
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

1

Multiple-bit Parity-based Concurrent Fault Detection
Architecture for Parallel CRC Computation

Dipanwita Gangopadhyay and Arash Reyhani-Masoleh

Abstract—As a result of huge advancements in VLSI tech-
nology, more and more complex circuits are being implemented
making not only the whole digital system more prone to faults,
but also the fault detector itself susceptible to faults resulting in
the requirement of concurrent fault detection architecture of the
encoders and decoders. In this paper, we present a multiple-bit
parity-based fault detection architecture for parallel CRC com-
putation. After analyzing the parallel implementation of CRC, we
present a formulation to generate a multiple-bit parity prediction
structure to incorporate the fault detection architecture. Using
the formulations of digit level CRC architecture, the checksum is
divided into few blocks and predicted multiple-bit parity of the
blocks are compared with the actual parity bits. Finally, with
the help of software simulation and ASIC implementation, we
show that the proposed scheme is highly efficient in terms of
fault detection capability whereas it involves small area and time
overhead. As an example, we have shown that the worst case
area overhead is 25.7% for CRC−32 with four parity bits, and
corresponding time overhead is 15.6%.

Index Terms—CRC, parity prediction, fault detection,
multiple-bit

I. INTRODUCTION

THE recent advancements in wireless technology have
brought forth very high speed transmission which faces

a major challenge from noisy channels. Factors such as
signal attenuation, multiple access interference, inter symbol
interference and Doppler shift degrade the quality of data to
a great extent. As a result, the received signal has a chance
of getting corrupted. Consequently, for the alleviation of this
problem, error control coding is not only desirable, but has
become a must to achieve an acceptable Bit Error Rate (BER).
For the purpose of checking the integrity of the data being
stored or sent over noisy channels, the most widely adopted
among all the error control codes is Cyclic Redundancy Check
Code (CRC). CRCs, first introduced by Peterson and Brown
in 1961 [1], are used for the detection of any corruption of the
digital signal during its production, transmission, processing
as well as storage stage. Recent wireless technologies namely,
Asynchronous Transfer Mode (ATM) [2], IEEE communica-
tion standards, such as wired Ethernet (IEEE 802.3) [3], Wi-Fi
(IEEE 802.11) [4] and WiMAX (IEEE 802.16) [5], employ
CRC for error detection purpose.

A very well written understanding of the CRC computation
and collection of most of the published hardware and software
implementations of CRC can be found in [6], [7] and [8].
Various parallel hardware structures have been described in
[9], [10], [11], [12], while [13] talks about cascading. Several

The authors are with the Department of Electrical and Computer Engi-
neering, The University of Western Ontario, London, ON, Canada N6A 5B9,
(e-mail: dgangop@uwo.ca; areyhani@uwo.ca).

literature have proposed highly efficient architecture based
on performance enhancement [14], [17] as well as resource
utilization [18]. The list also includes Two-Step [19], Cascade
[13], Look-Ahead [12], State-Space Transformed [20], and
Retimed Architectures [14], [25]. The authors of [11] have
proposed a three-step LFSR architecture which makes it easy
to address the two major issues of large fanout limitation and
iteration bound limitation in parallel LFSR architecture which
is an integral part of CRC computation. In [15], the authors
have proposed an improved solution for the fanout problem.
The authors of [15] have shown that the proposed architecture
achieves significant improvement in terms of processing speed
and hardware efficiency. In [16], the authors have extended
the above idea and presented a mathematical proof showing
that a transformation exists in state space that can reduce the
complexity of the parallel LFSR feedback loop along with
a new idea for high speed parallel implementation of linear
feedback shift registers based upon parallel IIR filter. In [32],
the authors have proposed a novel parallel implementation of
long BCH encoders to achieve significant speedup by elimi-
nating the effect of large fanout. The authors have mentioned
that similar technique can also be used for CRC.

Rapid advancement of semiconductor technologies results
in rapidly increasing soft error rates [26], [27], [28] due to
shrink in area, time and power. Temporary faults caused by
cosmic radiation, known as single event upset (SEU) [29],
are the main sources of errors. A lot of attention has been
paid for the reliability improvement of all the elementary
components reflected by their much lower failure rates [30].
But the large number and dense population of these elements
on the chip degrade the reliability to a large extent. While error
detection codes and error correction codes have long been used
for checking errors, the reliability of the error correction or
detection encoder itself has come up as a major issue. High
speed data transmission requires high speed error detection and
parallel processing at the cost of increased hardware, which
increases the probability of error occurrence of internal faults.
As a result, fault detction of encoder and decoder have gained
a lot of importance.

In [31], the authors have addressed the problem of designing
parallel fault-secure encoders by generating not only error cor-
recting check bits, but also independently and in parallel, error
detecting check bits. The next step involves the comparison of
error detection check bits with another set of error detecting
check bits generated from error correction check bits. This
design is significantly cost effective compared to duplication
with comparison technique. There are several other literature
which deal with the similar topic. In [34], the authors have



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

2

discussed the design of a fault secure encoder in between
a fault secure RAM and a faulty channel. Error detection
and error correction using Residue Number System have been
discussed in [35]. In [36], we find the description of fault
detection of Reed Solomon encoder, while [37] covers both
Reed Solomon encoders and decoders. In both [36] and [37],
the area overhead between the self checking implementation
and without the self checking capability is mentioned as 50%.

In [23], the authors have presented a new approach for
the automated synthesis of multilevel circuits with concurrent
error detection using a parity-check code. They have developed
a new procedure namely structure-constrained logic optimiza-
tion and proved that this design along with a checker forms a
self-checking circuit. In [24], the authors have addressed the
issue of developing reliability driven logic synthesis algorithms
by proposing three schemes. The first scheme is duplication
and comparison, the second being utilizing Berger code and
the third scheme involves partitioning the outputs of the
circuit and concurrent error detection based on parity code.
In this third scheme, the authors have partitioned the circuit
into groups and generated the parity signals in such a way
that only one output signal from each group influences a
parity signal. They have considered non-overlapping multilevel
circuits for the synthesis of outputs in each partition and the
parity signals. Our proposed method of the multiple bit parity
based concurrent fault detection scheme for parallel CRC
computation inherently exploits the non-overlapping feature
of the parity generation circuits.

In this paper, we have presented a design concept of a
multiple-bit parity-based concurrent fault detection for parallel
CRC architecture. In the proposed scheme, the generated CRC
output is divided into a few blocks based on the number
of parity bits and has been made to go through a multiple-
bit parity comparison unit. Then, the actual parity bits are
compared with the predicted multiple-bit parity of the blocks
to incorporate the fault detection architecture. We note that
to the best of our knowledge, this paper is the first study
specific to parallel CRC computation to generate concurrent
fault detection using multiple-bit parity. The contribution of
this paper is summarized as follows:
• First, we have derived the formulation for the multiple-bit

parity-based fault detection of parallel CRC architecture
for the case l ≥ m when l is the number of input
message bits processed in each iteration and m is the
degree of the CRC generator polynomial which defines
the underlying CRC code. Next, after extending the
matrix based formulation of parallel CRC structure for
l < m, we have proposed the concurrent fault detection
formulation for this case too.

• Having derived all the required formulations, we have
presented the hardware architecture based on the pro-
posed formulation for both the above cases.

• We have discussed a thorough theoretical error and fault
analysis using detailed error and fault models along with
the investigation of the influence of the generator polyno-
mial on the error propagation. We have also formulated
the error detection capability of the proposed scheme
covering all the possible 2m − 1 errors. Furthermore,

we have done several fault detection simulation using C
codes for various CRC polynomials and different values
of the number of parity bits. The simulation results
presented in the tabular form confirm the significantly
high fault detection capability of the proposed scheme.

• Finally, we have presented a theoretical complexity anal-
ysis showing the low required overhead of the proposed
scheme. We have done ASIC implementation using Ver-
ilog code to confirm these small values of the theoretical
complexity overheads.

The remainder of this paper is organized as follows. First
in Section II, preliminary ideas regarding parallel CRC have
been provided which are essential for the understanding of the
proposed scheme. Next in Section III, we propose multiple-bit
parity prediction formulations for parallel CRC for all the three
possible cases i.e. l > m, l = m and l < m. In this section
we also provide the architecture of our proposed scheme for
all these cases. In Section IV, we present our analysis and
simulation results followed by complexity analysis in Section
V. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

In this section the basic concept of CRC computation is
described followed by a brief description of parallel CRC
formulations. Then, matrix multiplication based parallel CRC
architecture proposed in [17] is discussed. We have specially
emphasized on this architecture since our proposed concurrent
fault detection architecture described in the next section, is
based on this architecture. It is noted that the proposed scheme
can be applicable on the other parallel CRC structures as well.
In case of other parallel CRC architecture, from the syndrome
equation, using a similar approach as shown in the proof of
Lemma 1, one can derive the necessary equation required to
design the fault detection unit. For the parallel structure which
uses matrix formulation, our approach can be directly used.
Parallel CRC computations proposed in [9], [11], [12] and [20]
are formulations where our proposed scheme can be applied.
However, for non-matrix formulation structures, we need to
follow a similar derivation along with certain modifications.
As a result, our multiple bit parity prediction based approach
will be applicable for most of the parallel CRC architecture
by using a similar derivation on the digit level syndrome
formulation.

