
including the re-timing scheme of ISE tools but none of them
was as efficient as the LUT-based analysis. Therefore, inserting
pipelined registers in appropriate locations has a significant
impact on the critical path delay of the proposed structure as
the adder of the multiplier has the major critical path
delay. In the following subsection, we implement the presented
multiplier on FPGA.

4) Implementation: To evaluate the practical performance,
the presented pipelined digit-level type-4 GNB multiplier over

is implemented on a Xilinx Virtex-5 FPGA device.
First, feasible values for digit size are chosen in such a way to
decrease the critical-path delay while increasing the area (as a
result of upper ceiling). Then, a careful LUT-based with floor-
planing design is performed based on the given number of ac-
cumulators and digit-size . The efficiency of the multiplier is
measured in terms of reciprocal of the time-area products, i.e.,

and is plotted for different digit sizes ,
, in Fig. 5. As shown in this figure, the local optimum (for

Fig. 5. Time–area ratio of the presented pipelined low-complexity digit-level
GNB multiplier for type 4 over �� �� � for different digit sizes �.

time–area efficiency) in terms of digit sizes for the presented
multiplier can be chosen as . It is
noted that two largest digit sizes of and de-
grade the maximum clock frequencies as the place and route
(PAR) operation becomes complicated. Therefore, we exclude

from our analysis and keep for comparison pur-
poses. The presented multiplier is faster (i.e., operates at high
clock frequencies) and is smaller than the digit-level MO mul-
tiplier employed in [6] for FPGA implementations of ECC over

[23].

C. Memory and Control Unit

1) Memory: The proposed architecture requires RAM to
store intermediate and variables output as from the FAU and
registers and ROM to store program instructions and constant
values. As illustrated in Figs. 1 and 2, in each cycle two words
(163-bit) from memory are accessed. Then, dual-port BRAMs
are configured as two single-port BRAMs with independent
data access [41]. One can perform two read operations per
cycle by using a dual-port BRAM. This feature allows us to
reduce the number of required BRAMs and achieve greater uti-
lization of this resource. In the utilized Xilinx Virtex-5 FPGA
device, 36-Kb (1024 36-b words) dual port BRAM blocks
are available with a combined 72-b bus width (36-b per port).
The dual-port RAM is assigned through Xilinx Synthesis Tool
(XST). In Fig. 3, the storage RAM has been designed to allow
the reading and writing of the 163-b words for . This
results in minimizing the number of accesses to the memory.
Therefore, as shown in Fig. 6, the storage RAM is constructed
with BRAMs resulting in the storage of
512 163-b words to store the intermediate inputs as illustrated
in the data flow diagrams of Figs. 1 and 2.

The basic field arithmetic operations, i.e., multiplication, ad-
dition, and squaring, are implemented in the FAU. The constants

, , , , , and are stored in the ROM. The ROM to
store constants, is implemented with the same BRAM explained
above by reserving a few addresses. A register file of 5 163-b

1462 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 6. Configuration of BRAMs for the proposed architecture.

registers (shown by in Figs. 1 and 2) is incorporated in the
FAU to reduce the overhead of the communication between the
FAU and the RAM. It is noted that the load and store between
the FAU and the memory storage require a single clock cycle.
We count all of these clock cycles when calculating the total la-
tency of the point multiplication. The ROM is also generated
using Xilinx BRAMs as illustrated in Fig. 3. In Table III, the
latency of the operations required to perform arithmetic opera-
tions are reported.

2) Control Unit: The control unit of the ECC crypto-pro-
cessor controls the FAU and memory and it is implemented as a
FSM. As shown in Fig. 3, the control unit has two address sig-
nals, Addr_A and Addr_B, which control the interface between
the FAU and the memory. The program instructions are stored
in ROM and the control unit fetches and decodes instructions
and sends appropriate control signals to the other units based
on the presented data dependency graphs of Figs. 1 and 2. Note
that the ROM that stores the program instructions is instantiated
using BRAMs as 1024 36-b words. Therefore, to store pro-
gram instructions one extra BRAM is required. It is noted that
the control unit decides where to store and conditionally swamp
(based on) the results of the combined PA and PD operations.

