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Abstract—Multiplication and squaring are main finite field operations in cryptographic computations and designing efficient multipliers

and squarers affect the performance of cryptosystems. In this paper, we consider the Montgomery multiplication in the binary

extension fields and study different structures of bit-serial and bit-parallel multipliers. For each of these structures, we study the role of

the Montgomery factor, and then by using appropriate factors, propose new architectures. Specifically, we propose two bit-serial

multipliers for general irreducible polynomials, and then derive bit-parallel Montgomery multipliers for two important classes of

irreducible polynomials. In this regard, first we consider trinomials and provide a way for finding efficient Montgomery factors which

results in a low time complexity. Then, we consider type-II irreducible pentanomials and design two bit-parallel multipliers which are

comparable to the best finite field multipliers reported in the literature. Moreover, we consider squaring using this family of irreducible

polynomials and show that this operation can be performed very fast with the time complexity of two XOR gates.

Index Terms—Montgomery multiplication, squaring, finite (or Galois) fields, bit-serial, bit-parallel, trinomials, pentanomials.

Ç

1 INTRODUCTION

FINITE fields have an important role in cryptographic
algorithms. Among the arithmetic operations which are

performed over finite fields, multiplication and squaring are
the most important ones. Other arithmetic operations such as
inversion and exponentiation can be performed using multi-
plication and squaring. The multiplication in finite field has
been extensively considered in the literature; see, for
example, [1], [2], [3], [4], [5], and [6]. They cover a wide
variety of cases regarding different basis representations
(e.g., polynomial basis (PB), normal basis, etc.), irreducible
polynomials (e.g., trinomials, pentanomials, etc.), and the
architecture (e.g., bit-serial, digit-serial, bit-parallel, etc.).

Montgomery multiplication (MM) algorithm has been
proposed in [7] for fast modular integer multiplication. In [5],
Koç and Acar have introduced a class of algorithms for
bit-serial, digit-serial, and bit-parallel Montgomery multi-
plication over binary extension fields. They have proposed
that by choosing the Montgomery factor r ¼ xm, the multi-
plication can be efficiently implemented in hardware and
software. The Montgomery multiplication is used to design
an Elliptic Curve Cryptography (ECC) based cryptoproces-
sor in [8]. Also, it is implemented with a semisystolic array
structure in [9]. In [10], another semisystolic array structure is
designed for the Montgomery multiplication which uses
r ¼ xm. A digit-serial Montgomery multiplication algorithm
is proposed in [11] which is based on the algorithm proposed
in [5] and the polynomial basis multiplication. Also in the
literature, some scalable architectures are proposed for the

Montgomery multiplication over finite fields, e.g., [12], [13],
and [14]. In [15], the Montgomery multiplication is imple-
mented using systolic arrays for all-one polynomials and
trinomials. A new Montgomery factor has been considered
by Wu in [16] for the Montgomery multiplication. His design
is based on the method proposed in [5] and has shown that
choosing the middle term of the irreducible trinomial F ðzÞ ¼
zm þ zk þ 1 as the Montgomery factor, i.e., r ¼ xk, results in
more efficient bit-parallel multipliers and squarers. Although
the Montgomery multiplication is suitable for designing
scalable and versatile multipliers, according to [5] and [16],
the important advantage of the Montgomery multiplication
over GF ð2mÞ is its low time complexity. In this paper, we
provide more results to support this advantage.

Our objective in this work is to reduce the time complex-
ity of Montgomery multipliers and squarers so as to
accelerate scalar multiplication in ECC, which is included
in the recent standards such as FIPS 186-2, ANSI X9.62, and
IEEE 1363-2000. To achieve this, we use a different approach
to formulate the Montgomery multiplication, and then, we
study different Montgomery factors to find the most efficient
ones. We begin by presenting two new bit-serial algorithms
and their hardware architectures, and then, by unfolding
one of the algorithms, we design a new general bit-parallel
multiplication architecture which is different from the
architecture proposed in [5] and [16]. Due to the popularity
of irreducible trinomials and pentanomials in cryptography,
we optimize our general architecture using efficient Mon-
tgomery factors for faster implementation. Finally, we
design an efficient squarer for a family of irreducible
pentanomials. Note that ECC is typically implemented with
a fixed field size (e.g., [17], [18], and [19]) using the
recommendations by NIST [20] for Elliptic Curve Digital
Signature Algorithm (ECDSA). Therefore, to avoid any area,
time, or power overheads, we design our multipliers
assuming that the field size is fixed.

Bit-serial multipliers provide the lowest possible area
complexity. In the literature, the bit-serial algorithms have
been studied for the polynomials basis and two different
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algorithms have been proposed, namely the Least Significant
Bit (LSB) first and the Most Significant Bit (MSB) first bit-serial
algorithms [21]. The bit-serial Montgomery multiplication
algorithm proposed in [5] is an LSB-first bit-serial algorithm
which uses r ¼ xm as the Montgomery factor. In this paper,
we propose two bit-serial Montgomery multipliers and a new
Montgomery factor to reduce their time complexities.

The main objective of designing bit-parallel multipliers
which makes them different from bit-serial and digit-serial
multipliers (e.g., [2] and [22]) is to provide the lowest
possible time complexity. In this paper, we study two
classes of irreducible polynomials. The first class is the
irreducible trinomials (F ðzÞ ¼ zm þ zk þ 1). For this class,
we prove that two Montgomery factors result in an efficient
hardware implementation, where their complexity results
match the best results reported in the literature for different
bit-parallel finite field multipliers including [6], [23], [3],
and [16]. In this paper, we also consider the irreducible
pentanomials and show that type-II irreducible pentano-
mials defined in [4] are very suitable for our general bit-
parallel architecture. In this regard, we propose two
Montgomery factors which result in very efficient imple-
mentations. Then, we propose two different bit-parallel
Montgomery multipliers for this class of irreducible poly-
nomials and compare their complexities with the ones of
recent bit-parallel multipliers. We show that our results
outperform the existing Montgomery multipliers in the
literature. Finally, we consider squaring over GF ð2mÞ and
present a squarer for type-II irreducible pentanomials. The
proposed squarer has the constant delay of two exclusive-or
(XOR) gates which is the lowest reported delay for squaring
using pentanomials.