A. CRC Basics
The generator polynomial of a systematic linear (m+ k, k)

error detecting code over GF (2) is represented by

G(x) = 1 +

τ−1∑
i=1

gix
i + xτ + xm, gi ∈ {0, 1}. (1)

In CRC computation first, a message is processed to generate
its CRC checksum. Then the CRC is appended to the message
to form the codeword, which is transmitted to the receiver
over the channel. The receiver again calculates the CRC of the
codeword and compares it with the received CRC. If an error
is found, the transmission protocol either discards the cor-
rupted data and/or sends a retransmission request. The k - bit
input message U(x) can similarly be represented as U(x) =



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

3

∑k−1
i=0 uix

i, ui ∈ {0, 1}. The m−bit CRC checksum, known
as the syndrome, is the remainder of the division of U(x)xm

by G(x) in GF (2) i.e., S(x) = (xm U(x)) mod G(x).The
checksum S(x) is concatenated with the input message U(x)
to generate the encoded message M(x) = xm U(x) + S(x),
which is transmitted over the transmission channel. In a CRC
decoder, M(x) is divided by G(x) to find the remainder. A
non-zero value of the remainder implies the presence of an
error.

The above polynomial division of CRC is achieved by feed-
ing the message bits U(x) into a LFSR structure consisting of
registers each of which is accompanied by common clock and
clear signals. The coefficient of the highest order term is the
first bit to enter the LFSR, while the coefficient of the lowest
order term is the last bit [8]. At the end, the calculated value
of the remainder is shown by the content of the registers. It is
noted that syndrome calculation of a k−bit message requires k
clock cycles in a LFSR-based CRC computation. The number
of clock cycles can be reduced using parallel circuit. This is
explained in the next section.

B. Parallel CRC
The parallel computation of CRC can be performed by treat-

ing the message block-wise iteratively where l message bits are
processed at each iteration. If k mod l 6= 0, then (l−k mod l)
zeroes are prepended to U(x) to make the message length a
multiple of l. The k−bit message is split into q = dkl e message
blocks each being l−bit long. Thus as shown in Fig. 1, U(x)
is divided into q parts, U(x) =

∑q−1
n=0 Un(x), where Un(x) =

B(n)(x)xl(q−1−n) and B(n)(x) =
∑l−1
j=0 ul(q−1−n)+j x

j .

Fig. 1: Message splitted in q blocks each being of length l.

Since Un(x) is the l-bit message block or binary polyno-
mial being processed at the n-th iteration, B(n)(x) can have
maximum of degree (l − 1) and can also be represented as

B(n)(x) =

l−1∑
j=0

b
(n)
j xj , b

(n)
j ∈ {0, 1}. (2)

The portion of U(x) that contains all the blocks for j = 0 to
j = n is denoted by U (n)(x) and can be written as a recursive
equation as follows

U (n)(x) =

n∑
j=0

Uj(x) =

k−1∑
j={(q−1)−n}l

ujx
j

= xlU (n−1)(x) +B(n)(x), (3)

where U (0)(x) = U0(x) and U (q−1)(x) = U(x).
In Fig. 1, it is shown that U0(x) =

∑k−1
j=(q−1)l ujx

j

which has (l − k mod l) zeroes prepended to it. In the
first iteration cycle of the parallel CRC structure, U0(x) is
processed to generate the output S(0)(x). Then in the next
iteration, U1(x) =

∑(q−1)l−1
j=(q−2)l ujx

j is processed to generate
the output S(1)(x). So after two cycles the processed portion
of the message is U (1)(x) = U (0)(x) + U1(x). In this way,
after (q − 1) cycles, the processed message is U (q−2)(x) =
U (q−3)(x) + U(q−2)(x). Then in the last iteration cycle, the
last block i.e. U(q−1)(x) is processed to generate S(q−1)(x).
So after the last iteration cycle the processed message is
U (q−1)(x) = U (q−2)(x) + U(q−1)(x), which is actually the
whole message as shown in Fig. 1.

Let S(n)(x) be the syndrome of U (n)(x), which can be
represented as

S(n)(x) = (xm U (n)(x)) mod G(x). (4)

By substituting (3) into (4), one can obtain

S(n)(x) = {xl S(n−1)(x) + xmB(n)(x)} mod G(x). (5)

We assume l > m for the rest of the discussion in this
section. The other two conditions, namely l < m and l = m,
will be considered in Section IV. Now we get from [17], that
for l > m (5) reduces to

S(n)(x) = {xm T (n)(x)} mod G(x), (6)

where
T (n)(x) = xl−m S(n−1)(x) +B(n)(x). (7)

T (n)(x) can be represented as

T (n)(x) =

l−1∑
j=0

t
(n)
j xj , t

(n)
j ∈ {0, 1}, (8)

and S(n)(x) can be represented as S(n)(x) =∑m−1
j=0 s

(n)
j xj , s

(n)
j ∈ {0, 1}. From (6), (7) and (8),

we can write

t
(n)
j =

{
b
(n)
j j ∈ [0, l −m− 1]

b
(n)
j + s

(n−1)
j−(l−m) j ∈ [l −m, l − 1].

(9)

A matrix multiplication scheme has been proposed in [17],
which represents (8) in matrix multiplication notations as

T (n)(x) = x t(n), (10)

where T (n)(x) is a scalar, x =
[
x0, ..., xl−1

]
is the row

vector and t(n) =
[
t
(n)
0 , ..., t

(n)
l−1

]T
is the column vector.

Similarly, using (7) and (10), we can get the matrix formu-
lation as

S(n)(x) = (xm x t(n)) mod G(x ) = x s(n), where

s(n) = G t(n). (11)



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

4

s(n) =
[
s
(n)
0 ...s

(n)
m−1

]T
is the column vector and G is a m× l

matrix whose each element can be represented as gi,j when
gi,j ∈ {0, 1} for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ l − 1.

The parallel implementation of a basic structure of CRC is
shown in Fig. 2.

Fig. 2: Parallel Implementation of CRC. The block diagram
is derived from [9], [11].

In this figure, at the n-th iteration, l- bit B(n)(x) and m-
bit S(n−1)(x) are shifted and XORed to generate (m + l)-
bit T (n)(x) according to (7) and then following (6), T (n)(x)
is made to pass through an array of XOR gates to gener-
ate T (n)(x) mod G(x) which is the next state value of the
syndrome S(n)(x). This S(n)(x) is then passed through flip-
flops and the current state value of the syndrome S(n−1)(x) is
sent back as feedback. In the first iteration cycle, B(0)(x) and
S(−1)(x) are processed to generate S(0)(x) when S(−1)(x) =
0, while, in the second iteration cycle, this S(0)(x) is fed back
and processed with B(1)(x) to generate S(1)(x). Both B(0)(x)
and B(1)(x) can be obtained from U (0)(x) and U (1)(x) as
shown in Fig. 1. In a similar way, the whole message is
processed in total q cycles. In the last cycle, B(q−1)(x) and
S(q−2)(x) are processed to generate S(q−1)(x) which is the
final CRC value i.e. S(q−1)(x) = S(x) . The relation between
U (q−1)(x) and B(q−1)(x) is shown in Fig. 1.

The parallel implementation based on the above matrix
multiplication of CRC for the case of l > m proposed in
[17] is shown in Fig. 3.

Fig. 3: Parallel Implementation of CRC based on Matrix
Multiplication for l > m [17]. The circuit is derived from
[9], [11].

In Fig. 3, the whole design has been split in two different
blocks, specifically the T Generation Unit and the Matrix
Multiplication Unit. The shift and the adder with two (m+ l)

inputs stage shown in Fig. 2 are combined into a single stage
in Fig. 3 and is named the T Generation Unit, while the
reduction stage consisting of an array of XOR in Fig. 2 is
named the Matrix Multiplication Unit in Fig. 3, since the
reduction is achieved using matrix multiplication as given
in (11). In the T Generation Unit, checksum values from a
previous iteration i.e. S(n−1)(x) and the present block of the
message i.e. B(n)(x) are taken as inputs and XORed to get
the output which is T (n)(x) according to (7). In the Matrix
Multiplication Unit, this T (n)(x) is multiplied with G for
the computation of the present CRC terms S(n)(x) based on
(11). Each I.S. box in this unit works as input selection (I.S.)
depending on its input from the G matrix. We consider gi,j
as the i-th row and j-th column element of the G matrix. The
functionality of I.S. box is similar to the AND gate. If the value
of gi,j is 0, then the corresponding I.S. box becomes open-
circuit and if the value of gi,j is 1, then the corresponding I.S.
box becomes short-circuit, i.e. if the value of gi,j is 1, then
the output of the corresponding I.S. box is tj and if the value
of gi,j is 0, then the output is 0.

In the next section, we present the formulation of multiple-
bit parity-based concurrent fault detection of parallel CRC
architecture. Towards that end, we derive a formulation for
the calculation of the predicted parity of the syndrome bits
, for each of the three conditions i.e. l > m, l = m and
l < m, when l is the number of input message bits in each
iteration and m is the number of CRC bits. We start with the
case l > m since the matrix based CRC formulation of this
case has already been presented in [17]. For the other two
cases, we have to extend the idea given in [17] to generate
the required CRC formulation. In this section, we also present
the architecture of the proposed concurrent fault detection of
parallel CRC structure based on multiple-bit parity prediction
for all the three cases. We present the multiple-bit parity
formulation and architecture following the order, i.e. first the
structure for l > m is discussed followed by the design for
l = m and finally the structure corresponding to l < m is
constructed.

Before going to the next section, we present TableI listing
all the symbols used throughtout this paper along with their
definitions.

