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Abstract—The WG stream ciphers are based on the WG (Welch-Gong) transformation and possess proved randomness properties.

In this paper we propose nine new hardware designs for the two classes of WG(29,11) and WG-16. For each class, we design and

implement three versions of standard, pipelined and serial. For the first time, we use the polynomial basis (PB) representation to design

and implement the WG(29,11) and WG-16. We consider traditional PB multiplier for the WG(29,11), and, the traditional and Karatsuba

multipliers for the WG-16. For efficient field operations, we propose an irreducible trinomial for the WG(29,11). For the WG-16, a new

formulation of its permutation which requires only 8 multipliers is introduced. In these designs, the multipliers in the transforms are

further reduced by utilizing a novel computation for the trace of the multiplication of two field elements. We have implemented the

proposed designs in ASIC using CMOS 65 nm technology. The results show that the proposed standard WG(29,11) consumes less

area and slightly enhances the normalized throughput, compared to the existing counterparts. For the WG-16, throughput of the

proposed pipelined instance outperforms the previous designs. Moreover, the speed of the proposed WG-16 designs meet the peak bit

rates for the 4 G specifications.

Index Terms—Finite fields, linear feedback shift registers, polynomial basis, pseudo random key generators, stream ciphers, trace function,

WG transformation

Ç

1 INTRODUCTION

ASTREAM cipher is a symmetric key crypto-system which
generates a unique key-stream for each secret key,

where the plaintext (or ciphertext) is bitwise XORed with
the generated key to produce the ciphertext (or plaintext).
Stream ciphers are used in different communication appli-
cations, such as, RFID tags [1], bluetooth [2], network proto-
cols (SSL, TLS, WEP and WPA) [3], and 3GPP long term
evolution (LTE) security suite [4], [5].

The eSTREAM project [6] is the most significant effort for
finding secure stream ciphers [7]. The WGð29; 11Þ [8] is a
stream cipher submitted to the hardware profile of phase 2
of this project. The WGð29; 11Þ offers the proved random-
ness properties of the WG family of ciphers [8], [9], [10],
[11]. The two attacks [12], [13] were launched on WGð29; 11Þ
during this project. However, it is noted that the revised
version of the cipher [10] does not suffer the chosen IV (Ini-
tial Value) attack in [12], [14]. Also, as per design, the num-
ber of key-stream bits per a single key/IV pair is strictly less
than the number of key-stream bits required to perform a
linear span attack introduced in [13], [10]. In the literature,
there are many proposed WGð29; 11Þ hardware designs [7],

[8], [10], [15], [16]. The original submission uses normal
basis (NB) representation [8] and hence all of presented
designs until now have used the NB representation [8], [10],
[16]. Among them, the most optimal design is based on the
Type-II optimal normal basis (ONB), which is presented in
[16]. Using the novel trace property presented by the
authors of [16], their design requires only six field multi-
pliers. In this paper, for the first time we consider PB repre-
sentation in the WG stream ciphers. We propose a novel
method for computing the trace of the multiplication of two
field elements represented in the PB. It is noted that the pro-
posed trace method is applicable to any GF ð2mÞ, while the
one presented in [16] only applies to fields where self-dual
bases exist. Based on this trace method, we present a PB-
based hardware design of the WGð29; 11Þ, which uses six
multipliers. Also, pipelined and serialized instances of this
standard design are presented (see Fig. 1). The reported
results for the 65nm CMOS ASIC realization of the pro-
posed standard WGð29; 11Þ design shows smaller area and,
slightly improved normalized throughput, compared to the
best result presented in [16].

Another initiative for designing secure stream ciphers is
the LTE mobile technology. LTE is being established as the
fourth generation (4G) mobile technology, where a flat all
internet protocol (IP) infrastructure has been adopted [17].
This has changed the threat model of the 4G mobile domain
to include the security issues which are applied to the IP
networks [17]. Accordingly, there is a continuous effort
demonstrated by the security specification group of the
third generation partnership project (3GPP-TSG) [18] to
address these security threats [17]. The cipher suite of 4G
LTE consists of two stream ciphers, SNOW 3G and ZUC,
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and the block cipher AES in the counter mode [4], [5]. It is
noted that the randomness of the key-streams generated by
the 4G LTE cryptographic algorithms is hard to analyze
and, more importantly, some weaknesses concerning these
ciphers have already been discovered [19], [20]. Further-
more, some security flaws in the LTE integrity protocols
have been recently recognized [21]. The authors of [17] pro-
pose confidentiality and integrity protection schemes for
securing the 4G network domain against the attack in [21].
These schemes are based on the WG-16 stream cipher. The
WG-16 offers the proved randomness properties of the WG
family of ciphers [17]. In addition, it is secure and resists to
all known attacks [17]. The only WG-16 hardware design,
which uses NB, is presented in [22]. This design is based on
composite field arithmetic and properties of the trace func-
tion in the tower field representation. In this paper, we pro-
pose a new formulation of the WG-16 permutation which
requires 8multiplications compared to 10 in the formulation
of [22]. Furthermore, we have derived a new formulation for
the trace function of the multiplication of two field ele-
ments, based on which a PB-based WG-16 design is pro-
posed using only six multipliers for its transform. Also,
pipelined and serialized versions of this standard design,
are presented and for each design both the traditional PB
and Karatsuba multipliers are considered (see Fig. 1).
According to our ASIC (CMOS 65 nm) implementations,
the proposed pipelined instance of the WG-16 offers double
the throughput, while it slightly reduces the area, compared
to the results reported in [22].

WG ciphers provided guaranteed randomness properties
such as long period, balanced 0-1 distribution, ideal tuple
distribution, exact linear complexity, and delta like autocor-
relation functions, for which no other existing ciphers could
provide [9], [10]. The goal of this paper is to show hardware
implementations for WG ciphers, which in return, provides
trade-offs between randomness properties and performance
for a selection of ciphers for a particular application. In par-
ticular, it is shown that the proposed WG-16 implementa-
tions comply with the throughput requirements of the 4G
domain. The contributions of this paper which include a
novel trace method and nine new designs of the WG stream
ciphers are summarized in Fig. 1. In this figure, the standard
WGð29; 11Þ implementation shows lower space and slightly
improved normalized throughput, compared to the one in
[16]. Also, the pipelined instance of the proposed WG-16
reports higher throughput and lower area compared to the
corresponding ones in [22].

The paper is organized as follows. Section 2 defines the
terms, notations, and gives brief background about the
WGð29; 11Þ and WG-16. Section 3 presents the proposed
WGð29; 11Þ hardware designs based on the PB. Section 4
presents the proposed WG-16 hardware designs based on
the PB. Results based on ASIC implementations are
discussed in Section 5. Section 6 concludes the paper.

2 PRELIMINARIES

The following are notations used throughout this paper to
describe the architectures and operations of the WGð29; 11Þ
and WG-16 ciphers.

� GF ð2Þ, binary finite field with elements f0; 1g.
� GF ð2mÞ, binary extension field with 2m elements.

a ¼ ða0; a1; . . . ; am�1Þ denotes the m-bit row vector
representation of A 2 GF ð2mÞ.

� � represents the addition operator in GF ð2mÞ.
� TrðZÞ ¼ Pm�1

i¼0 Z2i , Z 2 GF ð2mÞ, the trace function
from GF ð2mÞ�!GF ð2Þ.

� Let pðxÞ be an irreducible polynomial of degree m

over GF ð2Þ and let pðaÞ ¼ 0, then f1;a; . . . ;am�1g is
a polynomial basis of GF ð2mÞ over GF ð2Þ.

� The inner product of the vectors a ¼ ða0; a1; . . . ;
am�1Þ and b ¼ ðb0; b1; . . . ; bm�1Þ, ai; bi 2 f0; 1g, 0 �
i < m, is computed as abT ¼ Pm�1

i¼0 aibi 2 f0; 1g,
where T denotes transposition.

� CðZÞ ¼ Zl �Pl�1
i¼0 CiZ

i, Ci 2 GF ð2mÞ is the charac-
teristic polynomial of an l-stages LFSR over GF ð2mÞ,
from which the feedback recurrence relation can be

derived as Ajþl ¼
Pl�1

i¼0 CiAiþj; where j � 0, Ai 2
GF ð2mÞ, and ðA0; A1; . . . ; Al�1Þ is the initial state of
the LFSR.