The rest of the paper is organized as follows: In Section 2,
we provide some background information. In Section 3, we
introduce two new bit-serial algorithms as well as a new
Montgomery factor. In Section 4, we consider a new general
formulation of bit-parallel Montgomery multipliers and
study it for two special cases of irreducible polynomials,
namely irreducible trinomials and irreducible pentanomials
in Sections 5 and 6, respectively. In Section 7, we consider
squaring over binary extension fields. In Section 8, we
present our comparison results, and finally, we conclude
this paper in Section 9.

2 PRELIMINARIES

In this section, we briefly introduce some basic concepts
about Galois fields and the Montgomery multiplication
over GF ð2mÞ.

2.1 Finite Fields

GF ð2mÞ is a kind of finite field [24] that contains
2m different elements. This finite field is an extension of
GF ð2Þ which contains 0 and 1. The extended binary field,
GF ð2mÞ, is associated with an irreducible polynomial of
degree m over GF ð2Þ, i.e.,

F ðzÞ ¼ fmzm þ fm�1z
m�1 þ � � � þ f1zþ f0; fi 2 GF ð2Þ: ð1Þ

Assuming x is a root of F ðzÞ, i.e., F ðxÞ ¼ 0, each element
of GF ð2mÞ can be represented as a polynomial of degree

m� 1 over GF ð2Þ, i.e., A 2 GF ð2mÞ , A ¼ am�1x
m�1 þ

� � � þ a1xþ a0, where ai 2 f0; 1g; i 2 ½0;m� 1�.
This representation is called the PB representation. In

this case, the addition of any two elements is easily

performed by the XOR operation. However, the multi-

plication and squaring operations are complicated as the

intermediate product needs further reduction by F ðxÞ.

2.2 Montgomery Multiplication over GF ð2mÞ
Let � and � be two elements of GF ð2mÞ to be multiplied,

and � ¼ � � � mod F ðxÞ be their multiplication product.

Also, let A and B be two Montgomery residues defined as

A ¼ � � r mod F ðxÞ ¼
Xm�1

i¼0

aix
i; ð2Þ

and

B ¼ � � r mod F ðxÞ ¼
Xm�1

i¼0

bix
i; ð3Þ

where, r, a polynomial satisfying gcdðr; F ðxÞÞ ¼ 1, is called

the Montgomery factor and gcd means the greatest common

divisor. Then, the MM algorithm over GF ð2mÞ can be

formulated as [5]

C ¼ A �B � r�1 mod F ðxÞ; ð4Þ

where r � r�1 þ F ðxÞ � F 0ðxÞ ¼ 1 and r�1 is the inverse of

r modulo F ðxÞ, i.e., r � r�1 ¼ 1 mod F ðxÞ. Based on [5], the

MM over GF ð2mÞ can be carried out by using Algorithm 1

shown in Fig. 1a. The polynomial r plays an important role

in the complexity of the algorithm as we need to do

modulo r multiplication and a final division by r. In [5], r is

chosen as xm, and this is because the modular operation
using r ¼ xm only requires ignoring the terms whose

powers of x are greater than or equal to m. Furthermore,

dividing a polynomial by r ¼ xm can be easily carried out

by m right shifts. In [5], an LSB-first bit-serial MM algorithm

is also introduced. This algorithm is shown in Fig. 1b.

HARIRI AND REYHANI-MASOLEH: BIT-SERIAL AND BIT-PARALLEL MONTGOMERY MULTIPLICATION AND SQUARING OVER GGF ð22mÞ 1333

Fig. 1. (a) The Montgomery multiplication (MM) over GF ð2mÞ [5]. (b) The

bit-serial MM [5].



Using the definition of the Montgomery residue as
shown in (2) and (3), one can write (4) as

C ¼ ð� � rÞ � ð� � rÞ � r�1 mod F ðxÞ ¼ � � r mod F ðxÞ:

In other words, C is the Montgomery residue of �. This
makes it possible to convert the operands to Montgomery
residues once at the beginning, and then, do several
consecutive multiplications/squarings, and convert the
final result to the original representation. The final
conversion is a multiplication by r�1 followed by a
reduction by F ðxÞ, i.e., � ¼ C � r�1 mod F ðxÞ. The elliptic
curve cryptography can be a good example. A straightfor-
ward implementation of the Montgomery scalar multi-
plication using projective coordinates requires up to
ðm� 1Þð6M þ 3Aþ 5SÞ þ ð10M þ 7Aþ 4S þ IÞ clock cy-
cles, where M;A; S, and I represent the number of clock
cycles for multiplication, addition, squaring, and inver-
sion, respectively [17]. Furthermore, inversion using Itoh-
Tsujii algorithm requires log2ðm� 1Þb c þHðm� 1Þ � 1
multiplications and m� 1 squarings, where Hðm� 1Þ
denotes the Hamming weight of ðm� 1Þ [17]. For instance,
inversion over GF ð2163Þ requires nine multiplications and
162 squarings. Hence, the scalar multiplication requires
991M þ 976S þ 493A clock cycles for m ¼ 163. If the
designer changes the operands to the original form, it is
only enough to do the conversion once before and once
after the scalar multiplication. It is worthwhile to mention
that, in the general case, where r ¼ xu, the conversion
requires at most 3u XOR gates and has the delay of at
most 2TX for irreducible trinomials and pentanomials [25].
Note that multiplication using the shifted polynomial basis
(SPB) requires the same conversions as well (see [25],
Section 2). As a result, using efficient Montgomery
multiplication/squaring with low delay, significantly
reduces the overall time complexity of the scalar point
multiplication, and hence, increases the speed of the
elliptic curve processor.

3 NEW BIT-SERIAL MONTGOMERY MULTIPLIERS

Using r ¼ xu; 1 � u � m, as the general Montgomery factor,
the Montgomery multiplication over GF ð2mÞ can be
formulated as

C ¼ A �B � x�u mod F ðxÞ: ð5Þ

Using (3), one can rewrite (5) as

C ¼ b0Ax
�u þ b1Ax

�uþ1 þ � � � þ bm�1Ax
m�u�1 mod F ðxÞ:

ð6Þ

We know that x is a root of the polynomial F ðzÞ;
F ðxÞ ¼ 0, and using (1), one can write

fmx
m þ fm�1x

m�1 þ � � � þ f1xþ f0 ¼ 0: ð7Þ

For any irreducible polynomial, we have f0 ¼ 1 and
fm ¼ 1. Thus, using this fact, multiplying both sides of (7)
by x�1, and rearranging the terms, one can obtain

x�1 mod F ðxÞ ¼ xm�1 þ � � � þ f2xþ f1: ð8Þ

In [10], (8) is used to design a semisystolic array structure
for the MM using r ¼ xm. In the following sections, we use (8)
to develop two different bit-serial multiplication algorithms

based on (6) using r ¼ xu; 1 � u � m. Then, we show that the
efficient Montgomery factor for such bit-serial structures is
r ¼ xm�1.