III. CONCURRENT FAULT DETECTION OF PARALLEL CRC
STRUCTURE

In this section, we consider the parallel CRC architecture
proposed in [17] to apply a multiple-bit parity approach on
this architecture to achieve concurrent fault detection. This
multiple-bit parity checking circuit will compare predicted
parity and actual parity of the syndrome bits at the end of
each iteration and raise an alarm if they do not match. The
block diagram of the proposed scheme has been depicted in
Fig. 4.

In Fig. 4, the output of the parity calculation unit is the
actual multiple-bit parity of CRC syndrome bits after n-
th iteration , whereas the output of the parity prediction
unit is the predicted multiple-bit parity. The actual parity is
obtained by XORing the outputs of the Matrix Multiplication
Unit, whereas the predicted parity is evaluated as a different
function of inputs. Functionality of T Generation Unit and



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

5

TABLE I: List of the Symbols used throughout the paper.

Symbols Definitions
l Number of input message bits in each iteration
m Degree of CRC generator polynomial
G(x) Generator polynomial of CRC over GF (2)
U(x) k - bit input message
S(x) m−bit CRC checksum, known as the syndrome
M(x) The encoded message to be transmitted
q Number of message blocks each being l−bit long

Un(x) Message fragment processed at n−th iteration
U(n)(x) Message segment containing all the

blocks processed till n−th iteration
B(n)(x) Present block of the message

when Un(x) = B(n)(x)xl(q−1−n)

T (n)(x) xl−m S(n−1)(x) +B(n)(x)
G m× l matrix whose each element

can be represented as gi,j

s
(n)
i i-th bit of the m-bit syndrome after the n-th iteration

p(s
(n)
c ) Predicted parity of the c−th block

of the syndrome for n−th iteration
p(gj,c) Parity of the r elements of j−th column of G
p(s

(n)
0 ) Actual parity of the c−th block of

the syndrome for n−th iteration
w Number of parity bits i.e. number of blocks

in which m−bit CRC output is splitted
r Number of bits of each block

e(x) Error polynomial
Ec Theoretical error coverage

Fig. 4: Simplified Block Diagram of the Proposed Multiple-
bit Parity-based Error Detection Structure of Parallel CRC
Architecture. The coloured portion shows the overhead.

Matrix Multiplication Unit have already been explained in
Section II regarding Fig. 3. The coloured portion of Fig. 4
shows the overhead. The additional design unit, shown in
Fig. 4, computes the parity of the output of the flip-flops and
compares it with the actual parity.

Now we propose the formulation for the multiple-bit parity
prediction when l ≥ m and then we show the corresponding
hardware structure.

A. Formulation of Parity Prediction for l ≥ m

In this subsection, first we present formulations for a
multiple-bit parity prediction architecture for CRC when the
number of message bits in each iteration, i.e., l is greater than
or equal to the number of CRC bits, i.e., m.

From (9) and (11), we get the value of the i-th bit of the
m-bit syndrome after the n-th iteration for l > m as follows,

s
(n)
i =

l−m−1∑
j=0

gi,j b
(n)
j +

l−1∑
j=l−m

gi,j (b
(n)
j + s

(n−1)
j−(l−m)). (12)

Again, for l = m, we derive from (5), S(n)(x) =
{xm T (n)(x)} mod G(x), where

T (n)(x) = S(n−1)(x) +B(n)(x). (13)

Next from (6), (7), (8) and (13), for j ∈ [0, l − 1],

t
(n)
j = b

(n)
j + s

(n−1)
j (x). (14)

Now from (2), (11), (12) and (14), we derive the value of the
syndrome after the n-th iteration,

s
(n)
i =

l−1∑
j=0

gi,j (b
(n)
j + s

(n−1)
j ). (15)

The above formulation can be extended for the multiple-bit
parity structure as explained in the next lemma. We consider
that the parallel CRC structure, having l-bit input and m-
bit output, is splitted into w blocks while each block is
characterized by r-bit output. Without loss of generality, we
can consider that m = w × r. Using this information, we
propose a lemma for w-bit parity.

Lemma 1. Let p(s(n)c ) ∈ {0, 1} be the predicted parity of the
c-th block of the syndrome for n-th iteration and p(gj,c) ∈
{0, 1} be the parity of the r elements of the j-th column of
G starting from c.r-th element, then for l ≥ m,

p(s(n)c ) =

l−1∑
j=0

b
(n)
j p(gj,c) +

l−1∑
j=l−m

s
(n−1)
j−(l−m) p(gj,c). (16)

where p(gj,c) is the parity of the r elements of the j-th column
of G starting from the c r-th element and is described as
p(gj,c) =

∑r(c+1)−1
i=cr gi,j and 0 ≤ c ≤ w − 1.

Proof: Using (12), the predicted parity of the c-th block
of the syndrome after the n-th iteration can be expressed as,

p(s(n)c ) =

r(c+1)−1∑
i=cr

s
(n)
i , (17)

From (12) and (17) for l > m,

p(s(n)c ) =

rc+r−1∑
i=cr

l−m−1∑
j=0

gi,j b
(n)
j +

+

l−1∑
j=l−m

gi,j (b
(n)
j + s

(n−1)
j−(l−m))

 . (18)

Again for l = m, the predicted parity for the c-th block



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

6

p(s(n)c ) =

r(c+1)−1∑
i=cr

 l−1∑
j=0

gi,j (b
(n)
j + s

(n−1)
j )

 . (19)

Now combining (18) and (19), we can further derive (16) for
l ≥ m.

This formulation will be used to generate the proposed fault
detection of parallel CRC architecture using multiple-bit parity
for l ≥ m. A parity prediction circuit will be designed based
on (16) and the actual multiple-bit parity of the syndrome
will be compared with these predicted parity bits generating
an error signal in the case of a mismatch.

Now we will provide an illustrative example for the case
l = m.

Example 1. We consider CRC generator polynomial as
G(x) = 1 + x3 + x4 + x5 + x8 and degree of parallelism
l = 8. Then the equation of the first column of G is
r0(x) = 1 + x3 + x4 + x5. Now we get,
r1(x) = x + x4 + x5 + x6, r2(x) = x2 + x5 + x6 + x7,

r3(x) = 1+x4+x5+x6+x7, r4(x) = 1+x+x3+x4+x6+x7,
r5(x) = 1 + x + x2 + x3 + x7, r6(x) = 1 + x + x2 + x5,
r7(x) = x+ x2 + x3 + x6. Combining all these,

G =


1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 1
1 1 0 1 1 0 0 0
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
0 0 1 1 1 1 0 0


We assume that B(n)(x) = 1+x6+x7 and S(n−1)(x) = 1+

x2 + x6. So, b(n)0 = 1, b(n)1 = 0, b(n)2 = 0, b(n)3 = 0, b(n)4 = 0,
b
(n)
5 = 0, b(n)6 = 1, b(n)7 = 1 and s

(n−1)
0 = 1, s(n−1)1 = 0,

s
(n−1)
2 = 1, s(n−1)3 = 0, s(n−1)4 = 0, s(n−1)5 = 0, s(n−1)6 = 1,
s
(n−1)
7 = 0. Now using (15), we get, s(n)0 = g0,2 + g0,7 = 0,
s
(n)
1 = g1,2 + g1,7 = 1, s

(n)
2 = g2,2 + g2,7 = 0, s

(n)
3 =

g3,2+g3,7 = 1, s(n)4 = g4,2+g4,7 = 0, s(n)5 = g5,2+g5,7 = 1,
s
(n)
6 = g6,2 + g6,7 = 0, s(n)7 = g7,2 + g7,7 = 1. So, output

of the parallel CRC circuit for n-th iteration is S(n)(x) =
x+ x3 + x5 + x7. Now considering w = 4 and r = 2, actual
multiple-bit parity of these syndrome bits can be represented
as p(s

(n)
0 ) = s

(n)
0 + s

(n)
1 = 1, p(s

(n)
1 ) = s

(n)
2 + s

(n)
3 = 1,

p(s
(n)
2 ) = s

(n)
4 + s

(n)
5 = 1, p(s(n)3 ) = s

(n)
6 + s

(n)
7 = 1.

Again considering w = 4, we get the values of the predicted
parity from (16) as, p(s

(n)
0 ) = p(g2,0) + p(g7,0) = (g0,2 +

g1,2) + (g0,7 + g1,7) = s
(n)
0 + s

(n)
1 = p(s

(n)
0 ) = 1. Similarly,

p(s
(n)
1 ) = p(g2,2) + p(g7,2) = (g2,2 + g3,2) + (g2,7 + g3,7) =

s
(n)
2 + s

(n)
3 = p(s

(n)
0 ) = 1, p(s

(n)
2 ) = p(g2,4) + p(g7,4) =

(g4,2 + g5,2) + (g4,7 + g5,7) = s
(n)
4 + s

(n)
5 = p(s

(n)
2 ) = 1 and

p(s
(n)
3 ) = p(g2,6) + p(g7,6) = (g6,2 + g7,2) + (g6,7 + g7,7) =

s
(n)
6 + s

(n)
7 = p(s

(n)
3 ) = 1. The values of the predicted parity

exactly matches with the values of the actual parity which
clearly shows the correctness of the proposed Lemma 1.

Next, we assume there is a stuck-at-fault in the syndrome
generation circuit resulting in an erroneous value of the CRC
output. Let the actual erroneous output be S(n)(x) = x+x3+
x6 + x7. Now, the 4−bit parity of the actual syndrome bits
are p(s

(n)
0 ) = 1, p(s(n)1 ) = 1, p(s(n)2 ) = 0 and p(s

(n)
3 ) = 0.