2.1 Components, Operation, and Parameters of the
WGð29;11Þ and WG-16 Stream Ciphers

2.1.1 Components and Operation

The WGð29; 11Þ and WG-16 are bit-oriented filter genera-
tors. The sequence generator consists of an orthogonalm-bit
WG transform which is applied to the leftmost cell of a
primitive LFSR of degree l over GF ð2mÞ. This can be seen in
the block diagram of Fig. 2. For the WGð29; 11Þ m ¼ 29 and
l ¼ 11, while m ¼ 16 and l ¼ 32 for the WG-16. This con-

struction generates m-sequences of period 2ml � 1 [10], [17].
The WGð29; 11Þ and the WG-16 have three phases of opera-
tion, namely, loading phase (which requires l clock cycles,
with Initial Vector applied to the LFSR’s input), key initiali-
zation phase (which requires 2� l clock cycles, Linear

Fig. 1. Contributions of this work.

Fig. 2. General block diagram for the WG stream ciphers.
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Feedback � Initial Feedback is the input to the LFSR in
Fig. 2), and run phase which generates an output bit in each
clock cycle (for this phase Linear Feedback is the input to
the LFSR). As shown in Fig. 2, the finite state machine
(FSM) controls the three phases of operations.

2.1.2 Parameters of the WGð29;11Þ
The permutation for the WGð29; 11Þ is

WGP29 ¼ 1� Y � Y 210þ1 � Y 220þ210þ1

� Y 220�210þ1 � Y 220þ210�1;
(1)

where Y ¼ 1�Aiþ10 and Aiþ10 is the LFSR’s output. The
WG transform is given as follows [8], [10], [16], [23]

WGT29 ¼ TrðWGP29Þ: (2)

The reader is referred to Section 3.2 of this paper for the
field and characteristic polynomials of the WGð29; 11Þ.

2.1.3 Parameters of the WG-16

The WG permutation is [17]

WGP16 ¼1� Y � Y 211þ1 � Y 211þ26þ1

� Y �211þ26þ1 � Y 211þ26�1;
(3)

where Y ¼ ðAiþ31Þ1;057 � 1 and Aiþ31 is the output of the
LFSR. In [22],WGP16 is computed as

1� Y � Y 211þ1 � Y 211ð211�1Þþ1 � Y 26ðY 211þ1 � Y 211�1Þ; (4)

where

Y 211�1 ¼ Y ðð1þ2Þð1þ22Þþ24Þð1þ25Þþ210 :

It is noted that (4) requires 10 multiplications (including 2

for computing ðAiþ31Þ1;057). The WG transform is WGT16 ¼
TrðWGP16Þ. The characteristic polynomial of the WG-16’s
LFSR1 is [17]

Z32 � Z31 � Z22 � Z9 � v11; (5)

which is primitive over GF ð216Þ, where v is the root of the

GF ð216Þ’s field polynomial

x16 þ x5 þ x3 þ x2 þ 1: (6)

3 ARCHITECTURES OF THE WGð29;11Þ STREAM

CIPHER

The WGð29; 11Þ uses exponentiation over GF ð229Þ, and
therefore, an ONB was assumed to be more efficient for
hardware design, compared to other representations, due to
the free cost of squaring operations [8], [10], [16]. The
authors of [8] propose a direct design of the WGð29; 11Þ
based on ONB using seven multiplications and an inversion

over GF ð229Þ, where the field inversion requires six

multiplications and 28 squarings in GF ð229Þ [24]. In [10], the
authors reduce the field multiplications to only 9. The
author of [15] proposes a design which uses modulo 2

computations and requires 229 bits of ROM to store the pre-
computed WG transform sequence [15]. The authors of [16]
utilize some properties of the trace function for type-II
ONB in order to build the cipher using only six field
multiplications.

In this paper, we propose three PB-based designs for
the WGð29; 11Þ. These designs include a standard architec-
ture, its serial version, and its pipelined version. The serial
version is suitable for low-area applications whereas the
pipelined one is proposed for high-speed applications. To
the best of our knowledge, this is the first implementation
of the WG cipher based on the PB representation. The
parameters of the cipher are chosen carefully for a low
area design. Also, for further area reduction, the proposed
implementation uses properties of the trace function for
PB in order to optimize the WG transform. The proposed
scheme offers smaller area and a slightly higher normal-
ized throughput, compared to the best results presented
in [16], at the expense of a small decrease in the speed.
In this section, first, the WG transform formulations are
derived. This is followed by finding the design parame-
ters. After that, the proposed architecture of the
WGð29; 11Þ is introduced.

3.1 Formulation ofWGT29

Since replacing ðY 220�210þ1Þ with ðY 220�210þ1Þ220 in (1) does
not affect TrðWGP29Þ, therefore

WGT29 ¼ Trð1� Y � Y ðY 25Þ25Þ
þ TrðððY 25Þ25Þ210ðY ðY 25Þ25 � Y 210�1 � ðY 210�1Þ230ÞÞ:

(7)

It is noted that (7) shows the order of computing the squar-
ings in the transform. To reduce propagation delay due to
squarings in the PB, we compute Y 210�1 as follows:

Y 210�1 ¼ ðððY 25þ1Þ2þ1ÞðY 25þ1Þ24ÞððY 25þ1Þ2þ1Þ22 : (8)

The following section introduces the WGð29; 11Þ’s design
parameters.

3.2 Design Parameters

This section presents the design parameters for the pro-
posed PB implementation of the WGð29; 11Þ. In what fol-
lows, the field polynomial, the squaring matrices, the
LFSR’s characteristic polynomial, the trace vector, and the
formulation for directly computing the trace of the multipli-
cation of two field elements are presented.

3.2.1 Field Polynomial and Squaring Matrices

To compute (7) and (8), field multiplications and squarings
are used. In the original design of the WGð29; 11Þ [8] and all
reported schemes to date [10], [16], NB representation is
used. The squaring is obtained by cyclic shift in NB and
hence it is free in hardware implementation. However, such
an operation in PB is not free. On the other hand, field

1. For the field polynomial (6), the multiplication with the constant
v11 in (5) requires only 33 XOR gates and a delay of 2TX .
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multiplication using PB requires lower complexity than the
one using NB. In PB, the complexities of these operations
depend on the irreducible polynomial that constructs the
finite field. It is known that irreducible trinomials define
PBs with low space and time complexities [25], [26], [27].

For GF ð229Þ, the following two trinomials are irreducible
over GF ð2Þ

t1ðxÞ ¼ x29 þ x2 þ 1; (9)

and its reciprocal function t2ðxÞ ¼ x29ðt1ðx�1ÞÞ ¼ x29 þ x27 þ
1: Between t1 and t2, t1 offers operations with lower space
complexities. Specifically, the t1-based PB multiplier

requires 292 ¼ 841 ANDs and 292 � 1 ¼ 840 XORs with a
propagation delay of TA þ 7TX [25], where TA and TX are
the delays in an AND and an XOR, respectively. In the fol-
lowing, we obtain the complexities of the squarings using
the PB defined by (9).

Let A be an arbitrary element of GF ð2mÞ represented in

the PB, and let V ¼ A2. Denote by a and v, the row vector
representations of A and V w.r.t the PB, respectively. Then,
v ¼ aS, where S is the binary m�m squaring matrix whose

entries are either 0 or 1 [27]. In general, W ¼ A2e is obtained
as w ¼ aSe. This formulation involves m inner products
aSe

j , where Se
j denotes the jth column vector of Se,

0 � j < m. Let NX denote the number of XOR gates.
Then, the hardware realization of aSe requires NX ¼P

HðSe
j
Þ>1;0�j<mðHðSe

jÞ � 1Þ and TSe ¼ dlog2 ðuÞeTX, where

TSe is the propagation delay for computing aSe, HðVÞ is the
Hamming weight of a vector V, and u ¼ maxHðSe

j
Þ>1

fHðSe
jÞ j 0 � j < mg.

For the PB defined by (9), the squaring matrix S is shown
in Fig. 3. Table 1 lists the space and time complexities,
before and after signal reuse, for the different squaring
matrices used in the WGð29; 11Þ’s implementations.