V. COMPARISONS AND IMPLEMENTATIONS

Here, we discuss the results obtained in the previous sec-
tions and compare them with the counterparts in terms of side-
channel analysis and implementation results.

A. Side-Channel Analysis

As mentioned before, Montgomery’s Ladder is highly reg-
ular and suitable choice to protect scalar against simple power
analysis attacks [42]. Newly introduced BECs and GHCs have
two special properties of being unified and complete [14].
The former is that the point addition formulations can be used
for point doubling while the latter means that point addition
formulations can be used for all pairs of inputs on the curve.
Then, the point multiplication algorithm based on unified
addition and doubling operations, will not cause side-channel
leakage and hence it is protected against side-channel attack
(SCA). Baldwin et al. [43] have investigated resistivity against
simple power analysis (SPA) attacks of the unified operations
for twisted Edwards curves over prime fields . Also, this
fact has been investigated in [17] using the unified addition for-
mula of BECs. They have also taken advantage of incorporating

a simple random order execution (i.e., randomly changing the
storage location of the results) in the Montgomery’s ladder that
makes the differential power analysis (DPA) attack difficult
[17]. In this work, we take advantage of completeness of -co-
ordinates differential PA and PD formulas on Montgomery’s
ladder which is also SPA-resistant.

The cost of explicit point addition is for
generic curves [44], for BECs [14], and

for GHCs [15]. Therefore, the GHCs offer the fastest addi-
tion formulas for binary elliptic curves. Although the explicit
addition formulas for generic curves are faster than BECs, they
are not complete and unified. Therefore, one can realize that
the cost of one step of point multiplication on BECs using ex-
plicit addition formulas in [17] is higher than employing Mont-
gomery’s differential addition algorithm, i.e., combined differ-
ential PA and PD. It is interesting to note that one can reduce
this cost by employing explicit addition formulas for GHCs.

B. Implementation Results and Discussion

We have selected the Xilinx Virtex-5 xc5vlx110-2ff1760
device as the target FPGA. In terms of available resources,
xc5vlx110-2ff1760 contains 17 280 slices (69 120 LUTs
and 69 120 registers), 128 BlockRAMs (BRAMs), and 800
input/output (I/O) pins. Each slice contains four flip-flops (FFs)
and four LUTs [41].

Choosing Xilinx Virtex-5 FPGA would increase the perfor-
mance and speed of our design. This is mainly due to the avail-
ability of six-input LUTs and large word size in its high 36-Kb
BRAMs. Having six-input LUTs helps the design to be imple-
mented with fewer logic levels and availability of large word
size makes it easier to build large memory arrays (for storing
large-bit field elements over) with less routing delay.
As a result, using Xilinx Virtex-5 FPGAs increases the speed
by reducing both the critical-path delay and number of clock
cycles (latency). Note that for the comparison purpose, we also
implement the proposed design on a Xilinx Virtex-4 xc4vlx100
device (which offers four input LUTs) and compared it with the
counterparts.

The presented architecture for elliptic curve crypto-processor
of Section IV is coded in VHDL and synthesized for different
digit sizes using XST of
Xilinx ISE 12.1 design software. The optimization goal for syn-
thesize is set to the default value (i.e., speed). The results of the
timing analysis of the implementations after the post place and
route are reported in Tables VI and VII for BECs and GHCs, re-
spectively. The number of required clock cycles for computing
the point multiplication is also presented in these tables for the
different digit sizes and different curve parameters, i.e.,

, , and . Moreover, the total latencies are found
from (8) using as the summation of the required clock
cycles for the initialization, the total PA and PD in of the point
multiplication, and the conversion as obtained from Table III.