A comparison of the actual parity and the predicted parity

shows a mismatch in the value of p(s
(n)
2 ) and p(s

(n)
2 ) , i.e.,

a mismatch between the predicted parity and actual parity of
the block denoted by c = 2. Similarly another mismatch is
seen between p(s

(n)
3 ) and p(s

(n)
3 ) , i.e., between the predicted

parity and actual parity of the block denoted by c = 3. These
two errors will result in the flag to raise an alarm depicting a
successful concurrent fault detection. It should be noted that,
since there are 2 erroneous bits in the output, single bit parity
prediction based fault detection will not be able to detect this
error. But our multiple-bit parity scheme can easily detect
this kind of error. A more detailed investigation towards this
direction is presented in Section IV.

B. Multiple-bit Parity Prediction Architecture for l ≥ m

In this section, we present the architecture of the proposed
concurrent fault detection of parallel CRC structure based
on multiple-bit parity prediction. We have already formulated
multiple-bit parity prediction expressions for l ≥ m when l is
the number of input message bits in each iteration and m is
the number of CRC bits.

Fig. 5(a) shows the block diagram of the proposed multi
bit parity prediction scheme and Fig. 5(b) shows the parity
prediction circuit developed in (16). In Fig. 5(b) each I.S.
has one input as p(gj,c), when p(gj,c) is the parity of the
r elements of j-th column of G starting from r.c-th element
for 0 ≤ j ≤ l − 1 . In Fig. 5(b), the outputs of the I.S. boxes
are shown to be connected to the Binary tree of XOR (BTX)
block. The number of inputs to the BTX block is equal to the
number of ones in p(gj,c) for 0 ≤ j ≤ l − 1, which is fixed
for a given generator polynomial or G(x).

In Fig. 5(a), the checksum portion of the design is shown to
have been divided into w blocks while c denotes the number
of the block. Each block consists of r syndrome bits. After
n-th iteration the single bit predicted parity of all those w

blocks range from p(s
(n)
0 ) to p(s

(n)
w−1) forming a multiple-bit

parity prediction having width w. This multiple-bit parity is
compared to the actual parity in the Comparison Unit and
any discrepency will raise an alarm. The Comparison Unit
includes w 2-input XOR gates and a two rail parity checker
circuit consisting of a w-input AND gate and another w-input
NOR gate. Since this final error signal is a single point of
failure, the inclusion of a two rail parity check structure and
two final error signals ensure detection of any stuck at faults
in the comparison unit. This multiple-bit parity prediction
architecture has a definite advantage. From the mismatch, we
can approximately figure out the location of the faulty portion
in the circuit depending upon the location of the erroneous
actual parity bit. The mapping between a fault in the parallel
CRC circuit and an error in the actual parity bits will be
discussed in the next section.

Next we present the multiple-bit parity prediction architec-
ture for l = m. Since this diagram corresponds to the case
l = m, the internal structure of T Generation Unit and Matrix
Multiplication Unit differs from those shown in Fig. 3. Hence
those details are shown in Fig. 5(c). The details of the Parity
Prediction Unit basically the internal structure of the design
of the calculation of each predicted parity bits based on (16)
corresponding to each block is shown in Fig. 5(d). Each I.S. in



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

7

(a) (b)

(c) (d)

Fig. 5: (a) Block Diagram of the Proposed Multi bit Scheme, (b) Parity Prediction Circuit of each block for l > m, (c) Details
of T generation Unit and Matrix Multiplication Unit for l = m, (d) Parity Prediction Circuit of each block for l = m.

Fig. 5(d) has one input as p(gj,c), when p(gj,c) is the parity
of the r elements of j-th column of G starting from r.c-th
element for 0 ≤ j ≤ l − 1.

The syndrome bits for this case also are divided into w
blocks while c denotes the number of the blocks similar to
the case shown in Fig. 5(a). The single bit predicted parity
of all those w blocks after n-th iteration are shown to range
from p(s

(n)
0 ) to p(s

(n)
w−1) thus forming a multiple-bit parity

prediction having width w. Similar to the concept shown in
Fig. 4, the w -bit predicted parity is compared to the actual w -
bit parity and a high value of error (e) indicates the presence of
an error. Similar to the previous case, in this case too we have
the advantage of approximately catching the faulty portion of
the circuit depending on the location of the erroneous actual
parity bit.

In the next subsection, the parallel CRC architecture pro-
posed in [17] for the case l ≥ m has been extended to
generate the parallel CRC structure for l < m. Then we
apply a multiple-bit parity approach on this architecture to
achieve concurrent fault detection. Similar to the case depicted
in the previous section, this multiple-bit parity checking circuit
will also compare predicted parity and actual parity of the
syndrome bits at the end of each iteration and raise an alarm
if they do not match as shown in Fig. 4.

C. Formulation of Parity Prediction for l < m

Next we consider the last remaining case when the number
of message bits in each iteration (l) is less than the number of
CRC bits (m). First we derive the matrix based parallel CRC
formulation based on (12). This is an extension of the idea
proposed in [17]. Then we propose a formulation and then, by
the support of this formulation, we propose a lemma to design
a multiple-bit parity prediction architecture of CRC for l < m.
Towards that end, we define a m× (m− l) matrix H, which
will be required further on in this subsection. Each element of
matrix H can be represented as hi,j when 0 ≤ i ≤ m− 1 and
0 ≤ j ≤ m− l− 1 and for each i- th column only hi+l, i = 1
and the rest of the elements are zero.

For l < m, we derive from (5), S(n)(x) =

T
(n)
t (x) mod G(x), where

T
(n)
t (x) = T

(n)
1 (x) + T

(n)
2 (x), (20)

T
(n)
1 (x) = xl

m−l−1∑
j=0

s
(n−1)
j xj , (21)

and

T
(n)
2 (x) = xm

l−1∑
j=0

(s
(n−1)
j+m−l + b

(n)
j )xj . (22)



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

8

Using (11), we can derive from (20), (21) and (22),

s(n) = Ht
(n)
1 +Gt

(n)
2 , (23)

when we can express T
(n)
1 (x) = x t

(n)
1 , and T

(n)
2 (x) =

x t
(n)
2 . Here t

(n)
1 =

[
t
(n)
1 0 , ..., t

(n)
1 (m−l)−1

]T
and t

(n)
2 =[

t
(n)
2 0 , ..., t

(n)
2 (m−l)−1

]T
are the column vector. Now from

(23),

s
(n)
i =

m−l−1∑
j=0

hi,j s
(n−1)
j +

l−1∑
j=0

gi,j (b
(n)
j + s

(n−1)
j+m−l). (24)

Similar to the previous cases discussed in the last two
subsections, in the present case too, we extend the above-
mentioned formulation to the multiple-bit parity structure. The
parallel CRC structure involving l-bit input and m-bit output
is considered to be splited into w blocks each having r-bit
output. We can safely consider without loss of generality that
m = w × r. A lemma is proposed using this information for
l < m.

Lemma 2. Let p(s(n)c ) ∈ {0, 1} be the predicted parity of the
c-th block of the syndrome for the n-th iteration, p(gj,c) ∈
{0, 1} be the parity of the r elements of the j-th column of
G starting from the c.r-th element and p(hj,c) ∈ {0, 1} be
the parity of the r elements of the j-th column of H starting
from the c.r -th element, then

p(s(n)c ) =

m−l−1∑
j=0

s
(n−1)
j p(hj,c) +

l−1∑
j=0

(b
(n)
j +s

(n−1)
j+m−l p(gj,c)).

(25)

Proof: Similar to the proof of Lemma 1, using (17), we
get
p(s

(n)
c ) =

∑r(c+1)−1
i=cr s

(n)
i , Now using (24),

p(s(n)c ) =

r(c+1)−1∑
i=cr

m−l−1∑
j=0

hi,j s
(n−1)
j +

+

l−1∑
j=0

gi,j (b
(n)
j + s

(n−1)
j+m−l).

 (26)

From (26) we can further derive (25).
We will use the above formulation to generate the proposed

concurrent fault detection of CRC architecture using multiple-
bit parity for l < m. The actual parity bits of the CRC
syndrome are XORed with the predicted multiple-bit parity-
based on (25). If these two sets of parity bits do not match
with each other, then a flag indicating the occurance of an
error is generated.

D. Multiple-bit Parity Prediction Architecture for l < m
Next we present the multiple-bit parity prediction archi-

tecture for l < m. In Fig. 6, the block diagram of the
matrix formulation based parallel CRC architecture for l < m
have been shown in details. This circuit is designed from
(24). Since this diagram corresponds to the case l < m, the
internal structure of CRC Generation Unit greatly differs from
T generation unit and Matrix Multiplication Unit as shown in
Fig. 3 which corresponds to the case l > m.

Fig. 6: Parallel CRC Structure based on Matrix Multiplication
for l < m.

The block diagram of the proposed multiple-bit parity
scheme for l < m is similar to the diagram shown in Fig.
5(a). Next for l < m the details of the Parity Prediction Unit
basically the internal structure of the design of the calculation
of each predicted parity bit corresponding to each block is
shown in Fig. 7. This circuit is generated using (25). In Fig.
7 each I.S. has one input as p(gj,c), when p(gj,c) is the parity
of the r elements of j-th column of G starting from c.r-th
element for 0 ≤ j ≤ l − 1.

Fig. 7: Parity Prediction Circuit of each block of the Proposed
Multi bit Scheme for l < m.

The actual parity bits are compared with the predicted parity
bits shown to be generated in Fig. 7 and in presence of an
error, e goes high. Both the predicted and actual parity are
w-bit wide forming a multiple-bit parity prediction having
width w. In this case also we have the advantage that from
the mismatch, we can approximately figure out which portion
of the circuit has got a fault depending on the location of the
erroneous actual parity bit.