3.2.2 Characteristic Polynomial of the LFSR

A primitive characteristic polynomial of degree 11 over

GF ð229Þ is required in order for the WGð29; 11Þ to produce

key-streams with maximal period of 2319 � 1 [8], [10]. For
space efficiency, the following primitive pentanomial is
selected:

Z11 � Z6 � Z2 � Z � a; (10)

where a 2 GF ð229Þ is a root of the defining polynomial (9).
The primitive property of the polynomial has been verified
using the “is_primitive()” method provided by the Sage

Notebook online tool [28]. Let fAi; 0 � i < 2319 � 1g denote
the sequence generated by (10). According to [16], the fol-
lowing recurrence relation generates the sequence

fBi ¼ Ai � 1; 0 � i < 2319 � 1g:

Bjþ11 ¼ ðBjþ6 �Bjþ2 �Bjþ1 � aBjÞ � a; j � 0; (11)

where fBi ¼ Ai � 1; 0 � i � 10g is the initial state of the
LFSR. By constructing the LFSR based on (11) instead of
(10), then, one obtains Y ¼ 1�Aiþ10 ¼ Biþ10 in (7) and (8).
In addition, notice that (11) requires only three field addi-
tions, one field multiplication with a (a constant), and one
NOT gate (for addition with a).2

3.2.3 Trace Vector

Let the elements in GF ð2mÞ be represented in the PB which
is defined by an irreducible polynomial fðxÞ of degree m
over GF ð2Þ. Then, the trace of an element A 2 GF ð2mÞ is

obtained as TrðAÞ ¼ atT , where t ¼ ðt0; t1; . . . ; tm�1Þ is a

unique and constant m-bit vector such that ti ¼ TrðaiÞ 2
GF ð2Þ; 0 � i < m and fðaÞ ¼ 0 [27]. Therefore, for the PB

f1;a; . . . ;a28g defined by (9), one obtains ti ¼ 1 for i 2
f0; 27g and ti ¼ 0 otherwise. Thus,

TrðAÞ ¼ a0 þ a27: (12)

3.2.4 Trace of Multiplication of Two Field Elements

The authors of [16] present a method for the direct computa-
tion of the trace of the multiplication of two elements repre-
sented in the type-II ONB. In the following, a formulation
for the direct computation of the trace of the multiplication
of two field elements represented in PB is constructed. This
method is then used to optimize the space complexity of the
PB based implementations of the WGð29; 11Þ and the WG-
16 (see Sections 3.3 and 4.4).

Fig. 3. The matrix S for WG 29; 11ð Þ.

TABLE 1
The Space and Time Complexities of the Different Squaring

Matrices Used in the WG 29; 11ð Þ Stream Cipher

No Sig. Reuse Sig. Reuse

XOR PD XOR PD

S, S30 15 TX 15 TX

S2 37 2TX 30 2TX

S4 118 3TX 65 3TX

S5 182 4TX 97 4TX

S10 374 5TX 214 5TX

S20 338 5TX 200 5TX

PD ¼ Propagation delay.

2. For the field polynomial (9), one can easily find that the multipli-
cation with the constant a requires only one XOR gate with a propaga-
tion delay TX .
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Proposition 1. Consider the m-bit trace vector t ¼ ðt0; . . . ;
tm�1Þ, ti ¼ TrðaiÞ, where a is the root of the defining polyno-
mial of GF ð2mÞ over GF ð2Þ [27]. For any two field elements
A ¼ ða0; . . . ; am�1Þ and B ¼ ðb0; . . . ; bm�1Þ, let C ¼ AB 2
GF ð2mÞ. Then, we have:

TrðCÞ ¼
Xm�1

i¼0

ti
Xi

j¼0

ai�jbj þ
Xm�1

i¼0

ti
Xm�2

k¼0

qk;i
Xm�1

j¼kþ1

am�jþkbj;

(13)

where Qðm�1Þ�m ¼ ½qk;i� is the reduction matrix and,
Uðm�1Þ�m ¼ ½uk;j� and Lm�m ¼ ½li;j� are as follows [25]:

U ¼

0 am�1 am�2 	 	 	 a2 a1
0 0 am�1 	 	 	 a3 a2
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 	 	 	 am�1 am�2

0 0 0 	 	 	 0 am�1

2
666664

3
777775
;

and

L ¼

a0 0 0 	 	 	 0 0
a1 a0 0 	 	 	 0 0
a2 a1 a0 	 	 	 0 0

..

. ..
. ..

. . .
. ..

. ..
.

am�2 am�3 am�4 	 	 	 a0 0
am�1 am�2 am�3 	 	 	 a1 a0

2
66666664

3
77777775
:

Proof. Let b ¼ ðb0; . . . ; bm�1Þ and c ¼ ðc0; . . . ; cm�1Þ be the
vector representations of B and C, respectively, then,
from [25] one has

cT ¼ LbT þQTUbT ; (14)

where QT is the transpose of Q. We have the following
computations:

TrðCÞ ¼ ctT ¼ ðLbT ÞT tT þ ðQTUbT ÞT tT

¼
Xm�1

i¼0

Xm�1

j¼0

li;jbjti þ
Xm�1

i¼0

Xm�1

j¼0

Xm�2

k¼0

qk;iuk;jbjti

¼
Xm�1

i¼0

ti
Xi

j¼0

li;jbj þ
Xm�1

i¼0

ti
Xm�2

k¼0

qk;i
Xm�1

j¼kþ1

uk;jbj;

where the last result is obtained by noticing that li;j ¼ 0
for j > i and uk;j ¼ 0 for j � k [25], and by replacing li;j
and uk;j with the corresponding entries from L and U,
respectively, one obtains (13). tu
The hardware realization of (13) requires n ANDs,

n� 1 XORs, and a propagation delay of TA þ dlog2ðnÞeTX,
where n ¼ P

ti 6¼0ðiþ 1Þ þP
ti 6¼0;qk;i 6¼0ðm� k� 1Þ is the

upper bound of the number of terms ðai�jbjÞ and
ðam�jþkbjÞ in (13). It is noted that if t and Q have low
Hamming weights, then, the computation of TrðABÞ
using (13) becomes more efficient (in terms of space) than
the straight forward method. In what follows, the realiza-
tion of (13) for the WGð29; 11Þ is derived.

Corollary 1. Let f1;a; . . . ;a28g be the PB of GF ð229Þ over
GF ð2Þ which is defined by (9). Then, the trace of the multipli-

cation of two field elements A ¼ P28
i¼0 aia

i and B ¼P28
i¼0 bia

i

is computed as follows:

TrðABÞ ¼ ða0 þ a27Þb0 þ
X25
j¼1

ða27�j þ a29�jÞbj

þ ða1 þ a26Þb28 þ
X27
j¼26

ða27�j þ a29�j þ a54�jÞbj:

(15)

Proof. It is noted that t has only two nonzero components,
t0 and t27 (see Section 3.2.3). We have computed the Q
(reduction) matrix for the field polynomial (9) and found
that the only nonzero entries in the first and the 28th col-
umns of this matrix are q0;0, q27;0, q25;27, and q27;27. Hence,
(15) results from substituting these values in (13). tu
It is noted that the realization of (15) requires 29 AND

and 59 XOR gates with a time delay of TA þ 6TX .

3.3 Architecture and FSM

3.3.1 Architecture of the WGð29;11Þ Cipher
The PB (defined by (9)) based architecture of the
WGð29; 11Þ, according to the WGT29 formulations in (7)
and (8), and the linear recurrence (11), is shown in Figs. 4a
and 4b. The squaring matrices are implemented using the
signal reuse constructions, the complexities of which are
presented in Table 1. The complement operator, i.e. 
,
invert the first bit of the input, which requires only one
NOT gate. Notice that aBi, which is required for generating
the LFSR feedback signal, is stored in the right most cell of

the LFSR (i.e. B
0
i) as shown in Fig. 4a. This is done to reduce

the propagation delay through the LFSR feedback by one
multiplier. This construction avoids having the LFSR’s criti-
cal path constraining the speed of the cipher when pipelin-
ing is applied to the transform.

The finite state machine (FSM) controls the cipher during
three different phases of operation (see Section (3.3.2)). Dur-
ing the load phase, the LFSR shifts at each clock cycle,
where its leftmost cell is loaded with 1� IV (IV is the initial
vector).