3.1 MSB-First Bit-Serial MM

In an MSB-first bit-serial MM algorithm, the operand B is
processed from its MSB, i.e., bm�1, and one bit at each cycle
is considered. By rewriting (6) and changing the order of
addition, one can obtain

C ¼ bm�1Ax
m�u�1 þ � � � þ b1Ax

�uþ1 þ b0Ax
�u mod F ðxÞ:

ð9Þ

Now, we introduce Algorithm 3 based on (9) using the
general Montgomery factor r ¼ xu in Fig. 2a, where AðiÞ and
CðiÞ denote the intermediate results at the ith iteration. It is
clear from (9) that, first, we need to precompute Að0Þ ¼
Axm�u�1 mod F ðxÞ, as shown in Step 1 of this algorithm. As
a result, the complexity of the MSB-first bit-serial MM
depends on the complexity of Step 1 and the complexity of
the main multiplication in Steps 2-5. First, we consider
Step 4 in this algorithm as

Aðiþ1Þ ¼ AðiÞ � x�1 mod F ðxÞ;
¼
�
a
ðiÞ
m�1x

m�2 þ � � � þ aðiÞ1 þ a
ðiÞ
0 x
�1
�

mod F ðxÞ:
ð10Þ

Now, similar to [10], we substitute (8) in (10) and write
the result as

Aðiþ1Þ ¼ aðiÞ0 x
m�1 þ

�
a
ðiÞ
m�1 þ a

ðiÞ
0 fm�1

�
xm�2 þ � � �

þ
�
a
ðiÞ
2 þ a

ðiÞ
0 f2

�
x1 þ

�
a
ðiÞ
1 þ a

ðiÞ
0 f1

�
:

ð11Þ

Consequently, the architecture of Algorithm 3 is depicted
in Fig. 2b. In this figure, A0 and C0 are two m-bit registers,
which store values of AðiÞ and CðiÞ, respectively. We assume
that A0 is loaded with Að0Þ ¼ Axm�u�1 mod F ðxÞ at the
beginning. There are two main loops in Fig. 2b. The right
loop calculates the value ofCðiþ1Þ in Step 3 of Algorithm 3 and
includes m two-input XOR gates. The left loop calculates the
value of Aðiþ1Þ in Step 4 Algorithm 3 using the x�1-module.
This module multipliesAðiÞ by x�1 and reduces the results by
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Fig. 2. The proposed MSB-first bit-serial Montgomery multiplication

(MM) using r ¼ xu: (a) algorithm, (b) architecture.



F ðxÞ. The architecture of the x�1-module, which is obtained
from (11), is depicted in Fig. 3. It is clear that if F ðxÞ is an
!-nomial, i.e., ! nonzero terms in (1), then we will need
!� 2 two-input XOR gates to obtain Aðiþ1Þ in (11). So, for
general irreducible polynomials of degreem in (1), it includes
at most ðm� 1Þ two-input AND gates, as well as ðm� 1Þ two-
input XOR gates to realize (11). Besides this module, we
require m two-input AND gates to compute bm�i�1A

ðiÞ in
Step 3 of Algorithm 3. As a result, Steps 2-5 of the MSB-first
bit-serial Montgomery multiplier require ð2m� 1Þ two-input
AND gates and ð2m� 1Þ two-input XOR gates for general
irreducible polynomials of degree m.

It is clear from Fig. 2b that two loops can be computed in
parallel. Thus, a cycle of the multiplication algorithm requires
the delay ofTA þ TX , whereTA andTX represent the delays of
a two-input AND gate and a two-input XOR gate, respec-
tively. Also, the latency of the MSB-first bit-serial Montgom-
ery multiplier equals m clock cycles.

Now, we consider the complexity of Axm�u�1 mod F ðxÞ.
For u < m� 1, this operation requires multiplications by
positive powers of x followed by a reduction by F ðxÞ.
Implementing this operation with minimum hardware
requires one multiplication by x followed by a reduction by
F ðxÞ in a cycle, which has the time complexity of TA þ TX
[21]. Consequently, Axm�u�1 mod F ðxÞ is obtained with the
linear time complexity of ðm� u� 1ÞðTA þ TXÞ. Note that a
multiplication by x results in including extra hardware. If
u ¼ m, we need to precompute Ax�1 mod F ðxÞ which
requires the time complexity ofTA þ TX using anx�1-module
as explained above.

It is clear that simplifying Step 1 of Algorithm 3 results in
better time and area complexities. Here, the Montgomery
factor plays an important role in simplifying this operation.
The ideal case is Axm�u�1 ¼ A or xm�u�1 ¼ 1. This results in
u ¼ m� 1, which suggests r ¼ xm�1 as a new efficient
Montgomery factor. In this case, Step 1 is just a load
operation of the coordinates of A into the register A0. The
following summarizes the area and time complexities of the
proposed multiplier using the Montgomery factor r ¼ xm�1:

Proposition 1. Using the new Montgomery factor r ¼ xm�1 for
a general irreducible polynomial of degree m, the proposed
MSB-first bit-serial MM over GF ð2mÞ can be realized by
using ð2m� 1Þ two-input AND gates, ð2m� 1Þ two-input
XOR gates, and two m-bit registers. The critical path delay
and the latency of this multiplier are TA þ TX and m clock
cycles, respectively.

Remark 1. The proposed MSB-first bit-serial multiplier is as
efficient as the best bit-serial PB multiplier (LSB-first). One
can use such a multiplier to improve the multiplication

algorithm proposed in [11], which splits the multiplica-
tion into two concurrent multiplications: one PB and one
MM. It is noted that the Montgomery multiplier of [11],
which is used in [8] to design an ECC processor, is based
on the algorithm proposed in [5] and has the critical path
delay of 2ðTA þ TXÞ. By replacing their Montgomery
multiplier with our MSB-first multiplier and using the
LSB-first bit-serial PB algorithm, the critical path delay
can be reduced from 2ðTA þ TXÞ to TA þ TX with the same
latency as m

2

� �
.