Now we are ready with all the required formulations to
analyze the architecture of multiple-bit parity-based concurrent
fault detection of parallel CRC architecture.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

9

IV. ANALYSIS AND SIMULATION RESULTS

A physical defect due to imperfection, flaw, shorts or opens
in a circuit is defined as a fault and an deviation from correct
result is called error. In other words, faults occured in physical
universe is manifested by errors in informational universe
which further leads to failures [30]. In this section, we first
discuss the theoretical error coverage analysis along with a
comparison of detectable errors of our proposed technique
with other error detection techniques. Then we propose a
lemma for the computation of error coverage of our proposed
scheme. We also present simulation results supporting the
theoretical value obtained from the lemma. Finally we consider
fault models and fault analysis of parallel CRC structures
based on generator polynomials. At the end of this section, we
present the results of the simulation in which first we inject
faults into the parallel CRC structure and calculate the number
of cases where the injected faults result in occured errors. Then
we calculate the number of cases where our proposed scheme
has been successful in identifying the errors. All these results
have been presented in tabular format.

A. Error Model
In this subsection, we present a comparison of the error

coverage among the three methods, namely Duplication with
Compariosn, Single bit Parity Check and Proposed Multi bit
Parity Check. Duplication with Comparison method can detect
any error and single bit parity check can detect only odd
number of bit flips. While our proposed method can detect
any odd number of bit flips, it can also detect some of the
even number of bit flips as well.

In this subsection, theoretical error coverage has also been
explained. In the following subsections, fault types and fault
models have been discussed. For m−bit CRC checksum, a
fault has the effect of flipping any number of bits from those
m bits. An addition of error polynomial with the expected
checksum represents this fault. This error polynomial can be
represented as e(x) =

∑m−1
i=0 eix

i when ei ∈ GF (2). And
then Se(x) = S(x) + e(x) presents the erroneous output. A
no error situation takes place when e(x) = 0 i.e. ei = 0 for
0 ≤ i ≤ m − 1. An error in i−th bit position is manifested
by ei = 1 in the error polynomial because it flips the i−th bit
making the output erroneous. Since there are total m bits in
the output, there are total 2m − 1 possible errors.

Total number of possible 2-bit error in m-bit CRC syndrome
is
(
m
2

)
. In a single bit parity check scheme of CRC, 2-bit

error goes undetected. But our proposed multiple-bit scheme
can detect some of the 2-bit errors. This scheme cannot detect
a 2-bit error if both of the erroneous bits fall in the same
block. So the number of possible undetectable 2-bit errors for
multiple-bit scheme is equal to the product of the number of
blocks, i.e., w and number of possible 2-bit errors in a block,
i.e.,

(
r
2

)
where r is the number of bits in each block. Hence

the number of possible detectable 2-bit errors in the proposed
multiple-bit parity scheme = total number of possible 2-bit
errors - number of undetectable 2-bit errors =[

(
m
2

)
− w

(
r
2

)
]=

[m(m−r)
2 ].

Similarly, we can calculate the number of 4-bit error
detectable by multiple-bit parity scheme. Total number of

possible 4-bit error in a m-bit CRC syndrome is
(
m
4

)
. For

a multiple-bit parity scheme, there can be various ways in
which erroneous bits can be distributed. The multiple-bit
parity scheme cannot detect a 4-bit error in two cases.
Firstly, when all of the four erroneous bits are in the same
block which can happen in w

(
r
4

)
ways. Secondly, when

two of them are present in one block and the other two in
another block which can happen in

[
w
2

(
r
2

)
(w − 1)

(
r
2

)]
ways,

while the reason for the division by 2 is the fact that
each pair gets selected twice. So, the number of possible
detectable 4-bit errors in the proposed multiple-bit parity
scheme = total number of possible 4-bit errors - number of
undetectable 4-bit errors =

(
m
4

)
−
[
w
(
r
4

)
+ w

2 (w − 1)
(
r
2

)(
r
2

)]
=

m
24

[
(m− 1)(m− 2)(m− 3)− (r − 1){r2w − r(w − 4) + 6}

]
.

A comparison of the fault coverage in terms of number of
detectable errors of the above three schemes is shown in Table
II.

B. Error Analysis
In this subsection we propose a lemma for the calculation of

error coverage in terms of number of detectable errors using
our proposed multiple-bit scheme.
Lemma 3. Let m be the degree of CRC generator polynomial
and w be the number of parity bits, then error coverage Ec
can be expressed as

Ec =
2m−w(2w − 1)− 1

2m − 1
. (27)

Proof: For m - bit CRC computation, total number of
possible errors can be NTotal = 2m − 1. An error detection
scheme using single bit parity can detect error in presence of
any odd number of erroneous bits, but it cannot detect error
when number of erroneous bits is even. However, our proposed
multiple-bit parity scheme is capable of detecting all odd
number of errors and some of the even number of errors. For
m - bit CRC computation, among all the possible errors, half
of them will have odd number of erroneous bits. So possible
odd number of errors is Nodd = 2m−1. The rest of the errors
have even number of erroneous bits. So possible even number
of errors is Neven = 2m−1 − 1. Here this −1 corresponds to
the case of zero number of errors which means actually no
error. The proposed multiple-bit scheme consists of w blocks
while each block is characterized by r bits. Similar to the
previous reasoining here also we can write that, in each block
total number of errors, possible odd number of errors and
possible even number of errors can be given by respectively
ntotal = 2r− 1, nodd = 2r−1 and neven = 2r−1− 1. Now for
our proposed scheme, an error will go undetected in case if all
the blocks contain either no error or even number of errors,
i.e., only if there is no odd number of error in any of the blocks
our scheme will fail to detect the error. So for our proposed
scheme, number of undetectable error, NUndetectable = 2m−w.
So error coverage, which is the ratio of detectable errors and
total number of errors, can be expressed as

Ec =
NTotal −NUndetectable

NTotal

=
(2m − 1)− 2m−w

2m−1
=

2m−w(2w − 1)− 1

2m − 1
.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

10

TABLE II: Comparison of Theoretical Fault Coverage in terms of Detectable Errors.

Duplication with Compariosn Single bit Parity Check Proposed Multi bit Parity Check
Single bit Error 100% 100% 100%

Odd number of bits in Error 100% 100% 100%

Double Bit Errors m(m−1)
2

0
m(m−r)

2

Quadruple Bit Errors m(m−1)(m−2)(m−3)
24

0 m
24

[
(m− 1)(m− 2)(m− 3)− (r − 1){r2w − r(w − 4) + 6}

]
TABLE III: Theoretical Complexity Analysis in terms of area overhead and critical path delay.

Double Modular Redundancy Proposed Multi bit Parity Check
Number of XOR gates 2ml ml + w(l +m)

Number of FFs m m
Delay TX + dlog2leTX + TX + dlog2meTX TX + dlog2leTX + TX + dlog2reTX + dlog2weTX

We have simulated our proposed scheme for several fre-
quently used CRC generator polynomials. The simulation has
been performed for m = 8, m = 16 and m = 32. The
polynomials used for these simulations are mentioned here.
For m = 8, we have used G(x) = x8+x2+x+1. For m = 16,
we have used G(x) = x16+x15+x2+1. Finally for m = 32,
we have used G(x) = x32+x26+x23+x22+x16+x12+x11+
+x10 + x8 + x7 + x5 + x4 + x2 + x + 1. For each of these
values of m, number of parity bits, i.e., w is changed and error
coverage value is recorded for each particular value of w for
corresponding value of m.

A thorough investigation of the simulation results validates
the accuracy of Lemma 3. For this simulation, we have
introduced errors in the CRC checksum output bits i.e. we
made some of the bits erroneous to find out whether the
proposed method can catch the error. For CRC-8, the error
can occur in 8 output bits in total

(
28 − 1

)
ways and we have

injected all
(
28 − 1

)
number of possible errors. But for CRC-

16, and for CRC-32, we have introduced random errors while
making sure to include all the smaller number of errors, i.e.,
the cases when the number of errors are one, two, three, four
and five.

C. Fault Model and Analysis of CRC based on Generator
Polynomial

In this subsection, we analyse the possible fault locations
and fault propagation through the CRC structure shown in
Fig. 3. Now we consider various types of faults and their
corresponding locations. We can safely assume without loss
of generality that the inputs i.e. B(n)(x), S(n−1)(x) and G
matrix are free from errors. Error due to stuck-at faults can
take place in the calculation of T (n)(x) and S(n)(x) . Now
first we consider the case when there is an error in T (n)(x) .
This error may not propagate if the corresponding bit position
of G matrix for a particular bit of S(n)(x) is 0. But this same
error can flip another output bit. In the Matrix Multiplication
Unit, I.S. boxes are followed by XOR gates and any single
bit error in the input of a XOR gate is sure to propagate
through the BTX block to reach the output. Hence any error
present in the I.S. box output will propagate to the CRC
checksum output and will generate an erroneous result. We
have implemented the fault model in C language to confirm
the above fact. In this simulation, we have introduced several

stuck-at-faults in various locations and found out the erroneous
bits to investigate the nature of error propagation depending on
the value of G matrix. We have a detailed discussion about this
fault model in this subsection. Now Fig. 8 shows all possible
stuck-at-fault locations in parallel CRC.

Fig. 8: Fault Locations of Parallel CRC Structure.