The area requirements are stated in terms of the number of oc-
cupied slices (including LUTs and FFs) as reported in Tables VI
and VII. Note that the proposed architecture for the FAU is the
same for binary Edwards (with and) and gen-
eralized Hessian curves, but they only differ in the control logic
provided by instruction program (in ROM) and the number of

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1463

TABLE VI
IMPLEMENTATION RESULTS FOR BECS OVER �� �� � AND� � �

TABLE VII
IMPLEMENTATION RESULTS FOR GHC OVER �� �� � AND� � �

TABLE VIII
IMPLEMENTATION RESULTS FOR BGC OVER �� �� � AND� � �

required registers. Therefore, the area is equal for theses curves
as presented in Tables VI and VII. The fastest point multipli-
cations are computed for digit size at approximately
17.3 s and 15.3 s for binary Edwards and generalized Hes-
sian curves, respectively. The proposed architecture requires al-
most 6536 occupied slices (17 432 LUTs and 5053 FFs) and 6
BRAM blocks for . Similar implementation results are
found for binary generic curve as illustrated in Table VIII.

It is noted that, from our implementations results
(Tables VI–VIII), one can see that the slices occupation is
usually larger than the number of LUTs divided by four
() for Virtex-5. This is because the ISE design soft-
ware starts the unrelated logic packing after the CLB pack
factor (100% for the default value) is reached [41]. A higher
percentage number will result in lower density packing and
a lower pack factor results in a denser design with a difficult
place and route and consequently higher delays.

Several implementations of ECC have been published in the
literature targeting various applications with different require-
ments in terms of time–area tradeoffs. The implementation re-
sults of this work are reported in Table IX and are compared with
the results for generic and Koblitz curves available in the litera-
ture. We note that because different curves and different FPGA
technologies are used to implement different crypto-processors,
meaningful quantitative comparisons of the area and time re-
sults are difficult. Therefore, as mentioned above we have im-

plemented the crypto-processor for on Virtex-4 device
and its area and timing results are reported in Table IX. More-
over, as the finite field multiplier plays an important role in de-
termining the performance of an ECC crypto-processor, we dis-
cuss the performance results in terms of efficiency of the finite
field multiplier and fairly compared them with the counterparts.

It is worth mentioning that in these implementations, we
have chosen normal basis as it offers free repeated squarings.
Also, we could have taken more advantages of normal basis
as it is utilized for Koblitz curves in [6] and [9]. However, by
using normal basis, we have eliminated the extra hardware
for squarings for the proposed ECC crypto-processor over
BECs and GHCs. Moreover, recovering final coordinates
of (represented in -coordinates) requires several
repeated squarings and Half-trace computation, that their costs
are reduced by using normal basis.

In [6], Järvinen et al. have presented the use of paralleliza-
tion on different levels of point multiplication and have exten-
sively studied the speed and area requirements for NIST -163
and -163 curves. For generic curves, the time-area perfor-
mances are investigated using one, two, and four digit-level MO
[25] multipliers over . As discussed in [23], the area
complexity of a digit-level MO multiplier and its improved ver-
sion is larger than the one presented in this work. Also, as one
can realize, time complexity of our presented multiplier is less
than digit-level MO multiplier as compared in [23]. In addi-

1464 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

TABLE IX
COMPARISON OF ECC IMPLEMENTATIONS ON AN FPGA OVER �� �� �

tion, we have reached higher clock frequencies with LUT-based
pipelining techniques as well. Further, the implementations in
[6, Table VII] for generic curves over require higher
latency and subsequently larger computation time.

In [12], the same digit-level MO multiplier, has been used
for point multiplication on Koblitz curves and has been com-
pared with the results of using polynomial basis. The authors
indicated that implementation results using polynomial basis is
faster than the ones using normal basis having the same area
[12, Table IV]. They have also taken advantage of operation in-
terleaving in their implementations on Koblitz curves. However,
it is worth mentioning that the large area consumption of the im-
plementations results of using normal basis in [12] might be as
a result of large number of pipelined registers and the imple-
mentations results of [12] can be improved using our proposed
scheme. Therefore, if one employs our presented multiplier ar-
chitecture incorporating the techniques proposed in [12], the re-
sults of point multiplication using normal basis would be com-
parable with the ones using polynomial basis. We further note
that our implementations are not claimed to be the best possible
and faster than counterparts using polynomial basis.