It is noted that the initial feedback signal IF ¼ WGP29,
which is needed for initialization phase, is missing in
Fig. 4a. This is a result of computing WGT29 according to

(7) using (15). Let q ¼ 210 � 1, r1 ¼ 210 þ 1, r2 ¼ 220 þ r1,

r3 ¼ 220 � q, and r4 ¼ 220 þ q. Therefore, the WGP29 in (1)
can be written as 1� Y � Y r1 � Y r2 � Y r3 � Y r4 , and is
recovered using serial computation over three clock cycles
as described in Table 2. During the initialization phase, the
LFSR shifts once every three clock cycles and loads its left-

most cell with IF � LF , where LF ¼ LF � 1 and LF is the
original linear feedback given by (10).

In the running phase, the LFSR updates its state in each
clock cycle, where Biþ10 is loaded with LF . In Fig. 4a, the
keystream bits are obtained from XORing Trð1� Y � Y r1Þ
with TrðY r2 � ðY r3Þ220 � Y r4Þ. Trð1� Y � Y r1Þ is the result
of XORing Trð1� Y Þ and TrðY r1Þ. Trð1� Y Þ and TrðY r1Þ are
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produced by applying operator Trð�Þ to 1� Y and Y r1 ,
respectively. The operator Trð�Þ generates its output accord-
ing to (12). Y r1 is generated by multiplying Y with Y 210 in

GF ð229Þ (by setting ctrl0 ¼ ctrl1 ¼ 0 for the running phase

in Fig. 4a). Y is the output Biþ10 of the LFSR and Y 210 is

obtained from the squarer S5 operating on Y 25 , which in

turn, is available from the generator of Y 210�1 (see Fig. 4b).

1� Y is the addition of Y 2 GF ð229Þ with the unity element
1 ¼ ð1; 0; 0; . . . ; 0Þ represented w.r.t. PB. Thus, 1� Y results
from inverting the least significant bit of Biþ10 by the com-

plement operator 
. TrðY r2 � ðY r3Þ220 � Y r4Þ is generated

by applying (15) to Y 220 and ðY r1 � Y q � Y 230qÞ. The signal

Y 220 is the result of S10 operating on Y 210 . Signal

Y r1 � Y q � Y 230q is the bitwise XOR of Y r1 , Y q, and Y 230q,

where Y 230q is obtained from S30 operating on Y q and Y q is
generated as presented in Fig. 4b.

3.3.2 The Finite State Machine

The architecture of the FSM is shown in Fig. 5. The FSM con-
trols the inputs to the LFSR during the three phases of oper-
ations through signals ph0 and ph1. As presented in Table 3
for the column of Fig. 4a the loading phase takes 11 clock
cycles followed by the initialization phase which stays for
33þ 33 ¼ 66 clock cycles, then starts the run phase. The
FSM is built from a 2-bit binary counter, an 11-bit 1-hot
counter, and a 3-bit 1-hot counter. The first counter gener-
ates ph0 and ph1. The 11-bit counter triggers the clock of
the 2-bit counter, every 11 counts, during the loading and
initialization. The 3-bit counter, generates ctrl0 and ctrl1,

Fig. 4. a) Architecture of the WGð29; 11Þ stream cipher. Trð�Þ generates
the trace of a GF 229ð Þ element (see Section 3.2.3). Trð$Þ generates the
trace of the multiplication of two GF 229ð Þ elements using (15). Y is the
output of the LFSR represented by (11). b) Implementation of Y q

(q ¼ 210 � 1) based on (8). An arrow represents a register which is
inserted for pipelining. A number n under a register means it is clocked
at end of the nth clock cycle during initialization phase. A zero under a
register indicates that the register’s clock input is always enabled during
the run phase. r1 ¼ 210 þ 1, r2 ¼ 220 þ 210 þ 1, r3 ¼ 220 � 210 þ 1, and
r4 ¼ 220 þ 210 � 1.

Fig. 5. FSM for the PB based implementation of the WG 29; 11ð Þ stream
cipher.

TABLE 2
Computation of the IF ¼ WGP29 Signal over Three Clock Cycles during the Initialization Phase

ctrl0 ctrl1 Output Next State

MUX # 1 MUX # 2 MUX # 3 Register 1 Register 2

0 0 Y 210 Y Y � 1 Y r1 Y r1 � Y � 1

1 0 Y r1 � Y q
Y 220 Y r1 � Y � 1 Y r4 � Y r2 Y r4 � Y r2�

Y r1 � Y � 1

0 1 Y 210q Y Y r4 � Y r2� Y r3 Y r4 � Y r3�
Y r1 � Y � 1 Y r2 � Y r1�

Y � 1

ctrl0 and ctrl1 are generated by the FSM.WGP29 is the next state of Register 2 in stage 3. Next state of Register 3 is always Y q. Rows are listed
in order of computation stages (first to last).
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and triggers the clock of the 11-bit counter as well as the
clock of the LFSR, every three counts, during initialization.

3.4 Serialized Implementation of the PB Based
WGð29;11Þ

3.4.1 Architecture of the Serialized WGð29;11Þ
Here we present a serialized WGP29/WGT29 design for
area constrained applications. The serial WGð29; 11Þ which
is proposed in this section has the same LFSR, compared to
the standard design in Fig. 4a; however, the WG transform
and the FSM are modified. Fig. 6 presents the proposed
serial WGP29=WGT29 architecture. In this architecture,
only one multiplier is used. The computations of the differ-
ent variables used in (7) and (8) are accomplished sequen-
tially according to Table 4.

It is noted that no changes are required for the loading
phase of the serial WGð29; 11Þ. However, in the architec-
ture of Fig. 6, an initialization round takes seven clock
cycles to generate the WGP29 signal. The LFSR is updated
at the eighth clock cycle. During the run phase, a stream
bit is produced every six cycles. During these two phases,
the multiplexers provide the inputs to the multiplier and
the adder. The multiplexers’ inputs are multiplexed by
selectors m0-m4. The three registers are clocked as it is
specified by the clocking table in Fig. 6. The clocking of the
different registers is enabled by means of clock enable sig-
nals (see Section 3.4.2). In this design, the lfsr_clk signal in
Fig. 7a is required in order to clock the LFSR once every
one clock cycle, eight clock cycles, and six clock cycles,

during loading, initialization, and run phases, respec-
tively. This means that the initialization phase takes a total
of 8� 22 ¼ 176 clock cycles. The number of clock cycles
needed for different phases of Fig. 6 are presented in the
corresponding column of Table 3. Moreover, the signal EO
in Fig. 7a is used to enable the keystream output every six
clock cycles during the run phase. These selectors, clock
enables, lfsr_clk, and EO signals are generated through the
FSM, as it is presented next.

3.4.2 FSM for the Serialized PB based WGð29; 11Þ
Fig. 7a is a block diagram for the FSM which is used for the
serialized PB based WGð29; 11Þ. The FSM controls the
inputs to the LFSR during the three phases of operations.
As shown in Table 3 for Fig. 6, the loading phase takes 11
clock cycles followed by the initialization phase which stays
for 176 clock cycles, then starts the run phase. The FSM is
built from a 2-bit binary counter, an 11-bit 1-hot counter, an
8-bit 1-hot counter, and a 6-bit 1-hot counter. The 2-bit
counter generates ph0 and ph1 according to Table 3. The
11-bit counter triggers the clock of the 2-bit counter, every
11 counts, during the loading and initialization. The 8-bit
counter, generates the clock enable signals and the multi-
plexers’ selectors (see Fig. 6), and triggers the clock of the
11-bit counter as well as the clock of the LFSR, every eight
counts, during initialization. In the run phase, the 6-bit
counter, generates the clock enable signals and the multi-
plexers’ selectors, and triggers the clock of the LFSR, every
six counts. From the starting of the run phase, the 6-bit
counter enables the output of the cipher every 6 counts.

3.5 Pipelined Implementation of the PB Based
WGð29;11Þ

3.5.1 Architecture

Figs. 8 and 4b present the pipelined version of the PB based
implementation of the WGT29. The pipeline has been con-
structed with 10-stages during the run phase and 12-stages
during the initialization phase, in order to achieve a critical
path with only one multiplier. In these figures, the double
headed arrows point to the locations where the registers are
inserted, for the pipeline. The numbers under these arrows
indicate the clock cycles, throughout initialization, during
which the registers will be clock-enabled. A zero below a
register means that its clock input will always be enabled
during the run phase. The clocking of the different registers
in the transform is controlled by means of clock enable sig-
nals (see Section 3.5.2).