Finally, note that the MSB-first bit-serial Montgomery multi-
plier using r ¼ xm can be obtained by modifying Fig. 2b by
adding a zero to the MSB of the operandB (i.e., 0bm�1 � � � b1b0).
Therefore, the latency of the MSB-first bit-serial MM using
r ¼ xm is increased to mþ 1 clock cycles. Note that A0 is
loaded with A.

3.2 LSB-First Bit-Serial MM

To design the LSB-first bit-serial MM, we rewrite (9) by
using Horner’s rule and Að0Þ ¼ Axm�u�1 mod F ðxÞ to obtain

C ¼
�
� � �
�
b0A

ð0Þx�1 mod F ðxÞ þ b1A
ð0Þ�x�1 mod F ðxÞ

þ � � � þ bm�2A
ð0Þ�x�1 mod F ðxÞ þ bm�1A

ð0Þ:
ð12Þ

A similar formulation has previously been outlined in [10]
using u ¼ m to design a semisystolic array structure for the
MM. Based on (12), we can propose Algorithm 4 (Fig. 4a) for
the MM algorithm over GF ð2mÞ using the general Mon-
tgomery factor r ¼ xu. In this algorithm, we begin processing
the operand B from its LSB, and again, we only process one
bit at each cycle.

Similar to the discussion for the MSB-first bit-serial
MM, in this case, again, we are interested in Að0Þ ¼
Axm�u�1 mod F ðxÞ ¼ A to simplify the multiplication
process. This results in u ¼ m� 1 or r ¼ xm�1 as the
new efficient Montgomery factor.

The hardware architecture of Algorithm 4 using r ¼
xm�1 can be obtained by a similar means as that of
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Fig. 3. The architecture of the x�1-module for general irreducible

polynomials.

Fig. 4. The proposed LSB-first bit-serial MM using r ¼ xu: (a) algorithm,

(b) architecture.



Algorithm 3. This is shown in Fig. 4b. In this case, we
require two m-bit registers to hold the value of T ðiÞ and A.
Also, we require m two-input AND gates as well as
m two-input XOR gates as labeled with AND and XOR in
Fig. 4b. The x�1-module in Fig. 4b is the same as
introduced for Algorithm 3 in Fig. 3. We summarize the
complexity results by the following proposition:

Proposition 2. Let r ¼ xm�1 be the Montgomery factor. Then,
the proposed LSB-first bit-serial Montgomery multiplier over
GF ð2mÞ requires ð2m� 1Þ two-input AND gates, ð2m� 1Þ
two-input XOR gates, and two m-bit registers. The critical
path delay of this multiplier equals TA þ 2TX and its latency is
m clock cycles.

Similar to the MSB-first bit-serial MM algorithm, we can
present the following remark for the LSB-first bit-serial
MM algorithm:

Remark 2. Assuming r ¼ xm is the Montgomery factor, the
LSB-first bit-serial MM over GF ð2mÞ has the latency of
mþ 1 clock cycles. In this case, Fig. 4b is modified by
adding a zero to the MSB of the operand B (i.e.,
0bm�1 � � � b1b0).

Finally, we present the following remark:

Remark 3. It is interesting to note that using our proposed
Montgomery factor r ¼ xm�1, one can simplify the
semisystolic array structure proposed in [10]. As a
result, its latency is reduced from mþ 1 to m clock
cycles. Also, the number of the required cells is reduced
from m� ðmþ 1Þ to m�m.

4 BIT-PARALLEL MONTGOMERY MULTIPLICATION

Based on the formulation used in the previous sections, we
present a new bit-parallel Montgomery multiplier over
GF ð2mÞ in this section. As shown in (4), the MM, in general,
can be formulated as C ¼ A �B � r�1 mod F ðxÞ, where r can
be chosen as r ¼ xu; 0 < u � m. The algorithm proposed in
[5] uses u ¼ m and generates (5) which can be rewritten as
(6). Fig. 5 depicts a new architecture of the bit-parallel
Montgomery multiplier for u ¼ m. This architecture is also
obtained by unfolding the loop in Algorithm 4. In this
architecture, the AND modules multiply a field element by a
bit, whereas the XOR modules add two field elements. The
architecture shown in Fig. 5 is very similar to the architecture
of the conventional bit-parallel polynomial basis multiplier.
However, in the latter, instead of x�1-modules, x-modules
are used which perform a multiplication by x followed by a

reduction modulo F ðxÞ. Also, the order of processing the
coordinates of B is reverse. Note that the x�1-module in
Fig. 5 is shown in Fig. 3 for general irreducible polynomials.

By choosing u in the range of ½1;m� 1�, we can rewrite
the Montgomery multiplication as

C ¼ b0Ax
�u þ b1Ax

�uþ1 þ � � � þ bu�1Ax
�1 þ buA

þ buþ1Axþ � � � þ bm�1Ax
m�u�1 mod F ðxÞ:

ð13Þ

In this case, the main difference is that we multiply A

by negative and positive powers of x to calculate the terms
in (13). We can rewrite (13) as C ¼ C1 þ C2, where C1 ¼
b0Ax

�u þ b1Ax
�uþ1 þ � � � þ bu�1Ax

�1 mod F ðxÞ a n d C2 ¼
buAþ buþ1Axþ � � � þ bm�1Ax

m�u�1 mod F ðxÞ. Now, we can
design the new architecture of the general case of the
MM with r ¼ xu, as depicted in Fig. 6a. Note that for
1 � u � m� 1, the number of the x and x�1-modules is
m� 1, as buA is obtained directly from A.

Based on the architecture depicted in Fig. 6a, the first step
of the multiplication is to compute the terms Axi mod F ðxÞ,
for i 2 ½�u;m� u� 1�. In this paper, we useA0ðiÞ to represent
Axi mod F ðxÞ. This can be done by using the matrix M,
whose columns show the PB representation of A0ðiÞ for
i 2 ½�u;m� u� 1�. So, the matrix M has m rows and
m columns. Then, the MM overGF ð2mÞ can be formulated as

c0; c1; . . . ; cm�1½ �T¼M � b0; b1; . . . ; bm�1½ �T : ð14Þ

Note that this formulation is similar to the Mastrovito
multiplication [1]. We have shown the steps to construct the
bit-parallel Montgomery multiplier in Fig. 6b.