In this figure, we have shown that there are mainly five
positions for stuck-at-faults. Those four positions have been
named F.L. 1, F.L. 2, F.L. 3, F.L. 4 and F.L. 5 in the diagram.
Now from Fig. 8, it is evident that any fault in F.L. 4 and
F.L. 5 affects only the corresponding syndrome bits, but any
single stuck-at-fault in F.L. 1 and F.L. 2 may affect multiple
syndrome bits though the manifestation of the fault depends
upon the value of the G matrix. Now a single fault in F.L.
4 implies that the particular syndrome bit is stuck at either
1 or 0. So a single fault in F.L.4 makes only one bit of the
syndrome erroneous. Similarly, a single stuck-at-fault in F.L.3
usually affects a single syndrome bit and can be detected by
the output flag. It can also correspond to multiple syndrome bit
errors. This can be ensured by arguing that resource sharing
may not have a significant impact in this case because there is
very little scope of resource sharing for two syndrome bits in
F.L. 3 zone due to the fact that the matrix G is in most cases
a sparse matrix. The possible locations of the stuck-at fault
in the output of the flip-flops have been considered in F.L. 5.
An additional design unit, shown in dotted line in Fig. 4, has
been added to detect the presence of single stuck-at fault in



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

11

the output of the flip-flops. This additional design unit first
calculates the w-bit parity of the output of the flip-flops using
the same formulations provided for the Parity Calculation Unit.
Then these parities are compared with the actual parities of the
previous cycle which are calculated in the Parity Calculation
Unit and passed through flip-flops. Any mismatch between the
w-bit parity of the Additional Unit and that of the previous
cycle Parity Calculation Unit can be flagged using an error
signal. Therefore, this error signal detects the presence of any
single stuck-at fault in the output of the flip-flops.

Now we discuss the cases of stuck-at-faults in F.L.1 and F.L.
2. Any single stuck-at-fault in F.L. 1 will result in erroneous
value of the T (n)(x) in only one bit position i.e., if there is a
stuck-at-fault either in b

(n)
i and/or s(n−1)i , then only t

(n)
i will

be erroneous. Also if there are faults in F.L. 1 simultaneously
in the locations which are not the inputs of the same XOR
gate, then multiple bits in T (n)(x) will be erroneous. Now
any single bit error in T (n)(x) or a single stuck-at-fault in
F.L. 2 may influence all the syndrome bits depending on the
value of the G matrix. If there is a stuck-at-fault in t

(n)
i ,

then s
(n)
j will be erroneous only if gj,i = 1. This clearly

indicates that for each different CRC generator polynomial,
fault propagation will be different. First we consider CRC-
8-CCITT polynomial

(
G(x) = x8 + x2 + x+ 1

)
which has

been widely used in Asynchronous Transfer Mode Header
Error Control/Check (ATM HEC), and then we will consider
CRC-8

(
G(x) = x8 + x4 + x3 + x2 + 1

)
polynomial which

has AES3 (Audio Engineering Society) as its application area.
Then we consider some other frequently used polynomials
specifically CRC-16

(
G(x) = x16 + x15 + x2 + 1

)
which is

used for USB applications. Finally we consider a widely used
CRC-32 polynomial used for MPEG, GZIP and PNG.

1) CRC-8-CCITT Polynomial: The generator matrix of
CRC-8-CCITT polynomial

(
G(x) = x8 + x2 + x+ 1

)
is

given below.

G =


1 0 0 0 0 0 1 1 1 0
1 1 0 0 0 0 1 0 0 1
1 1 1 0 0 0 1 0 1 0
0 1 1 1 0 0 0 1 0 1
0 0 1 1 1 0 0 0 1 0
0 0 0 1 1 1 0 0 0 1
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0

 .

Now we show in Table IV the erroneous syndrome bits
resulted from a particular stuck-at-fault of T (n)(x) in F.L. 2.

TABLE IV: Fault Analysis of CRC-8-CCITT.

Stuck-at-Fault Location Erroneous Syndrome Bits

t
(n)
0

s
(n)
0

, s(n)
1

, s(n)
2

t
(n)
1

s
(n)
1

, s(n)
2

, s(n)
3

t
(n)
2

s
(n)
2

,s(n)
3

, s(n)
4

t
(n)
3

s
(n)
3

, s(n)
4

, s(n)
5

t
(n)
4

s
(n)
4

,s(n)
5

,s(n)
6

t
(n)
5

s
(n)
5

, s(n)
6

, s(n)
7

t
(n)
6

s
(n)
0

, s(n)
1

, s(n)
2

, s(n)
6

, s(n)
7

t
(n)
7

s
(n)
1

,s(n)
3

, s(n)
7

t
(n)
8

s
(n)
1

,s(n)
2

,s(n)
4

t
(n)
9

s
(n)
1

,s(n)
3

,s(n)
5

From Table IV, we see that all the single stuck-at-faults in
T (n)(x) affect odd number of bits in syndrome, then all of
these single stuck-at-faults of T (n)(x) result in odd number

of bit errors which can be detected by a single-bit parity
prediction scheme as well as by our proposed multiple-bit
parity scheme. But not in all cases we will get to see a
situation where affected bit numbers are always odd. In the
next subsection, we will discuss a case involving a single
stuck-at-fault of F.L. 2 affecting even number of syndrome
bits thus making the scenario undetectable by single bit parity
prediction.

2) CRC-8 Polynomial: The generator matrix of CRC-8
polynomial

(
G(x) = x8 + x4 + x3 + x2 + 1

)
is given below.

G =


1 0 0 0 1 1 1 0 0 0
0 1 0 0 0 1 1 1 0 0
1 0 1 0 1 1 0 1 1 0
1 1 0 1 1 0 0 0 1 1
1 1 1 0 0 0 1 0 0 1
0 1 1 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 1

 .

Now we show in Table V, the erroneous syndrome bits resulted
from a particular stuck-at-fault of T (n)(x) in F.L. 2.

TABLE V: Fault Analysis of CRC-8.

Stuck-at-Fault Location Erroneous Syndrome Bits

t
(n)
0

s
(n)
0

, s(n)
2

, s(n)
3

, s(n)
4

t
(n)
1

s
(n)
1

, s(n)
3

, s(n)
4

, s(n)
5

t
(n)
2

s
(n)
2

,s(n)
4

, s(n)
5

,s(n)
6

t
(n)
3

s
(n)
3

, s(n)
5

, s(n)
6

,s(n)
7

t
(n)
4

s
(n)
0

,s(n)
2

,s(n)
3

,s(n)
6

,s(n)
7

t
(n)
5

s
(n)
0

, s(n)
1

, s(n)
2

,s(n)
7

t
(n)
6

s
(n)
0

, s(n)
1

, s(n)
4

t
(n)
7

s
(n)
1

,s(n)
2

, s(n)
5

t
(n)
8

s
(n)
2

,s(n)
3

,s(n)
6

t
(n)
9

s
(n)
3

,s(n)
4

,s(n)
7

In Table V, we see that for t
(n)
4 , t(n)6 , t(n)7 , t(n)8 , t(n)9 , odd

number of syndrome bits are affected. But for t(n)0 , t(n)1 , t(n)2 ,
t
(n)
3 , t(n)5 , even number of syndrome bits are affected resulting

these faults undetectable by single bit parity prediction. But
since the erroneous bits are not consecutive bits, all of these
errors can be detected by our proposed multiple-bit parity
prediction scheme as shown in Fig. 5(a). using Lemma 1.

3) CRC-16 Polynomial: Considering the generator matrix
of CRC-16 polynomial

(
G(x) = x16 + x15 + x2 + 1

)
, now

we show in Table VI, the erroneous syndrome bits resulted
from a particular stuck-at-fault of T (n)(x) in F.L. 2.

We investigate the number of erroneous syndrome bits
resulted from various particular stuck-at-fault of T (n)(x) in
F.L. 2. Following the value of the G matrix we find that, all the
single stuck-at-faults in T (n)(x) affect odd number of bits in
syndrome. Thus, all of these single stuck-at-faults of T (n)(x)
result in odd number of bit errors which can be detected by a
single-bit parity prediction scheme as well as by our proposed
scheme.

4) CRC-32 Polynomial: Considering the generator matrix
of CRC-32 polynomial

(G(x) = x32 + x26 + x23 + x22 + x16 + x12+

+x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1),

we can investigate the number of erroneous syndrome bits
resulted from various particular stuck-at-fault of T (n)(x) in
F.L. 2 following the value of the G matrix. We see that for



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

12

TABLE VI: Fault Analysis of CRC-16.

Stuck-at-Fault Location Erroneous Syndrome Bits

t
(n)
0

s
(n)
0

, s(n)
2

, s(n)
15

t
(n)
1

s
(n)
0

,s(n)
1

,s(n)
2

,s(n)
3

,s(n)
15

t
(n)
2

s
(n)
0

,s(n)
1

,s(n)
3

,s(n)
4

,s(n)
15

t
(n)
3

s
(n)
0

,s(n)
1

,s(n)
4

,s(n)
5

,s(n)
15

t
(n)
4

s
(n)
0

,s(n)
1

,s(n)
5

,s(n)
6

,s(n)
15

t
(n)
5

s
(n)
0

,s(n)
1

,s(n)
6

,s(n)
7

,s(n)
15

t
(n)
6

s
(n)
0

,s(n)
1

,s(n)
7

,s(n)
8

,s(n)
15

t
(n)
7

s
(n)
0

,s(n)
1

,s(n)
8

,s(n)
9

,s(n)
15

t
(n)
8

s
(n)
0

,s(n)
1

,s(n)
9

,s(n)
10

,s(n)
15

t
(n)
9

s
(n)
0

,s(n)
1

,s(n)
10

,s(n)
11

,s(n)
15

t
(n)
10

s
(n)
0

,s(n)
1

,s(n)
11

,s(n)
12

,s(n)
15

t
(n)
11

s
(n)
0

,s(n)
1

,s(n)
12

,s(n)
13

,s(n)
15

t
(n)
12

s
(n)
0

,s(n)
1

,s(n)
13

,s(n)
14

,s(n)
15

t
(n)
13

s
(n)
0

,s(n)
1

,s(n)
14

t
(n)
14

s
(n)
1

,s(n)
2

,s(n)
15

t
(n)
15

s
(n)
0

,s(n)
3

,s(n)
15

t
(n)
0 , t(n)1 , t(n)2 , t(n)3 , t(n)4 , t(n)5 , t(n)16 , t(n)17 , t(n)18 , t(n)24 , t(n)25 , even

number of syndrome bits are affected resulting these faults
undetectable by single bit parity prediction. But since the
erroneous bits are not consecutive bits, all of these errors
can be detected by our proposed multiple-bit parity prediction
scheme.