TABLE 3
Phase of Operation in the Proposed PB Based WG Designs (Figs. 4A, 6, 8, 11A, 12, and 14) as a Function of the State of the 2-Bit

Binary Counter

2-bit
counter

ph1=ph0 phase of
operation

Number of Clock Cycles for the Proposed Designs

a1 a0 Figure 4a Figure 6 Figure 8 Figure 11a Figure 12 Figure 14

0 0 0=0 Load 11 11 11 32 32 32
0 1 1=1 Init. 33 88 132 96 288 416
1 0 1=1 Init. 33 88 132 96 288 416
1 1 0=1 Run - - - - - -

Fig. 6. Architecture of the serial WGP29/WGT29 implementation for the
PB based design of the WG 29; 11ð Þ. Y ¼ Biþ10 is the LFSR’s output (see
Fig. 4a), r1 ¼ 210 þ 1, r2 ¼ 220 þ 210 þ 1, r3 ¼ 220 � 210 þ 1, and
r4 ¼ 220 þ 210 � 1.
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It is noted that no changes are required for the loading
phase. However, during the initialization and the run
phases, an input signal now requires 12 and 10 clock cycles,
respectively, to propagate to the output of the transform/
permutation. Therefore, for the initialization phase, the
lfsr_clk signal in Fig. 9a triggers the LFSR once every 12
cycles. This means that the initialization phase takes a total
of 12� 22 ¼ 264 clock cycles as presented in Table 3 for
Fig. 8. Also, the multiplexers’ outputs in Fig. 8 are controlled
through the signals ctrl0 and ctrl1 (Fig. 9b) during the ini-
tialization and the run phases. For the run phase, an output
enable signal, EO in Fig. 9a, is used to enable the keystream
output after the first 10 clock cycles. The following section

presents the FSM and show how the different control sig-
nals are derived.

3.5.2 FSM for the Pipelined PB Based Implementation

of the WGð29; 11Þ
Fig. 9a presents the architecture of the FSM which is used
for the pipelined version of the PB based implementation of
the WGð29; 11Þ. Similar to the previously introduced FSMs
in this paper, the FSM controls the inputs to the LFSR dur-
ing the three phases of operations through generating the
signals ph0 and ph1. According to column of Fig. 8 in
Table 3, the loading phase takes 11 clock cycles, followed by
the initialization phase which stays for 264 clock cycles, fol-
lowed by the run phase. The FSM is built from a 2-bit binary
counter, an 11-bit 1-hot counter, and 12-bit 1-hot counter.
The 2-bit counter generates ph0 and ph1 according to

TABLE 4
Steps for Computing theWGP29 andWGT29 in the Serial Implementation of the PB Based WG 29; 11ð Þ Design

Clock Cycle

1 2 3 4

Next State Register 1 Y r1 Y r1 Y r1 Y r1

Register 2 - Y 2þ1
Y
P3

i¼0
2i Y

P4

i¼0
2i

Register 3 1� Y � Y r1 1� Y � Y r1 1� Y � Y r1 1� Y � Y r1

Clock Cycle

5 6 7

Next State Register 1 Y r1 Y r1 Y r1

Register 2 Y q Y q Y q

Register 3 1� Y � Y r1 1� Y� 1� Y � Y r1�
Y r1 � Y r2 � Y r4 Y r2 � Y r3 � Y r4

Y ¼ Biþ10 is the LFSR’s output (see Fig. 4A), r1 ¼ 210 þ 1, r2 ¼ 220 þ 210 þ 1, r3 ¼ 220 � 210 þ 1, r4 ¼ 220 þ 210 � 1, and q ¼ 210 � 1.

Fig. 7. a) Architecture of the FSM for the serialized PB based implemen-
tation of the WG 29; 11ð Þ. b) Generating the clock enable control signals
and the multiplexers’ Selectors. For the clock enable signals, the number
at the output of an OR gate indicates the number of the enabled clock
cycle during the initialization phase. m0, m1, m2, m3, and m4 are the
selectors for the multiplexers.

Fig. 8. Pipelined version of the PB based architecture of the WGT29.
The double headed arrows indicate the location of the inserted registers
for the pipeline. The numbers under the arrows indicate the clock cycles,
throughout initialization, during which the registers will be clock-enabled.
A 0 under an arrow means the clock input of this register will always be
enabled during the run phase.
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Table 3. The 11-bit counter triggers the clock of the 2-bit
counter, every 11 counts, during the loading and initializa-
tion. The 12-bit counter, generates the clock enable signals
and the multiplexers’ selectors (ctrl0 and ctrl1, see Fig. 8),
and triggers the clock of the 11-bit counter as well as the
clock of the LFSR, every 12 counts, during initialization. In
the run phase, signal s in Fig. 9a and the 12-bit counter, gen-
erate the clock enable signals and the multiplexers’ selectors
(fixed at ctrl0=ctrl1=0), respectively. The 12-bit counter ena-
bles the output of the cipher after 10 counts from the start of
the run phase. The LFSR is triggered with each clock cycle
in the run phase.

4 ARCHITECTURES OF THE WG-16 STREAM

CIPHER

The WG-16 cipher has been proposed by the authors of [17]
for securing the 4G’s confidentiality and integrity protection
schemes against the attack in [21]. The only WG-16 hard-
ware design, which uses NB, is presented in [22]. This
design is based on composite field arithmetic and properties
of the trace function in the tower field representation.

Here, we propose a new formulation of the WG-16 per-
mutation which requires eight multiplications compared
to 10 in the formulation of [22]. Based on this formulation,
and using the trace property in (13), this section presents
six hardware architectures of the WG-16, based on the PB
representation for the first time. The six designs include a
standard architecture, its serial version, and its pipelined
version using two different types of multipliers for each
version. The serial version can be used for low-area appli-
cations whereas the pipelined one is suitable for high-
speed applications. The pipelined instance of the pro-
posed scheme offers almost twice the throughput which
is reported by the implementations in [22], at a slightly
smaller area. In what follows, the formulation of the WG-
16 transform followed by the formulations used for squar-
ing and trace function are derived. In addition, the formu-
lation for computing the trace of the multiplication of two
field elements, in the PB, is obtained. Then, the proposed
standard architecture of the WG-16 is shown. The section
ends by presenting serialized and pipelined versions of
the standard design.

4.1 Formulations ofWGP16WGP16 andWGT16WGT16

The WGP16’s formulation in (4) requires 10 multiplications
when the field elements are represented in the PB. In the fol-
lowing, a new formulation is derived which requires eight
multiplications.

Proposition 2. The WG permutation of the WG-16 stream cipher
is computed as follows:

WGP16 ¼ 1� Y � Y 211þ1 � Y 211ð25�1Þþ26

� Y 211þ1ðY 26 � Y 2ð25�1ÞÞ; (16)

where Y ¼ ðAiþ31Þ1;057 � 1, Aiþ31 is the output of the LFSR

described by (5), and Y 25�1 is computed as follows:

Y 25�1 ¼ ðY 22þ1Þ2þ1Y 24 : (17)

Proof. Let e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1,

and e4 ¼ 211 þ 26 � 1 in (3). By noticing that e3 þ
216 � 1 � e3 ðmod216 � 1Þ, then, one obtains

e2 ¼ e1 þ 26; e3 ¼ 211sþ 26; e4 ¼ e1 þ 2s;

where s ¼ 25 � 1, and the proof is completed by taking
Y e1 as a common factor between Y e2 and Y e4 . tu
The WG transform is obtained by taking the trace of (16).

Equation (16) requires eight GF ð216Þ multiplications: 1 for

computing Y 211þ1, 3 for computing Y 25�1, 1 for computing

Y 211ð25�1Þþ26 , 1 for computing Y 211þ1ðY 26 � Y 2ð25�1ÞÞ, and 2

for computing 1� Y ¼ ðAiþ31Þ1;057. In addition to this, (16)

requires seven squarings and five GF ð216Þ additions. For
the transform, the computation of the trace of WGP16 is
required. Section 4.3 presents a method which reduces the
number of multiplications in the WGT16 to only 6 through

computing TrðY 211ð25�1ÞY 26Þ directly from Y 211ð25�1Þ and Y 26 ,

and TrðY ð211þ1ÞðY 26 � Y 2ð25�1ÞÞÞ directly from Y ð211þ1Þ and

Y 26 � Y 2ð25�1Þ, without performing the multiplications.