Proposition 3. Assume that an !-nomial irreducible polynomial

is used to construct GF ð2mÞ. In this case, the architecture

shown in Fig. 6a requires m2 AND gates and ðm� 1Þðmþ
!� 2Þ XOR gates.
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Fig. 5. The architecture of the bit-parallel Montgomery multiplier over

GF ð2mÞ with r ¼ xm.

Fig. 6. The general architecture of the bit-parallel Montgomery multiplier

over GF ð2mÞ with r ¼ xu; 1 � u � m� 1: (a) architecture, (b) algorithm.



Proof. In the architecture shown in Fig. 6a, the AND gates

are only required in the AND network. So, the total

number of AND gates is m2. In this architecture, XOR

gates are used in two XOR networks. The first XOR

network obtains the matrix M and each column of this

matrix requires ð!� 2Þ XOR gates except the column

corresponding to A0ð0Þ which requires no XOR gate. Thus,

ðm� 1Þð!� 2Þ XOR gates are required in the first XOR

network. In the second one, m XOR trees are used to

obtain ci for i ¼ 0 to m� 1, where each XOR tree adds

m terms. Thus, this network requires mðm� 1Þ XOR

gates. As a result, the architecture presented in Fig. 6a

requires ðm� 1Þðmþ !� 2Þ XOR gates. tu
Remark 4. The proposed architecture for the bit-parallel MM

is different from the structure proposed in [5] and [16]. In

our structure, first the entries of matrix M are obtained by

an XOR network which consists of XOR gates, then an

AND network performs AND operations between the

entries of the matrix M and the coordinates of B. Finally,

another XOR network is used to obtain ci for i ¼ 0 to

m� 1. In the algorithm proposed in [5], which is also

used to design the original bit-parallel Montgomery

multiplier in [16], an AND network followed by an

XOR network are only used.

To consider the architecture of the bit-parallel Mon-

tgomery multiplier in details, we design bit-parallel Mon-

tgomery multipliers for two important classes of irreducible

polynomials, namely irreducible trinomials and a special

class of irreducible pentanomials.

5 BIT-PARALLEL MONTGOMERY MULTIPLIER

FOR IRREDUCIBLE TRINOMIALS

By presenting the following lemma, we consider the

properties of the matrix M to find the most efficient

Montgomery factors (Step 2 in Algorithm 5):

Lemma 1. Let F ðzÞ ¼ zm þ zk þ 1 be an irreducible trinomial

and x be the root of F ðzÞ. Then, the Montgomery factor r ¼ xu
is obtained from the following in order to design a fast

Montgomery multiplier (FMM)

u ¼ 1; k ¼ 1;
k or k� 1; k > 1:

�
ð15Þ

In this case, the entries of the matrix M will be the
additions of at most two terms.

Proof. Using (13), we need to reduce the following

polynomial by F ðxÞ for negative (½�u;�1�) and positive

(½1;m� u� 1�) values of i

Axi ¼ a0x
i þ a1x

iþ1 þ � � � þ am�1x
mþi�1: ð16Þ

First, we consider (16) for i 2 ½1;m� u� 1� and it is
easy to notice that the following requires no further
reduction, xmþi�1 mod F ðxÞ ¼ xkþi�1 þ xi�1, if i � m� k
(or kþ i� 1 � m� 1). Note that xmþi�1 is the greatest
power of x in (16). Thus, for i � m� k, we can rewrite
(16) by one step of reduction as

A0ðiÞ ¼
Xm�1�i

j¼0

ajx
jþi þ

Xm�1

j¼m�i
ajx

jþi;

¼
Xm�1�i

j¼0

ajx
jþi þ

Xi�1

j¼0

am�iþjðxkþj þ xjÞ:
ð17Þ

It is clear from (17) that there are at most two terms at
each position. Thus, we substitute i in (17) with the
greatest positive power of x from (13), i.e., i ¼ m� u� 1,
and we can conclude that i � m� k) m� u� 1 �
m� k, which results in

u � k� 1: ð18Þ

Now, we consider (16) for i 2 ½�u;�1�. From trinomial
representation, one can find 1 ¼ xm þ xk, and by multi-
plying both sides by xi, we have

xi ¼ xmþi þ xkþi mod F ðxÞ: ð19Þ

Note that, in (19), mþ i is a positive number for
i 2 ½�u;�1�. Therefore, (19) will be in the PB representa-
tion if kþ i � 0. Thus, for kþ i � 0, we can use (19) to
simplify A0ðiÞ by one step of reduction as

A0ðiÞ ¼
Xm�1

j¼ ij j
ajx

jþi þ
Xij j�1

j¼0

ajx
jþi mod F ðxÞ;

¼
Xm�1

j¼ ij j
ajx

jþi þ
Xij j�1

j¼0

ajðxmþiþj þ xkþiþjÞ mod F ðxÞ:

ð20Þ

Note that xi is the least power of x in (16) which is in
the PB representation for kþ i � 0. As a result, (20) is in
the PB representation for kþ i � 0, and again, there are
at most two terms in each position. By replacing i with
the least value of i from (13), i.e., �u, we have

0 � kþ i) u � k: ð21Þ

It can be concluded from (18) and (21) that the
elements of the matrix M are summations of at most two
terms if k� 1 � u � k, and the proof is complete. tu

Now, we can present the following proposition to deter-

mine the area complexity of the Montgomery multiplier

based on the values of u obtained from Lemma 1:

Proposition 4. Assume that the Montgomery factor is chosen

based on (15). Then, the bit-parallel Montgomery multiplier

using irreducible trinomials requires ðm2 � 1Þ two-input

XOR gates if k 6¼ m
2 . Otherwise, i.e., k ¼ m

2 , it requires

ðm2 � m
2 Þ two-input XOR gates. In both cases, the multiplier

also requires m2 AND gates.