The point multiplication scheme proposed in [7] by Kim
et al.. has been performed on NIST -163 generic curve
employing digit-serial GNB multipliers (proposed by
Kwon et al. in [22]) with Montgomery’s ladder on a four-input
Virtex-4 FPGA. The maximum clock frequency that is reported
for the ECC crypto-processor is 143 MHz achieved
with digit-size . Therefore, as the multiplier determines
the upper bound for critical-path delay, one can estimate
that the maximum operating frequency for the multiplier is
143 MHz. However, our presented multiplier operates at
196.5 MHz on Virtex-4 FPGA with only one level of pipelining.
We further note that the proposed LUT-based pipelining tech-
nique has significant increase on . Moreover, the latency
of point multiplication (i.e., the number of clock cycles) in [7]
is employing
three multipliers and hence the total time achieved for point
multiplication is 10.11 s
with occupying 24 363 slices. Our implementation on Virtex-4
FPGA uses only two GNB multiplier and computes a point

Fig. 7. Implementation results of point multiplication for BECs, GHCs, and
BGCs reported in Tables VI–VIII on Xilinx Virtex-5 xc5vlx110-2ff1760 FPGA
device. The points are related to digit sizes of � � ��� ��� ��� ������		���.

multiplication in 17.2 s with using only 12 834 slices as
reported in Table IX.

Table IX shows a number of related designs (on NIST
-163 and -163) which are implemented on different FPGA

platforms using different types and number of multipliers.
To have a fair comparison, we have implemented the ECC
crypto-processor based on NIST -163 generic curve using
the presented GNB multiplier for different digit sizes. Data
dependency graph of point multiplication of this curve has
been illustrated in Fig. 2(b) as its latencies are summarized in
Table III. Their implemented results are tabulated in Table VIII.

In Fig. 7, the implementation results are illustrated and point
multiplication time is plotted versus area (number of occupied
slices). As shown in this figure, increasing the area, as a re-
sult of increasing digit-size , results in faster point multipli-
cations. It is noted that larger digit sizes than 55, i.e., ,
are not efficient for the proposed architecture as it is seen from
Fig. 7. Therefore, incorporating multiple smaller multipliers is
more efficient than using of a large multiplier. As illustrated in

AZARDERAKHSH AND REYHANI-MASOLEH: EFFICIENT FPGA IMPLEMENTATIONS OF POINT MULTIPLICATION USING GNB 1465

Table VIII and Fig. 7, our results indicate that the point mul-
tiplication over BGCs is faster than BECs and GHCs. This is
because it has smaller latency which requires fewer number of
clock cycles.

We further note that the implementations of point multiplica-
tion over binary generic curves (short Weierstraβ) require spe-
cial hardware to handle point at infinity. Then, during each point
operation, a check should be performed to ensure that the re-
sulting point is not at infinity. It should be noted that the pro-
posed ECC crypto-processor for BECs and GHCs works for
all of the input pairs without any changes (i.e., it is complete).
However, exceptional cases should be tested separately for the
case employing NIST generic and Koblitz curves which requires
extra hardware and time.

VI. CONCLUSION

In this paper, we have investigated the hardware implementa-
tion of point multiplication on BECs and GHCs over
using GNB. We have presented a pipelined digit-level Gaussian
normal basis multiplier which operates in higher clock fre-
quencies and studied its time–area tradeoffs for different digit
sizes. The effect of parallelization using two multipliers for
computing the point addition and point doubling on BECs
and GHCs has been investigated. For point multiplication, the
widely used Montgomery’s ladder has been incorporated for
differential -coordinates. The proposed architecture has been
implemented on FPGA to obtain the optimum digit-size. Also,
we have examined the completeness of the point operations.
For BECs and GHCs, the fastest point multiplication achieved
with choosing . The proposed architecture requires 6536
occupied slices (17 432 LUTs and 5053 FFs), and computes a
single point multiplication in 17.3 s and 15.3 s for BECs and
GHCs, respectively. Our implementation results also indicate
that the point multiplication over BGCs is faster than over
BECs and GHCs. On the other hand, the point multiplication
over BECs and GHCs is complete.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments. The authors would also like to thank
Canadian Microelectronics Corporation (CMC) Microsystems
for providing the required infrastructure and CAD tools that
have been used in this work.