The above discussion shows the relation between a stuck-
at-fault and resulting location of erroneous bits depending on
presence of 1 or 0 in rows and columns of G matrix. So
if we find a bit erroneous, we can simply backtrack using
G matrix to approximately locate a possible region having
stuck-at fault. In this way our proposed scheme also helps to
find out an approximate position of the faulty portion of the
circuit. Further study in this direction may lead to online error
correction of CRC.

D. Fault Simulation
Now we present the results of the fault injection simulation.

In this simulation, first faults are injected into the parallel
CRC circuit. Then the resulting number of error occurance is
computed. Finally we calculate the number of errors detected
by our proposed scheme and tabulate the results. We have
coded this simulation using C language and used the generator
polynomials mentioned before. For CRC-8, CRC-16 and CRC-
32, we have introduced all possible single stuck-at-faults for
investigation of error propagation. For this purpose we have
incorporated the fault model consisting of F.L. 1, F.L. 2, F.L.
3, F.L. 4 and F.L. 5 discussed in the previous subsection. A
detail investigation reveals that the total number of possible
single stuck-at-fault in F.L. 2, F.L. 3, F.L. 4 and F.L. 5 are
respectively l, (m× l), m× (l− 1) and m. Table VII gives a
detail result of all the possible single stuck-at fault for F.L. 2,
F.L. 3, F.L. 4 and F.L. 5, and also provides the summation of
all these results.

The table clearly proves the high error detection capability
of the proposed scheme.

V. COMPLEXITY OVERHEAD AND IMPLEMENTATION
RESULTS

In this section, first we discuss the theoretical complexity of
the presented error detection method using tables and figures.

Next using these area overhead and error detection capability,
we come to a trade-off of these two parameters to calculate the
particular value of number of parity bits to achieve high error
coverage without having high area overhead for the proposed
multiple-bit parity-based concurrent fault detection of parallel
CRC structure. We also present the implementation result of
the proposed scheme.

A complexity analysis between double modular redundancy
and the proposed scheme is presented in Table III. While the
parallel CRC implementation based on matrix multiplication
employs m.l number of XOR gates, the required number of
XOR gates for the proposed multiple-bit parity-based concur-
rent fault detection of CRC structure is m.l+w.(l+m), thus
resulting in the overhead of w.(l+m)

m.l . If we consider the case
when m = l, the overhead becomes 2.w

m which is 25% for
the operating value of w explained later in this section. The
critical path delay comparison has also been summarised in
Table III, where TX represents the delay of a two input XOR
gate. The correctness of the proposed scheme has been verified
by Verilog coding which also proves the validity of the given
overhead formulation. In Verilog, we have coded the proposed
multiple-bit parity scheme and validated the functionality of
the proposed architecture. We have added an additional design
unit to detect the fault in the output of the flip-flops. The
area overhead of this Additional Unit can be expressed as
w(r − 1) + w number of XOR gates, w number of flip-flops
and the delay can be expressed as (1 + dlog2re) TX . Since
this delay is much less compared to the critical path delay of
the Parity Prediction Unit, the inclusion of this Additional Unit
does not have significant impact on timing overhead of the
overall architecture. We have also implemented this Additional
Unit using Verilog code.

We have selected three values of w, i.e. 2, 3 and 4 for
m = 32, as the corresponding error covrerages yield good
results presented in the previous section and the area overheads
are depicted in Table VIII. Similarly, we have implemented the
proposed scheme for m = 16 and the area overhead for w = 2
is shown in Table VIII. We have given the area overhead for
the proposed architecture in two separate cases, without the
Additional Unit and with the Additional Unit. This Additional
Unit is very similar to the Parity Calculation Unit in terms
of architecture. So if we add the Additional Unit but at the
same time remove the Parity Calculation Unit, then we will
not have this extra area overhead due to the Additional Unit.

From previous discussions, we see that there is a trade-off
between fault coverage in terms of number of detectable errors
and area overhead since increase in number of parity bits (w)
increases both the fault coverage and area overhead.

For three different values of m namely m = 64 , m = 32
and m = 16, we compare area overhead (in terms of extra
gates) and fault coverage (in terms of number of detectable
errors) for 2-bit errors for several values of number of parity
bits (w). We have chosen 2-bit error because among all
the even number of errors undetectable by single bit parity
scheme, this is the most common. For all these calculations,
we have considered three different values for l covering all
three cases namely l > m represented by l = 2m, l = m
and l < m represented by l = m/2. This analysis helps us
to come into the conclusion that the value of w for which we



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

13

TABLE VII: Error Detection Capability of the proposed scheme for single-bit stuck-at fault for all fault locations.
Generator Number of Stuck-at-fault in F.L. 2 Stuck-at-fault in F.L. 3 Stuck-at-fault in F.L. 4 Stuck-at-fault in F.L. 5 Total Number of Stuck-at-fault

Polynomial Parity Bits Errors Errors Percentage Errors Errors Percentage Errors Errors Percentage Errors Errors Percentage Errors Occured Errors Detected Percentage
Occured Detected Occured Detected Occured Detected Occured Detected

CRC-8-CCITT 2 8 8 100 80 80 100 72 72 100 8 8 100 168 168 100
3 8 8 100 80 80 100 72 72 100 8 8 100 168 168 100

CRC-8 2 8 7 87.5 80 80 100 72 72 100 8 8 100 168 167 99.405
3 8 8 100 80 80 100 72 72 100 8 8 100 168 168 100

CRC-16
2 16 16 100 160 160 100 144 144 100 16 16 100 336 336 100
3 16 16 100 160 160 100 144 144 100 16 16 100 336 336 100
4 16 16 100 160 160 100 144 144 100 16 16 100 336 336 100

CRC-32

2 32 24 75 320 320 100 288 288 100 32 32 100 672 664 98.81
3 32 29 90.6 320 320 100 288 288 100 32 32 100 672 669 99.553
4 32 31 96.875 320 320 100 288 288 100 32 32 100 672 671 99.851
5 32 31 96.875 320 320 100 288 288 100 32 32 100 672 671 99.851

TABLE VIII: Complexity Overhead of the Proposed Scheme from ASIC Implementation Results
Generator Number of Area Time

Polynomial Parity Bits Original Architecture Fault Detection Architecture without Overhead Fault Detection Architecture with Overhead Original Fault Detection Overhead(
µm2

)
Additional Unit

(
µm2

)
Percentage Additional Unit

(
µm2

)
Percentage Architecture(ns) Architecture (ns) Percentage

CRC-16 2 16811 21249 26.4 22072 31.3 2.93 3.37 15.2

CRC-32
2 72917 82031 12.5 84364 15.7 4.23 4.76 12.7
3 72917 87135 19.5 88885 21.9 4.23 4.83 14.3
4 72917 91656 25.7 93407 28.1 4.23 4.89 15.6

get a high value of fault coverage while the area overhead
is not very high, i.e. the operating value of w can be safely
considered as w = m

8 for l = m. In short, if we use this
operating value of w, we will achieve good fault coverage
and at the same time, area overhead of the design will not be
too high. Table II shows that fault coverage is independent of l
while Table III shows that area overhead is linearly dependent
on l which gets confirmed from our calculation. For l = m,
the operating value of w is w = m

8 . If l > m, the operating
value of w is found to be reduced from w = m

8 to take care
of linearly increasing area overhead. So, for l > m, operating
value of w is less than m

8 . Similarly, for l < m, operating
value of w is found to be safely increased from w = m

8 .

VI. CONCLUSIONS

In this paper, we have proposed a concurrent fault detection
design structure for parallel CRC architecture. Two different
cases, namely l ≥ m and l < m have been considered and
the formulation for the multiple-bit parity-based concurrent
fault detection scheme has been derived followed by the
implementation of the corresponding architecture for each of
them.

The error and fault coverage of the proposed scheme have
been analyzed in detail using error and fault models. We
have also presented a formulation for the error detection
capability of the scheme covering all the possible 2m−1 cases
where the output can become erroneous. Moreover, a thorough
analysis of all the possible single stuck-at fault locations
have been discussed. Furthermore, we have investigated the
relation between stuck-at fault location and error propagation
resulting in an erroneous output and the relation between this
propagation with the CRC generator polynomial. Finally, the
fault detection capability and the theoretical time and area
overheads of the proposed schemes have been reported and
confirmed by software simulation and ASIC implementation
results. We have coded the proposed scheme in C for software
simulation and in Verilog for ASIC implementation purpose.
The proposed method is shown to be area efficient and at the
same time it has a high fault detection capability. The proposed
multiple-bit parity prediction scheme has also been shown to
have not only the ability to detect a fault, but also to point out
the region of the fault. This potential advantage can further be

utilized while extending the proposed scheme to correct the
error online in future, i.e., to achieve an error free output even
in the presence of a hardware fault.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their valu-
able comments. This work has been supported by NSERC Dis-
covery Accelerator Supplementary Grants awarded to Arash
Reyhani-Masoleh. The authors also thank CMC for the CAD
tools.