Proof. Using Proposition 3, the proof is straightforward. tu

Now, the entries in each row of the matrix include single or

two-term elements (Step 3 in Algorithm 5). Those entries

should finally be summed up by using an XOR tree after the

AND operation with the corresponding coordinates of B

(Step 4 in Algorithm 5). To reduce the delay of the MM, it is

possible to use the method of [6]. This involves doing a part

of the final addition operation in parallel with the

computation of the elements of the matrix M. In other

HARIRI AND REYHANI-MASOLEH: BIT-SERIAL AND BIT-PARALLEL MONTGOMERY MULTIPLICATION AND SQUARING OVER GGF ð22mÞ 1337



words, while we compute the two-term elements of the
matrix M, it is possible to add the single-term elements
pairwise after the bitwise AND operation with the
corresponding coordinates of B.

In this regard, Table 1 shows the number of single-term
and two-term elements in each row (position) of the matrix
M for two Montgomery factors mentioned in Lemma 1.
We use Table 1 to obtain the time complexity of the MM
using irreducible trinomials and we can present the
following proposition:

Proposition 5. Assuming that F ðzÞ ¼ zm þ zk þ 1 is an

irreducible trinomial, the delay of the bit-parallel Montgomery

multiplier using F ðzÞ is as follows:

TA þ dlog2ð2m� u� 1ÞeTX; u � m�1
2

TA þ dlog2ðmþ uÞeTX; u > m�1
2

�
;

where u is defined in (15).

Proof. It is noted that the worst delay occurs in the position
(row of the matrix M) that includes the maximum
number of two-term elements. The reason is that two-
term elements will be ready after TX and during this
delay, we can add the single-term elements pairwise.
Thus, if we have few two-term elements, more single-
term elements can be added pairwise. Using Table 1, one
can see that the worst case will be in the position xk�1 or
xk, which include u and m� u� 1 two-term elements, as
shown in the corresponding positions in Table 1. In other
words, ck or ck�1 have the longest critical path delay. In
this regard and based on the Montgomery factor r ¼ xu,
we study two possible cases:

Case I: If u � m�1
2 (or u � m� u� 1), then in the

position xk, which now has the maximum number of
two-term elements, there are m� u� 1 two-term ele-
ments and uþ 1 single-term elements (see Table 1). The
uþ 1 single-term elements can be added (after bitwise
AND with the corresponding coordinates of B) by one
level of XOR gates which results in uþ 1ð Þ=2d e terms.
At the same time, the computation of the m� u� 1
two-term elements is also complete and we can AND
them with the corresponding coordinates of B. Thus,
the total delay of the multiplication in the position xk to
generate ck is TA þ 1þ log2ðm� u� 1þ uþ1

2

� �� �� �
TX ¼

TA þ log2ð2m� u� 1Þd eTX .

Case II: If u > m�1
2 (or u > m� u� 1), the maximum

number of two-term elements occurs in the position xk�1,

where there are u two-term elements and m� u single-

term elements (see Table 1). Therefore, similar to Case I,

the total delay of the whole operation in the position xk�1

to generate ck�1 is TA þ 1þ log2 mþ uð Þ=2d eð Þd eð ÞTX ¼
TA þ log2 mþ uð Þd eTX. tu

6 BIT-PARALLEL MONTGOMERY MULTIPLIER

FOR IRREDUCIBLE PENTANOMIALS

Irreducible pentanomials form another family of irreducible
polynomials which are used in finite field arithmetic, e.g.,
[6], [26], [25], [3], and [4], where there is no irreducible
trinomial of the desired degree m. Generally, they can be
formulated as

F ðzÞ ¼ zm þ zk3 þ zk2 þ zk1 þ 1; 1 � k1 < k2 < k3 < m: ð22Þ

We assume that r ¼ xu is the Montgomery factor. The
matrix M plays an important role in designing efficient
bit-parallel Montgomery multipliers. If each column of the
matrix M is computed with one step of reduction, then the
matrix M can be obtained faster. In this regard, we use a
special type of irreducible pentanomials. This type of
irreducible pentanomials, known as type-II irreducible
pentanomials, is defined as F ðzÞ ¼ zm þ znþ2 þ znþ1 þ
zn þ 1, where 2 � n � m

2

� �
� 1 [4]. Now, we can present

the following remark:

Remark 5. Assume that F ðzÞ is an irreducible pentanomial
(see (22)), F ðxÞ ¼ 0 and r ¼ xu is the Montgomery factor.
The computation of matrix Mdefined in (14) is very fast for
type-II irreducible pentanomials (Step 2 of Algorithm 5).
In this case, for anyu, there is at least one value for i, where
the computation ofA0ðiÞwill require two steps of reduction.
If u ¼ n or u ¼ nþ 1, then the matrix M will be in the
simplest form regarding the steps of reduction, where for
u ¼ n (respectively, u ¼ nþ 1) only the term A0ðm�u�1Þ
(respectively, A0ð�uÞ) will require two steps of reduction.

To verify the above remark, we start by considering the
computation of A0ðiÞ, where i 2 ½�u;�1�. Similar to the proof
of Lemma 1, it is easy to show that we should have u � k1.
Similarly, in order to have one step of reduction for
computation of A0ðiÞ; i 2 ½1;m� u� 1�, the following condi-
tion should also be met, m� u� 1þ k3 � m) u � k3 � 1.
Therefore, u should satisfy both u � k1 and u � k3 � 1 which
is impossible. In such cases, at least k3 � k1 � 1 columns of
the matrix M require more than one step of reduction. So, if
one minimizes k3 � k1 � 1, then less columns of the matrix
M will require two steps of reduction which means it will be
easier to obtain the matrix M. Thus, k1; k2, and k3 should be
three consecutive numbers which means that the pentano-
mial should be a type-II irreducible pentanomial. In this
case, only one column will require more than one step of
reduction. Now, if we choose u ¼ k1 ¼ n, then only A0ðm�u�1Þ
will require two steps of reduction. Similarly, if we choose
u ¼ k3 � 1 ¼ nþ 1, then only A0ð�uÞ will require two steps of
reduction.