Fig. 9. a) Architecture of the FSM for the pipelined version of the PB
based implementation of the WG 29; 11ð Þ. b) Generating the clock enable
signals and, ctrl0 and ctrl1 signals. The numbers at the output indicate
the clock cycles, throughout initialization, during which the register will
be clock-enabled. A 0 at the output means the clock input will be always
enabled during the run phase. Signals s and ci, 0 � i � 11, are shown in
Fig. 9a.
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4.2 Squaring Matrices and Trace Vector

Similar to the WGð29; 11Þ, in what follows, the squaring
matrices and the the trace vector for the field polynomial (6)
are presented.

4.2.1 Squaring Matrices

Fig. 10 shows the squaring matrix S for the field polynomial
(6). One can find the required squaring operations for the
WG-16 permutation from (16) and (17). Table 5 lists the
space and propagation delay complexities of the different
squaring matrices used in the WG-16 implementation
(before and after signal reuse).

4.2.2 Trace Vector

The trace vector for the PB f1;a; . . . ;a15g defined by (6) is
t ¼ ðt0; . . . ; t15Þ where ti ¼ 1 for i 2 f11; 13g and ti ¼ 0 oth-

erwise (see Section 3.2.3). Thus, for A 2 GF ð216Þ
TrðAÞ ¼ a11 þ a13: (18)

4.3 Trace of the Multiplication of Two Field
Elements for the PB Based WG-16

The following is the realization of (13) when applied to WG-
16.

Corollary 2. Consider the GF ð216Þ defined by (6) where

f1;a; . . . ;a15g is its PB. Then, the trace of the multiplication

of two field elements A ¼ P15
i¼0 aia

i and B ¼ P15
i¼0 bia

i is
computed as follows:

TrðABÞ ¼
X11
j¼0

ða11�j þ a13�jÞbj þ
X13
j¼12

a13�jbj

þ
X9
j¼7

a22�jbj þ ða12 þ a15Þb10

þ
X13
j¼11

ða22�j þ a25�j þ a26�jÞbj

þ
X15
j¼14

ða22�j þ a25�j þ a26�j þ a29�jÞbj:

(19)

Proof. t has only two nonzero components, t11 and t13 (see
Section 4.2.2). We have computed the Q (reduction)
matrix for the field polynomial (6). Accordingly, the only
nonzero entries for the 12th and the 14th columns of this
matrix are q6;11, q8;11, q9;11, q11;11, q8;13, q10;13, q11;13, and

q13;13. Hence, by replacing these values of ti and qk;i in
(13), we get (19). tu
It is noted that the realization of (19) requires 23 AND

and 47 XOR gates and introduces a propagation delay of
TA þ 7TX.

4.4 Architecture and FSM

4.4.1 Architecture of the WG-16 Cipher

Let e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1, e4 ¼
211 þ 26 � 1, and s ¼ 25 � 1. Figs. 11a , 11b, and 11c present
the proposed architecture of the WG-16 according to the
WGP16 formulations in (16) and (17), and the linear recur-
rence (5), based on the PB defined by (6). The squaring
matrices are implemented using the signal reuse construc-
tions of Table 5.

In Fig. 11a, the FSM controls the components of the
cipher during the different phases of operation. This is
accomplished through signals lfsr_clk, ph0, ph1, ctrl0 and
ctrl1 (see Section 4.4.2 for details).

During the load phase, the LFSR shifts at each clock cycle
while its leftmost cell is loaded through the Initial Vector
input.

It is noted that the signal Y e2 � Y e4 is missing in Fig. 11a.
This is due to the generation of TrðY e2 � Y e4Þ directly from

Y 211þ1 and ðY 26 � Y 2sÞ using (19). As a result, the Initial
Feedback (WGP16) signal, which is needed for the initiali-
zation phase, does not exist. This is recovered by generating
WGP16 over three clock cycles, during initialization, as pre-

sented in Table 6. The signals ðAiþ31Þ1;057 ¼ 1� Y and Y 25�1

are generated as shown in Figs. 11c and 11b, respectively.
During the initialization phase, the lfsr_clk signal triggers
the LFSR every three clock cycles. The leftmost cell is loaded
with the result from the field addition of the LFSR feedback
andWGP16 (Initial Feedback).

In the running phase, the LFSR updates its state at each
clock cycle. The only feedback is the LFSR feedback. The
keystream bits are obtained by XORing the signals
Trð1� Y Þ, TrðY e1Þ, TrðY e3Þ, and TrðY e2 � Y e4Þ. Trð1� Y Þ
and TrðY e1Þ are produced from 1� Y and Y e1 using (18).

Y e1 is generated by multiplying Y with Y 211 in GF ð216Þ. Y is
generated by complementing the least significant bit of

ðAiþ31Þ1;057, and Y 211 is obtained from the squarer S11 oper-

ating on Y . 1� Y is simply ðAiþ31Þ1;057. TrðY e3Þ is generated

Fig. 10. The matrix S for WG-16.

TABLE 5
The Space and Propagation Delay Complexities of the Different

Squaring Matrices Used in the WG-16 Stream Cipher

No Sig.
Reuse

Sig.
Reuse

No Sig.
Reuse

Sig.
Reuse

XOR PD XOR PD XOR PD XOR PD

S 30 3TX 21 3TX S6 99 4TX 63 4TX

S2 82 3TX 45 3TX S9 89 4TX 58 4TX

S4 103 4TX 64 4TX S10 102 4TX 60 4TX

S5 89 4TX 58 4TX S11 115 4TX 62 4TX

GF 216ð Þ elements are represented by the PB which is defined by (6). PD =
Propagation Delay.
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by applying (19) to Y 211ð25�1Þ and Y 26 . The signal Y 26 is the

result of S6 operating on Y . The signal Y 211ð25�1Þ is the result
of S11 operating on Y 25�1. TrðY e2 � Y e4Þ is generated by

applying (19) to Y 211þ1 and ðY 2ð25�1Þ � Y 26Þ. The signal

Y 2ð25�1Þ is the result of S operating on Y 25�1, while signal

Y 2ð25�1Þ � Y 26 is the bitwise XOR of Y 2ð25�1Þ and Y 26 .

4.4.2 The Finite State Machine

The FSM for the PB based WG-16 is similar to the one used
for the PB based implementation of the WGð29; 11Þ (see Sec-
tion 4.4.2). However, the WG-16’s FSM replaces the 11-bit
1-hot counter with a 5-bit binary counter and, the clocking
of the 2-bit binary counter occurs after a complete 32 counts
for the 5-bit counter. As can be seen from column of Fig. 11a
in Table 3, the loading phase takes 32 clock cycles. This is
followed by the initialization phase which stays for 192
clock cycles, where each initialization round is extended to
three clock cycles (for computing WGP16) by means of the
3-bit 1-hot counter. During this phase, the LFSR is clocked
64 times, once every three clocks, by means of the 3-bit
1-hot counter. After this starts the run phase. Also, the 3-bit
counter controls the multiplexers’ selectors, ctrl0 and ctrl1,
during initialization and run phases.

4.5 Serialized Implementation of the PB Based
WG-16

4.5.1 Architecture of the Serialized WG-16

The serialized computation of the WG-16 transform results
in a lower space complexity, compared to the standard
design in Fig. 11a. Fig. 12 presents the proposed architecture
for the serial WG-16. In this architecture, theWGP16 is com-
puted over eight cycles (initialization phase) while the
WGT16 is computed over 6 cycles (run phase). The design
uses only one field multiplier. The computations are accom-
plished according to Table 7.

It is noted that no changes are required for the loading
phase, as a result of applying the serial computation. In this
architecture, an initialization round takes eight clock cycles
to generate the WGP16 signal. The LFSR is updated at the
ninth clock cycle. During the run phase, a stream bit is pro-
duced every six cycles. During these two phases, the multi-
plexers provide the inputs to the multiplier and adder. The
multiplexers’ inputs are multiplexed through selectors
m0-m3 during computations. The four registers are clocked
as it is specified by the clocking table in Fig. 12. The clocking
of the different registers is enabled by means of clock enable
signals (see Section 4.5.2). In this design, the FSM’s signal
lfsr_clk is required in order to clock the LFSR once every

Fig. 11. a) Architecture of the WG-16 stream cipher based on the PB.
Tr �ð Þ generates the trace of a GF 216ð Þ element. Trð$Þ generates the
trace of the multiplication of two GF 216ð Þ elements. b) Generation of the

signal Y s (s ¼ 25 � 1). c) Generation of the signal Aiþ31ð Þ1;057.
e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1, e4 ¼ 211 þ 26 � 1,
and s ¼ 25 � 1. A double-headed arrow points to the location where a
register is inserted for pipelining purposes (see Section 4.6.1).