REFERENCES

[1] U.S. Dept. of Commerce/NIST, Digital Signature Standard, FIPS Pub-
lications 186-2, , Jan. 2000.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. Adv.
Cryptol., 1986, pp. 417–426.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Computation, vol.
48, pp. 203–209, 1987.

[4] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customizable elliptic
curve cryptosystems,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 13, no. 9, pp. 1048–1059, Sep. 2005.

[5] B. Ansari and M. Hasan, “High-performance architecture of elliptic
curve scalar multiplication,” IEEE Trans. Comput., vol. 57, no. 11, pp.
1443–1453, Nov. 2008.

[6] K. Järvinen and J. Skyttä, “On parallelization of high-speed processors
for elliptic curve cryptography,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 16, no. 9, pp. 1162–1175, Sep. 2008.

[7] C. H. Kim, S. Kwon, and C. P. Hong, “FPGA implementation of high
performance elliptic curve cryptographic processor over �� �� �,”
J. Syst. Architecture, vol. 54, no. 10, pp. 893–900, 2008.

[8] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-
curve-based security processor for RFID,” IEEE Trans. Comput., vol.
57, no. 11, pp. 1514–1527, Nov. 2008.

[9] V. S. Dimitrov, K. U. Järvinen, M. J. , Jr, W. F. Chan, and Z. Huang,
“Provably sublinear point multiplication on Koblitz curves and its
hardware implementation,” IEEE Trans. Comput., vol. 57, no. 11, pp.
1469–1481, Nov. 2008.

[10] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16,
no. 2, pp. 198–205, Feb. 2008.

[11] M. Keller, A. Byrne, and W. P. Marnane, “Elliptic curve cryptography
on FPGA for low-power applications,” ACM Trans. Reconfigurable
Technol. Syst., vol. 2, no. 1, pp. 1–20, 2009.

[12] K. Järvinen and J. Skyttä, “Fast point multiplication on Koblitz curves:
Parallelization method and implementations,” Microprocessors Mi-
crosyst., vol. 33, no. 2, pp. 106–116, 2009.

[13] Y. Zhang, D. Chen, Y. Choi, L. Chen, and S.-B. Ko, “A high per-
formance ECC hardware implementation with instruction-level paral-
lelism over�� �� �,” Microprocessors Microsyst.—Embedded Hard-
ware Design, vol. 34, no. 6, pp. 228–236, 2010.

[14] D. Bernstein, T. Lange, and R. Farashahi, “Binary Edwards curves,” in
Proc. Workshop Cryptograph. Hardware Embedded Syst., 2008, vol.
5154, pp. 244–265.

[15] R. Farashahi and M. Joye, “Efficient arithmetic on Hessian curves,”
in Proc. 13th Int. Conf. Practice Theory of Public Key Cryptography,
2010, pp. 243–260.

[16] U. Kocabas, J. Fan, and I. Verbauwhede, “Implementation of binary Ed-
wards curves for very-constrained devices,” in Proc. 21st Int. Conf. Ap-
plication-specific Syst. Architectures Processors, 2010, pp. 185–191.

[17] L. Batina, J. Hogenboom, N. Mentens, J. Moelans, and J. Vliegen,
“Side-channel evaluation of FPGA implementations of binary Edwards
curves,” in Proc. 17th IEEE Int. Conf. Electron., Circuits Syst., 2010,
pp. 1255–1258.