In this paper, we obtain the time and area complexities of

the bit-parallel Montgomery multiplier for r ¼ xn. We note

that the same results can be obtained by using r ¼ xnþ1 and
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this is not considered due to the page limit. The matrix M

for type-II irreducible pentanomials is shown in Fig. 7. Here,

we show how it is obtained (i.e., Step 3 of Algorithm 5). We

assume that A ¼ A0ð0Þ ¼ am�1x
m�1 þ � � � þ a1xþ a0. The coef-

ficients of A0ð0Þ are shown with black nodes in Fig. 7 in the

column A0ð0Þ. Then, A0ð1Þ can be obtained by

A0ð1Þ ¼ A0ð0Þx mod F ðxÞ;

¼
Xm�2

i¼0

aix
iþ1 þ am�1ðxnþ2 þ xnþ1 þ xn þ 1Þ:

ð23Þ

It is clear that the coefficients of (23) are obtained by

shifting the coefficients of A0ð0Þ to left and reducing the term

am�1x
m by F ðxÞ. In this regard, the shifted terms, which are

shifted vertically in the matrix M, are depicted by black

nodes in Fig. 7. Thus, in column A0ð1Þ four new terms (am�1)

are added to the positions x0; xn; xnþ1, and xnþ2. These new

terms are depicted by white nodes in Fig. 7. Thus, (23) can

be obtained with the delay of an XOR gate and using three

two-input XOR gates.
Similarly, as depicted in Fig. 7, A0ð2Þ can be obtained with

the same delay and the same number of gates. Now, we can
consider the general case of two consecutive columns. We
assume that 2 � j � m� n� 3 and we obtain A0ðjþ1Þ by

A0ðjÞ ¼
Xm�1�j

i¼0

aix
iþj þ

Xm�1

i¼m�j
ai
�
xnþ2þi�ðm�jÞ

þ xnþ1þi�ðm�jÞ þ xnþi�ðm�jÞ þ xi�ðm�jÞ
�
;

ð24Þ

and

A0ðjþ1Þ ¼
Xm�j�2

i¼0

aix
iþjþ1 þ am�j�1

�
xnþ2 þ xnþ1 þ xn þ 1

�

þ
Xm�1

i¼m�j
ai
�
xnþ2þi�ðm�j�1Þ þ xnþ1þi�ðm�j�1Þ

þ xnþi�ðm�j�1Þ þ xi�ðm�j�1Þ�:
ð25Þ

By comparing (24) and (25), it is clear that one can obtain

(25) by shifting the coefficients of (24) to left, or equiva-

lently, downshifting the entries of the column A0ðjÞ in

M down, and adding four new terms in the positions x0,

xn, xnþ1, and xnþ2. Using (25), there are two terms in the

position xn, three terms in the position xnþ1, and four terms

in the position xnþ2. So, we need one new XOR gate in the

position xn and one new XOR gate in the position xnþ1. But,

for the position xnþ2, we can use two approaches. In the first

approach, we can obtain the entry in the position xnþ2 by

reusing the shifted coefficient of A0ðjÞ which is a three-term

coefficient (three black nodes in Fig. 7) and adding it to the

new term in the position xnþ2 (one white node in Fig. 7).

This results in having the delay of 3TX , however, we use

only one extra XOR gate. In the second approach, we reuse

one of the XOR gates of A0ðjÞ in the position xnþ1 and obtain

the final result by using two more new XOR gates. This

results in having the delay of 2TX; however, we use two

additional XOR gates for this entry. Therefore, we can

design two bit-parallel Montgomery multipliers. One is

faster and we call it the Fast Montgomery Multiplier and the

other one requires less area and we call it the Low-

Complexity Montgomery Multiplier (LCMM). Now, we

can conclude that in the FMM (respectively, LCMM), each

new column in the matrix M, i.e., A0ðjÞ, requires four

(respectively, three) XOR gates for 3 � j � m� n� 2. For

j ¼ m� n� 2 in (24), we have

A0ðm�n�2Þ ¼
Xnþ1

i¼0

aix
iþm�n�2

þ
Xm�1

i¼nþ2

ai
�
xi þ xi�1 þ xi�2 þ xi�ðnþ2Þ�:

ð26Þ

Note that in (26), we have am�1 þ anþ1 in the position xm�1.

Now, the rightmost column of the matrix M, i.e.,A0ðm�n�1Þ, is

obtained by multiplying (26) by x and reducing with F ðxÞ.
Therefore, the term am�1 þ anþ1 will be in the positions x0, xn,

xnþ1, and xnþ2. This is shown with white nodes in the column

A0ðm�n�1Þ in Fig. 7. As am�1 þ anþ1 is computed inA0ð1Þ, it does

not require any new gate. Now, in the columnA0ðm�n�1Þ, there

is a five-term element in the position xnþ2. This element is a

summation of a three-term and a two-term elements, which

are reused. Here again, we have two possibilities. In the

LCMM, these two can be summed up in the final XOR tree. So,

we need two XOR gates to obtain A0ðm�n�1Þ (one for the

position xn and one for the position xnþ1). For the LCMM, we

can compute the five-term element directly with the delay of

3TX and by using one new XOR gate. As a result, A0ðm�n�1Þ
requires three XOR gates. Note that the matrix M can be

obtained for negative values of i, similarly. However, no

column requires two steps of reduction.
Now, we consider Step 4 in Algorithm 5. Remark 5 and

Fig. 7 show that it is not possible to compute all of the
polynomials A0ðiÞ by one step of reduction. It means that if
we obtain the matrix M for type-II pentanomials, at least
one of the elements of the matrix will be a summation of five
terms. Having five terms in an entry of the matrix implies
that direct computation of the matrix M requires the delay
of 3TX and 2TX for the LCMM and the FMM, respectively.
Then, the LCMM and the FMM require the total delay
of TA þ ð3þ dlogðmÞeÞTX and TA þ ð2þ dlogðmþ 1ÞeÞTX,
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respectively. In the case of the Montgomery multiplication
with type-II irreducible pentanomials, similar procedure for
trinomials can be used to reduce the delay. The main point is
that, similar to the discussion for trinomials, while we are
computing the elements of the matrix which are summa-
tions of three or four elements, we can build a part of the
final XOR tree for the elements of the matrix M which are
single terms or summation of two terms. This process is
shown in Fig. 8 to obtain cnþ1 for n � m�1

2 in the FMM. It is
noted that this architecture is slightly different from the
architecture depicted in Fig. 6. The main difference is the
order of the AND and XOR operations. Now, we can
present two propositions for the area and complexities of
the bit-parallel Montgomery multipliers.