TABLE 6
Computation of theWGP16 Signal over Three Clock Cycles during the Initialization Phase

ctrl0=ctrl1 Output Next State

MUX # 1 MUX # 2 MUX # 3 Register 1 Register 2 Register 3

0/0 Y Y 211 Y � 1 Y e1 Y e1 � Y � 1 Y 26 � Y 2s

1/0 Y e1 Y 26 � Y 2s Y e1 � Y � 1 Y e2 � Y e4 Y e4 � Y e2� Y 26 � Y 2s

Y e1 � Y � 1

0/1 Y 26 Y 211s Y e4 � Y e2 � Y e3 Y e4 � Y e3 � Y 26 � Y 2s

Y e1 � Y � 1 Y e2 � Y e1�
Y � 1

The control signals ctrl0 and ctrl1 are generated by the FSM.WGP16 is the next state of Register 2 in stage 3. Next state of Register 4 is always Y s. Rows are
listed in order of computation stages (first to last). e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1, e4 ¼ 211 þ 26 � 1, and s ¼ 25 � 1.
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one, nine, and six clock cycles, during loading, initialization,
and run phases, respectively. This means that the initializa-
tion phase takes a total of 9� 64 ¼ 576 cycles. Moreover, an
output enable signal EO is used to enable the keystream
output every six cycles during the run phase. These selec-
tors, clock enables, lfsr_clk, and EO signals are generated
through the FSM, as it is presented next.

4.5.2 FSM for the Serialized WG-16

The FSM for the serialized WG-16 is a modified version of
the one in Section 3.4.2. The FSM of the serial WG-16 is
obtained by replacing the 11-bit 1-hot counter with a 5-bit
binary counter and the 8-bit 1-hot counter with a 9-bit 1-hot
counter. The 2-bit binary counter generates ph0 and ph1,
and is clocked once every 32 counts from the 5-bit binary
counter. As it is shown in column of Fig. 12 in Table 3, the
initialization phase takes 576 clock cycles. Each initialization
round takes nine clock cycles. The LFSR is clocked at the
arrival of the ninth clock cycle by means of the 9-bit 1-hot
counter. During the run phase, the LFSR is clocked once
every six clock cycles by means of the 6-bit counter. The
cipher’s output is enabled once every six clock cycles during

the run phase, through the 6-bit counter. The clock enable
signals which control the clocking of the registers in Fig. 12,
and the multiplexers’ selectors m, m1, m2, and m3 are
derived from the signal ph1, the outputs of the 9-bit 1-hot
counter (initialization), and outputs of the 6-bit 1-hot
counter (run phase), as it is shown in Fig. 13.

4.6 Pipelined Implementation of the PB Based
WG-16

4.6.1 Architecture

A pipelined version of the PB based implementation of the
WG-16 is presented in Figs. 14, 11b, and 11c. The critical
path of this architecture has only one multiplier. This is
accomplished through a pipeline which has 11-stages dur-
ing the run phase and 13-stages during the initialization
phase. In these figures, the double headed arrows point to
the locations where the registers are inserted, for the pipe-
line. Also, the numbers under an arrow specify the corre-
sponding clock cycles which trigger it during each WGP16
computation throughout the initialization phase (13 clock
cycles for each computation). The clocking of the different
registers in the transform is controlled by means of clock
enable signals (see Section 4.6.2).

No changes are required for the loading phase. During
the initialization and the run phases, an input signal
requires 13 and 11 clock cycles, respectively, to propagate to

Fig. 12. Architecture of the serial implementation for the PB based
design of the WG-16. In this architecture, X ¼ Aiþ31 and Y ¼ 1�X1;057.
e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1, e4 ¼ 211 þ 26 � 1,
and s ¼ 25 � 1.

TABLE 7
Steps for Computing theWGP16 andWGT16 in the Serial Implementation of the PB Based WG-16 Design

Clock Cycle

1 2 3 4

Next State Register 1 X210þ1 X1057 X1;057 X1;057

Register 2 - - Y 22þ1
Y
P3

i¼0
2i

Register 3 - - - -
Register 4 - - - -

5 6 7 8

Next State Register 1 X1057 X1057 X1;057 X1;057

Register 2 Y s Y s Y s Y s

Register 3 - Y e1 Y e2 � Y e4 Y e3

Register 4 - 1� Y � Y e1 1� Y � Y e1� 1� Y � Y e1�
Y e2 � Y e4 Y e2 � Y e3 � Y e4

X ¼ Aiþ31 and Y ¼ 1�X1;057. e1 ¼ 211 þ 1, e2 ¼ 211 þ 26 þ 1, e3 ¼ �211 þ 26 þ 1, e4 ¼ 211 þ 26 � 1, and s ¼ 25 � 1.

Fig. 13. Generating the clock enable control signals and the multiplexers’
selectors for the serial version of the WG-16. For the clock enable sig-
nals, the number at the output of an OR gate indicates the number of the
enabled clock cycle during the initialization phase. m0, m1, m2, and m3

are the selectors for the multiplexers. Signals s is shown in Fig. 7a, and
ci, 0 � i � 8 and di, 0 � i � 5, are the outputs of the 9-bit and the 6-bit
1-hot counters, respectively (see Section 4.5.2).
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the output of the transform/permutation. Therefore, for the
initialization phase, the lfsr_clk signal triggers the LFSR
once every 13 cycles. This means that the initialization
phase takes a total of 13� 64 ¼ 832 clock cycles. Also, the
multiplexers’ outputs in Fig. 14 are controlled through sig-
nals ctrl0 and ctrl1 during the initialization and the run
phases. For the run phase, an output enable signal EO is
used to enable the keystream output after the first 11 clock
cycles. The following section presents the FSM and show
how the different control signals are derived.

4.6.2 FSM for the Pipelined WG-16

The FSM for the pipelined version of the WG-16 is obtained
from the one introduced in Section 3.5.2, where a 5-bit
binary counter and a 13-bit 1-hot counter replace the 11-bit
1-hot counter and the 12-bit 1-hot counter, respectively. The
2-bit binary counter is clocked once every time the 5-bit
binary counter completes 32 counts, during load and ini-
tialization. From column of Fig. 14 in Table 3, the loading
phase takes 32 clock cycles followed by the initialization
phase which stays for 832 clock cycles, then starts the
run phase. The 13-bit 1-hot counter expands the initializa-
tion phase to a total of 832 clock cycles. At the end of each
computation of the WGP16 (13 clock cycles), the LFSR is
shifted once. The WGP16 computations are controlled
through the two signals ctrl0 and ctrl1, which are generated
by the 13-bit counter (Fig. 15). Signal ctrl0 is set during clock
cycles 8 and 9, while signal ctrl1 is set during clock cycles
10, 11, and 12. These two signals always reset throughout
the run phase. Signals ph0 and ph1 select the LFSR’s input.
These are derived from the output of the 2-bit binary
counter according to Table 3. After 11 clock cycles from the

start of the run phase, the output of the cipher is enabled by
means of the 13-bit counter. The clock enable signals are
derived from the outputs of the 13-bit counter during ini-
tialization and from the outputs of the 2-bit counter (signal
s is shown in Fig. 9a) during the run phase, as can be seen
from Fig. 15.

5 IMPLEMENTATION RESULTS AND COMPARISONS

This section presents speed and area results based on ASIC
implementations for the nine different proposed designs.
The space and speed trade offs concerning the standard,
pipelined, and serial versions of the proposed PB based
WGð29; 11Þ and WG-16 designs, are examined and com-
pared to the counterparts.