[18] R. Moloney, A. O’Mahony, and P. Laurent, “Efficient implementa-
tion of elliptic curve point operations using binary Edwards curves,”
Cryptology ePrint Archive Rep. 2010/208, 2010. [Online]. Available:
http://eprint.iacr.org/

[19] J. López and R. Dahab, “Fast multiplication on elliptic curves over
�� �� � without precomputation,” in Proc. Workshop Cryptograph.
Hardware Embedded Syst., 1999, pp. 316–327.

[20] M. A. Hasan, “Look-up table-based large finite field multiplication in
memory constrained cryptosystems,” IEEE Trans. Comput., vol. 49, no.
7, pp. 749–758, Jul. 2000.

[21] S. Kumar, T. Wollinger, and C. Paar, “Optimum digit serial �� �� �
multipliers for curve-based cryptography,” IEEE Trans. Comput., vol.
55, no. 10, pp. 1306–1311, Oct. 2006.

[22] S. Kwon, K. Gaj, C. H. Kim, and C. P. Hong, “Efficient linear array
for multiplication in �� �� � using a normal basis for elliptic curve
cryptography,” in Proc. Workshop Cryptograph. Hardware Embedded
Syst., 2004, pp. 76–91.

[23] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field
multiplication using Gaussian normal bases,” IEEE Trans. Comput.,
vol. 55, no. 1, pp. 34–47, Jan. 2006.

[24] R. Dahab, D. Hankerson, F. Hu, M. Long, and M. Lopez, “Software
multiplication using Gaussian normal bases,” IEEE Trans. Comput.,
vol. 55, no. 7, pp. 974–984, Jul. 2006.

[25] J. Massey and J. Omura, “Computational Method and Apparatus for
Finite Arithmetic,” U.S. Patent 4 587 627, 1986.

[26] B. Sunar and Ç. K. Koç, “An efficient optimal normal basis type II
multiplier over �� �� �,” IEEE Trans. Comput., vol. 50, no. 1, pp.
83–87, Jan. 2001.

[27] S. Kwon, “A low complexity and a low latency bit parallel systolic
multiplier over �� �� � using an optimal normal basis of type II,” in
Proc. 16th IEEE Symp. Comput. Arithmetic, 2003, pp. 196–202.

[28] J. Gathen, A. Shokrollahi, and J. Shokrollahi, “Efficient multiplication
using type 2 optimal normal bases,” in Proc. 1st Int. Workshop Arith-
metic of Finite Fields, 2007, vol. 4547, pp. 55–68.

[29] H. Fan and M. Hasan, “Subquadratic computational complexity
schemes for extended binary field multiplication using optimal normal
bases,” IEEE Trans. Comput., vol. 56, no. 10, p. 1435, Oct. 2007.

[30] D. Bernstein and T. Lange, “Type-II optimal polynomial bases,” in
Proc. 3rd Int. Workshop Arithmetic Finite Fields, 2010, vol. 6078, pp.
41–61.

1466 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

[31] R. Azarderakhsh and A. Reyhani-Masoleh, “A modified low com-
plexity digit-level Gaussian normal basis multiplier,” in Proc. 3rd Int.
Workshop Arithmetic of Finite Fields, 2010, vol. 6087, pp. 25–40.

[32] A. Menezes, I. Blake, S. Gao, R. Mullin, S. Vanstone, and T.
Yaghoobian, Applications of Finite Fields. Boston, MA: Kluwer,
1993.

[33] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge, U.K.: Cambridge Univ. Press, 1994.

[34] IEEE Standard Specifications for Public-Key Cryptography, IEEE Std
1363-2000, Jan. 2000.

[35] J. Fan, D. Bailey, L. Batina, T. Guneysu, C. Paar, and I. Verbauwhede,
“Breaking elliptic curves cryptosystems using reconfigurable hard-
ware,” in Proc. 20th Int. Conf. Field Programmable Logic and
Applications, 2010, pp. 133–138.

[36] D. Hankerson, S. Vanstone, and A. Menezes, Guide to Elliptic Curve
Cryptography. New York: Springer-Verlag, 2004.