REFERENCES

[1] W. Peterson and D. Brown, “Cyclic codes for error detection,” in Proc.
IRE, vol. 49, no. 1, pp. 228–235, 1961.

[2] ATM Layer Specification, ITU-T Recommendation I.361, 1999.
[3] IEEE Standard for Information Technology: Carrier Sense Multiple Ac-

cess with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications. ANSI/IEEE Std 802.3-2005.

[4] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. ANSI/IEEE Std 802.11-1999.

[5] IEEE Standard for Local and Metropolitan Area Networks: Air Interface
for Fixed and Mobile Broadband WirelessAccess Systems. ANSI/IEEE
Std. 802.16-2004.

[6] C. Kennedy, “High Performance Hardware and Software Implementa-
tions of the Cyclic Redundancy Check Computation,” Thesis, University
of Western Ontario, 2009.

[7] S. Lin and D.J. Costello, Error Control Coding, Englewood Cliffs, NJ:
Prentice-Hall, 1983.

[8] T. Ramabadran and S. Gaitonde, “A tutorial on CRC computations,”
IEEE Micro, vol. 8, no. 4, pp. 62–75, Aug. 1988.

[9] T.-B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI,”
IEEE Trans. on Communications, vol. 40, no. 4, pp. 653–657, Apr. 1992.

[10] G. Albertengo and R. Sisto, “Parallel CRC generation,” IEEE Micro,
vol. 10, no. 5, pp. 63–71, Oct. 1990.

[11] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,”
IEEE Trans. on Computers, vol. 52, no. 10, pp. 1312–1319, Oct. 2003.

[12] M.-D. Shieh, M.-H. Sheu, C.-H. Chen, and H.-F. Lo, “A systematic ap-
proach for parallel CRC computations,” Journal of Information Science
and Eng., vol. 17, no. 3, pp. 445–461, 2001.

[13] M. Sprachmann, “Automatic generation of parallel CRC circuits,” IEEE
Design and Test of Computers, vol. 18, no. 3, pp. 108–114, 2001.

[14] C. Cheng and K.K. Parhi, “High-speed parallel CRC implementation
based on unfolding, pipelining, and retiming,” IEEE Trans. on Circuits
and Syst. II, Express Briefs, vol. 53, no. 10, pp. 1017–1021, Oct. 2006.

[15] C. Cheng, K.K. Parhi, “High Speed VLSI Architecture for General
Linear Feedback Shift Register (LFSR) Structures,” IEEE Conference,
2009.

[16] M. Ayinala and K.K. Parhi, "High-Speed Parallel Architectures for
Linear Feedback Shift Registers," IEEE Trans. on Signal Processing,
vol. 59, no. 9, pp. 4459-4469, Sep. 2011.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479617, IEEE Transactions on Computers

14

[17] C. Kennedy and A. Reyhani-Masoleh, “High-speed parallel CRC cir-
cuits,” in Proc. 42nd Asilomar Conf. Signals, Systems and Computers,
pp. 1823–1829, Oct. 2008.

[18] M. Braun, J. Friedrich, T. Grün, and J. Lembert, “Parallel CRC compu-
tation in FPGAs,” Lecture Notes in Computer Science, Springer-Verlag,
vol. 1142, pp. 156–165, 1996..

[19] R. Glaise, “A Two-Step Computation of Cyclic Redundancy Code CRC-
32 for ATM Networks,” IBM Journal of Research and Development,
vol.41, no.6, pp. 705-709, 1997.

[20] J. Derby, “High-Speed CRC Computation Using State-Space Transfor-
mations,” IEEE Global Telecommunications Conference (GLOBECOM),
vol. 1, pp. 166-170, 2001.

[21] P. Reviriego, S. Pontarelli and J.A. Maestro, "Concurrent Error Detection
for Orthogonal Latin Squares Encoders and Syndrome Computation,"
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 21,
no 12, pp. 2334-2338, December 2013.

[22] K. Namba and F. Lombardi, "A novel scheme for concurrent error
detection of OLS parallel decoders," Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2013 IEEE International
Symposium on. IEEE, 2013.

[23] N.A. Touba and E.J. McCluskey, "Logic synthesis of multilevel cir-
cuits with concurrent error detection," IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol.16, no. 7, pp. 783-789,
1997.

[24] K. De, C. Natarajan, D. Nair and P. Banerjee, "RSYN: A system for
automated synthesis of reliable multilevel circuits," IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol.2, no.2, pp. 186-195, 1994.

[25] M. Walma, “Pipelined Cyclic Redundancy Check (CRC) Calculation,”
in Proc. International Conference on Computer Communications and
Networks, (ICCCN), pp. 365-370, Aug. 2007.

[26] E. Normand, “Single event upset at ground level,” IEEE Trans. on
Nuclear Science, vol. 43, no. 6, pp. 2742–2750, Dec. 1996.

[27] D. Larner, “Sun flips bits in chips,” Electronics Times, no. 878, pp. 72
and 24, 10 Nov. 1997.

[28] J.F. Ziegler, “Terrestrial cosmic rays intensities,” IBM Journal of Re-
search and Development, vol. 42, pp. 117–139,1998.

[29] C.R. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Trans. on Device and Materials Reliability, vol.
5, no. 3, pp. 305–316, Sep. 2005.

[30] B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems,
Addison-Wesley Publishing Company, 1989.

[31] S. J. Piestrak, A. Dandache and F. Monteiro, “Designing Fault-Secure
Parallel Encoders for Systematic Linear Error Correcting Codes,” IEEE
Transactions on Reliability, vol. 52, no. 4, Dec. 2003.

[32] K. K. Parhi, “Eliminating the fanout bottleneck in parallel long BCH
encoders,” IEEE Trans. on Circuits and Systems I, Reg. Papers, vol. 51,
no. 3, pp.512–516, Mar. 2004.

[33] X. Zhang and K.K. Parhi, “High-speed architectures for parallel long
BCH encoders,” in Proc. ACM Great Lakes Symp. on VLSI, Boston,
MA, pp. 1–6, Apr. 2004.

[34] H. Jaber, F. Monteiro, S.J. Piestrak, A. Dandache, “Design of parallel
fault-secure encoders for systematic cyclic block transmission codes,”
Microelectronics Journal, vol. 40, no. 12, pp. 1686-1697, Dec. 2009.

[35] S. Pontarelli, G.C. Cardarilli, M. Re and A. Salsano, “A Novel Error
Detection And Correction Technique for RNS based FIR Filters,” IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT ’08), pp. 436-444, Oct. 2008.

[36] G.C. Cardarilli, S. Pontarelli, M.Re and A. Salsano, “A Self Checking
Reed Solomon Encoder: Design and Analysis,” IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT ’05),
pp. 111-119, Oct. 2005.

[37] G.C. Cardarilli, S. Pontarelli, M. Re and A. Salsano, “Concurrent Error
Detection in Reed–Solomon Encoders and Decoders,” IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, vol. 15, no. 7, pp. 842-846,
July 2007.

[38] S. Bayat-Sarmadi and M.A. Hasan, “Concurrent Error Detection of
Polynomial Basis Multiplication over Extension Fields using a Multiple-
bit Parity Scheme,” IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT ’05), pp. 102-110, Oct. 2005.

[39] D.C. Feldmeier, “Fast Software Implementation of Error Detection
Codes,” IEEE/ACM Trans. on Networking, vol.3, no. 6, pp. 640-651,
Dec. 1995.

Dipanwita Gangopadhyay received the BE. degree in electrical and computer
engineering from Jadavpur University, Kolkata, India, in 2004, and the
M.S. degree in electrical and computer engineering from Indian Institute of
Technology (IIT) Madras, Chennai, India, in 2007. She was an Engineer with
Qualcomm India Private Ltd, Bangalore, India, from 2007 to 2009. She is
currently pursuing the Ph.D. degree with the Department of Electrical and
Computer Engineering, Western University, London, Ontario.

Arash Reyhani-Masoleh received the BSc degree
in electrical and electronic engineering from Iran
University of Science and Technology in 1989, the
MSc degree in electrical and electronic engineering
from the University of Tehran in 1991, both with
the first rank, and the PhD degree in electrical
and computer engineering from the University of
Waterloo in 2001. From 1991 to 1997, he was
with the Department of Electrical Engineering, Iran
University of Science and Technology. From June
2001 to September 2004, he was with the Center

for Applied Cryptographic Research, University of Waterloo, where he was
awarded a Natural Sciences and Engineering Research Council of Canada
(NSERC) Postdoctoral Fellowship in 2002. In October 2004, he joined the
Department of Electrical and Computer Engineering, Western University,
London, Canada, where he is currently a tenured associate professor. His
current research interests include fault-tolerant computing, algorithms and
VLSI architectures for computations in finite fields, cryptography, and error-
control coding. He has been a two-time recipient of NSERC Discovery
Accelerator Supplement (DAS) award in 2010 and 2015. Currently, he serves
as an associate editor for Integration, the VLSI Journal (Elsevier). He is a
member of the IEEE and the IEEE Computer Society.