5.1 ASIC Implementations

In Table 8, we present the speed and area readings for the
nine WG designs which we have proposed, based on the
ASIC implementations. The ASIC implementations provide
speed and area results for the 65 nm CMOS technology with
medium effort for optimizations using Synopsys Design
Vision [29]. The results are based on Design Vision’s esti-
mate of area and clock speed prior to place-and-route. The
PB realizations are accomplished using the multiplier pre-
sented in [25] for both the WGð29; 11Þ and the WG-16. The
WG-16 has been also realized using the Karatsuba multi-
plier [30]. We use the VHDL implementations presented in
[31] for these two multipliers. Table 8 presents the area and
speed results for the ASIC implementations of the different
designs. The results for the hardware design of the
WGð29; 11Þ which is proposed in [15] are based on theoreti-
cal analysis. In addition, the results for the WGð29; 11Þ
design in [10] are reported in [16]. For the WG-16 which is
presented in [22], the results are reported for post place and
route.

5.2 Results and Comparisons

As shown in Table 8, the space complexity of the proposed
standard WGð29; 11Þ is reduced, w.r.t the ones previously
presented in [10], [16], and the normalized throughput is
improved. While the proposed standard WGð29; 11Þ design
shows higher throughput compared to the one in [10], it
reports a slightly lower throughput compared to the type-II
ONB based design presented in [16]. The WG design

Fig. 14. Pipelined version of the PB based architecture of the WG-16
transform. The double headed arrows indicate the location of the
inserted registers for the pipeline. The number under an arrow indicates
the clock cycle which triggers it during initialization phase. A zero under
an arrow indicates that the register is enabled during the run phase.

Fig. 15. Generating the clock enable signals and, ctrl0 and ctrl1 signals
for the pipelined version of the WG-16. Signal s is shown in Fig. 9a, and
ci, 0 � i � 12 and di, 0 � i � 5, are the outputs of the 13-bit and the 6-bit
1-hot counters, respectively (see Section 4.6.2).
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presented in [15] requires a number of ROM bits which is
exponential in m (the dimension of the binary extension

field). For the WGð29; 11Þ, this realization requires 229-bits
of ROM in addition to 9;000 XORs and 319 registers, as can
be seen from Table 8. On the other hand, the space complex-
ities of the proposed designs are based on the area of the
multiplier, which is quadratic in m. For high speed applica-
tions, the throughput which is reported in Table 8 for the
proposed pipelined version of the PB based WGð29; 11Þ
design is almost 4:5 times compared to the proposed stan-
dard one. This comes at an expense of almost 23 percent
increase in the space complexity. On the other hand, for
area constrained applications, the serial version shows up
to 59 percent decrease in the space complexity compared to
the standard design, according to the results in Table 8. This
comes at the expense of reducing the throughput to the half.

In Table 8, the Karatsuba based PB implementations of
the standard, pipelined, and serial WG-16 show optimal
readings for throughput, space, and normalized through-
put, compared to the same realizations using the multi-
plier in [25]. In the same table, in comparison with the
pipelined WG-16 implementations presented in [22], the
proposed pipelined PB based WG-16 demonstrates almost
2:5 times the throughput with even less space complexity.
In addition, for low area applications, the serial version
shows up to 42 percent decrease in the space complexity
compared to the standard design. This comes at an exp-
ense of around 40 percent decrease in throughput. On the
other hand, for high speed requirements, the pipelined

version of the PB based WG-16 design increases the
throughput by almost seven times compared to the stan-
dard one. This comes at an expense of almost 33 percent
increase in space complexity.

Moreover, forWG-16, which is proposed by the authors of
[17] to overcome the security flaws in the LTE integrity pro-
tocols [21], the reported results of the proposed designs in
Table 8 clearly show that the different realizations offer bit
rates greater than 100 Mbps and, hence, satisfy the LTE’s
peak bit rate requirements [37]. Although SNOW 3G [33]
and ZUC [34] show better normalized throughput readings
compared to our WG-16 designs in Table 8, the reported
space complexities for the proposed WG-16 (specially, serial
instances) are competitive to SNOW 3G and ZUC. Hence,
WG-16 is an interesting, low area, candidate for the 4G
domain. Table 8 also lists the 1-bit output versions of Grain
and Trivium which show better performances compared to
the proposed designs of the WG-16. On the other hand, our
pipelined version of the WG-16 has higher throughput, and
normalized throughput, while our serial WG-16 instance
shows a very close area complexity, compared toMickey128.

If even higher throughput is demanded, one can apply
the unfolding technique which is presented in [38] to the
proposed pipelined WGð29; 11Þ and WG-16. In this tech-
nique, by implementing multiple transforms, the through-
put will increase proportionally. Digit-level field multipliers
[39], [40] can be considered if lower area is demanded;
however, at the expense of adding more cycles for each
multiplication.

TABLE 8
Results Obtained for Area and Speed from the ASIC Implementations

Implementation Basis WG
Transform
Architecture

Multiplier Technology GE Speed
(MHz)

TP
(Mbps)

Normalized
Throughput
(Kbps=Gate)

SNOW 3G [32] - - - 90 nm 34,000 - 1,900 55.88
SNOW 3G [33] - - - 130 nm 25,016 249 7,900 315.97
ZUC [34] - - - 65 nm 10,000 - 1,500 150
Grain128 (1-bit output version) [35] - - - 130 nm 1,857 926 926 499
Trivium (1-bit output version) [35] - - - 130 nm 2,599 358 358 138

Mickey128 [35] - - - 130 nm 5,039 413 413 82
WG(29,11) [10] ONB Standard [36] 65 nm 33,200 144 144 4.34
WG(29,11) [15] - Look-up Table

(ROM)
- - 319 Registers

þ 9000 XORs
þ 229 ROM

bits

- - -

WG(29,11) [16] ONB Standard [36] 65 nm 19,900 224 224 11.26
WG(29,11) (This work, Fig. 4a) PB Standard [25] 65 nm 17,165 202 202 11.77
WG(29,11) (This work, Fig. 6) PB Serialized [25] 65 nm 7,050 610 101 14.32
WG(29,11) (This work, Fig. 8) PB Pipelined [25] 65 nm 21,190 917 917 43.28

WG-16 [22] NB Pipelined
ðM16=I8Þ

- 65 nm 12,031 552 552 45.88

WG-16 [22] NB Pipelined
ðM8=I8Þ

- 65 nm 12,352 558 558 45.17

WG-16 (This work, Fig. 11a) PB Standard [25] 65 nm 9,103 189 189 20.76
WG-16 (This work, Fig. 11a) PB Standard [30] 65 nm 8,060 193 193 23.94
WG-16 (This work, Fig. 14) PB Pipelined [25] 65 nm 11,795 1149 1,149 97.41
WG-16 (This work, Fig. 14) PB Pipelined [30] 65 nm 10,681 1370 1,370 128.26
WG-16 (This work, Fig. 12) PB Serialized [25] 65 nm 5,267 680 113 21.45
WG-16 (This work, Fig. 12) PB Serialized [30] 65 nm 5,026 714 119 23.67

GE denotes Gate Equivalence in terms of number of NAND gates. TP denotes the throughput.
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6 CONCLUSION

In this paper, we have proposed for the first time new archi-
tectures for efficient computations of the WG stream ciphers
using polynomial basis. The proposed architectures require
fewer multiplication operations as compared to the WG
counterparts. Moreover, we have derived an area efficient
method for the direct computation of the trace of the multi-
plication of two GF ð2mÞ elements. Unlike the trace method
presented in [16] which applies only to type-II ONB, the
trace method proposed in this paper applies to any PB.
Based on the proposed trace properties, two classes of PB
based designs (standard architecture) have been proposed,
one for the WGð29; 11Þ stream cipher and the other one for
the WG-16 stream cipher. In addition, a serialized version
and a pipelined version, has been proposed for each of the
proposed standard designs.

We have realized nine different proposed designs
through ASIC implementations using the 65nm CMOS tech-
nology. The ASIC implementations show that the proposed
PB based WGð29; 11Þ design achieves better area and nor-
malized throughput results compared to all WGð29; 11Þ
counterparts which use NB. Also, it has been shown that
the proposed pipelined PB based WG-16 provides almost
double the throughput which is offered by the implementa-
tions presented in [22], at even smaller area. In addition, the
throughput readings reported for the different designs of
the WG-16 stream cipher meet the requirements for the
peak bit rate specifications of the 4Gmobile technology.

Based on these results, the proposedWGð29; 11Þ andWG-
16 designs using PB are competitive candidates, compared
to the previously proposed implementations, for securing
mobile and communication systems [4], [5], [41]. Specifi-
cally, the proposed WG-16 designs are promising for the 4G
communications where the guaranteed randomness proper-
ties and security aspects are of significant importance.
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