[37] P. Montgomery, “Speeding the pollard and elliptic curve methods of
factorization,” Math. Computation, pp. 243–264, 1987.

[38] D. J. Bernstein, “Batch binary Edwards,” in Proc. 29th Annu. Int. Cryp-
tology Conf. Adv. Cryptol., 2009, pp. 317–336.

[39] F. Rodriguez-Henriquez, N. Saqib, and A. Díaz-Pérez, “A fast parallel
implementation of elliptic curve point multiplication over �� �� �,”
Microprocessors Microsyst., vol. 28, no. 5–6, pp. 329–339, 2004.

[40] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in�� �� � using normal bases,” Inf. Computing, vol. 78, no.
3, pp. 171–177, 1988.

[41] “Xilinx Virtex-5 Device Data Sheet,” Xilinx, ver. 5.0, Feb. 2009 [On-
line]. Available: www.xilinx.com/support/documentation/virtex-5.htm

[42] E. Brier and M. Joye, “Weierstraβ elliptic curves and side-channel at-
tacks,” in Proc. Int. Conf. Practice Theory Public Key Cryptography,
2002, pp. 183–194.

[43] B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. P. Marnane,
“A hardware analysis of twisted Edwards curves for an elliptic curve
cryptosystem,” in Proc. 5th Int. Workshop Reconfigurable Computing:
Architectures, Tools and Applications, 2009, vol. 5453, pp. 355–361.

[44] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman, “A new addi-
tion formula for elliptic curves over�� �� �,” IEEE Trans. Comput.,
vol. 51, no. 8, pp. 972–975, Aug. 2002.

Reza Azarderakhsh (S’08) received the B.Sc. de-
gree in electrical and electronic engineering from the
Civil Aviation Technology College, Tehran, Iran, in
2002, and the M.Sc. degree in computer engineering
(computer architecture) from Sharif University of
Technology, Tehran, Iran, in 2005. He is currently
working toward the Ph.D. degree in electrical and
computer engineering at the University of Western
Ontario, London, ON, Canada.

From 2004 to 2007, he was a Visiting Instructor
with Civil Aviation Technology College, Tehran,

Iran. In 2006, he won the TOPMED Scholarship and joined the Polytechnic
University of Turin, Turin, Italy for a special double degree program in
Electrical and Electronic Engineering with Sharif University of Technology.
His current research interests include computer architecture, arithmetic of finite
fields, cryptographic hardware, elliptic curve cryptography (ECC), and security
of wireless networks.

Arash Reyhani-Masoleh (M’03) received the B.Sc.
degree in electrical and electronic engineering from
Iran University of Science and Technology, Tehran,
Iran, in 1989, the M.Sc. degree in electrical and elec-
tronic engineering from the University of Tehran,
Tehran, Iran, in 1991, both with the first rank, and the
Ph.D. degree in electrical and computer engineering
from the University of Waterloo, Waterloo, ON,
Canada, in 2001.

From 1991 to 1997, he was with the Department
of Electrical Engineering, Iran University of Science

and Technology, Tehran, Iran. From June 2001 to September 2004, he was with
the Centre for Applied Cryptographic Research, University of Waterloo, Wa-
terloo, ON, Canada, where he was awarded a Natural Sciences and Engineering
Research Council of Canada (NSERC) Postdoctoral Fellowship in 2002. In Oc-
tober 2004, he joined the Department of Electrical and Computer Engineering,
University of Western Ontario, London, ON, Canada, where he is currently a
tenured Associate Professor. Currently, he serves as an associate editor for In-
tegration, the VLSI Journal. His current research interests include algorithms
and VLSI architectures for computations in finite fields, fault-tolerant com-
puting, and efficient and reliable computations for cryptography and error-con-
trol coding.

Dr. Reyhani-Masoleh was the recipient of an NSERC Discovery Accelerator
Supplement (DAS) in 2010. He is a member of the IEEE Computer Society.