Proposition 6. Let r ¼ xnðu ¼ nÞ be the Montgomery factor. The
fast bit-parallel Montgomery Multiplier (FMM) using type-II
irreducible pentanomials of degree m requires m2 two-input
AND gates and m2 þ 3m� 9 two-input XOR gates. Also, it
has the time complexity of TA þ ð1þ dlog2ðmþ nÞeÞTX, if
n � m�1

2 and TA þ ð1þ dlog2ð2m� n� 2ÞeÞTX, if n < m�1
2 .

Proof. As stated above and shown in Fig. 7, the column A0ð0Þ
requires no XOR gate. Four columns of the matrix M, i.e.,

(A0ð�2Þ; A
0
ð�1Þ; A

0
ð1Þ, andA0ð2Þ), require three XOR gates, one

column (A0ðm�n�1Þ) requires two XOR gates and the rest of

the columns require four XOR gates. As a result, the total

number of the XOR gates to obtain the matrix M equals

ðm� 6Þ � 4þ 4� 3þ 2 ¼ 4m� 10. Finally, the elements

should be summed up by usingmXOR trees (one for each

position). There are ðmþ 1Þ elements in the position xnþ2

as we break up the five-term element into two elements.

The rest of the positions have m elements. Thus, the XOR

trees require ðm� 1Þ � ðm� 1Þ þm ¼ m2 �mþ 1 XOR

gates and consequently, the multiplier requires m2 þ
3m� 9 two-input XOR gates. Now, we can compute the

number of AND gates. In the matrix M; ðm� 1Þ columns

have m elements. The rightmost column, i.e., A0ðm�n�1Þ,

has ðmþ 1Þ elements as we break up the five-term

element into two parts. But the resulted two-term part

is also used in the position x0. Thus, in each column we

need m AND gates, and consequently, the multiplier

requires m2 two-input AND gates.
Now, we consider the time complexity of the

multiplier. The maximum delay occurs in a position (a
row of the matrix M) which contains the maximum
number of elements with addition of more than two
terms. Rows 0 to n� 1 and nþ 1 to m� 1 contain
single-term elements for positive and negative values of
i in A0ðiÞ, respectively (see Fig. 7). Thus, the maximum
delay will be in one of the positions xnþ1 or xn which
have m� n� 2 and n three/four-term elements, re-
spectively. This is shown by dashed lines in Fig. 7. We
can consider the two possible cases.

Case I: If n � m�1
2 (or n � m� n� 2), then the

position xnþ1 will have most of the three/four-term

elements. As depicted in Fig. 7, it has nþ 1 two-term

elements (the columns A0ð1Þ, and A0ð�1Þ to A0ð�nÞ), m�
n� 3 three-term elements (the columns A0ð2Þ to

A0ðm�n�2Þ), one four-term element (the column

A0ðm�n�1Þ), and one single-term element (the column

A0ð0Þ). We compute the elements with three or four terms

by the delay of 2TX . Meanwhile, it is possible to

compute two-term elements, so after the delay of TX,

we will have nþ 1 single terms. We also have another

single-term element in the column A0ð0Þ which results in

having nþ 2 single terms after the delay of TX. Now,

we can AND them with the corresponding coordinates

of B. Therefore, after another delay of a two-input XOR

gate, we will have dnþ2
2 e single terms. At the same time,

the computation of the three/four-term elements is

complete and we can AND them with the correspond-

ing coordinates of B. At this point of time, we have

ð1þm� n� 3þ dnþ2
2 eÞ single terms and consequently,

the total delay equals TA þ ð2þ dlog2ð1þm� n� 3 þ
dnþ2

2 eÞeÞTX ¼ TA þ ð1þ dlog2ð2m� n� 2ÞeÞTX. This is

shown in Fig. 8.

Case II: If n � m�1
2 (or n > m� n� 2), then the position

xn will have the most three/four-term elements, where

there arem� n� 1 two-term elements (the columnsA0ð�1Þ
and A0ð1Þ to A0ðm�n�2Þ), n elements with three terms (the

columns A0ðm�n�1Þ and A0ð�2Þ to A0ð�nÞ), and one element

with one term (the column A0ð0Þ). Thus, the delay of the

bit-parallel Montgomery multiplier is TA þ ð2þ dlog2ðn þ
dm�n2 eÞeÞTX ¼ TA þ ð1þ dlog2ðmþ nÞeÞTX . tu

Note that the same area/time complexity can be obtained
by using r ¼ xnþ1. Now, we present the following proposi-

tion for the LCMM:

Proposition 7. Assuming r ¼ xn (u ¼ n) is used as the

Montgomery factor, the low-complexity bit-parallel Montgom-

ery multiplier (LCMM) using the type-II irreducible pentano-

mial F ðzÞ requiresm2 two-input AND gates andm2 þ 2m� 3

two-input XOR gates. Also, it has the time complexity of

TA þ ð1þ dlog2ðdm�u2 e þ 4u� 5eÞTX, if u > m�1
2 and TA þ

ð1þ dlog2ðduþ1
2 e þ 4m� 4u� 9ÞeÞTX , if u � m�1

2 .

Proof. In this case, we need m two-input AND gates in each
column, and totally, the multiplier requires m2 two-

input AND gates. Now, we can obtain the number of the
XOR gates. The column A0ð0Þ requires no XOR gate. The

rest of the columns require three two-input XOR gates.
So, the matrix M is obtained by using 3� ðm� 1Þ ¼
3m� 3 two-input XOR gates. Each of the final XOR trees
have m elements in each position, so they require
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m2 �m two-input XOR gates. Therefore, this multiplier

requires m2 þ 2m� 3 two-input XOR gates.
Now, we can obtain the time complexity of this

multiplier. In this case, the number of four/five-term
elements will determine the delay of the multiplier. Fig. 7
shows that the maximum number of four/five-term
elements occurs in the positions xnþ2 or xn�1 which have
m� u� 3 and u� 2 four/five-term elements, respec-
tively. So, we study the two possible cases as follows:

Case I: If u� 2 � m� u� 3 or u � m�1
2 , then the

position xnþ2 will have the most four/five-term ele-

ments. In this column, we have uþ 1 single-term

elements, one two-term element, one three-term element,
and m� u� 3 four/five-term elements. Similar to the

proof of Proposition 6, we have the delay of

TA þ ð1þ dlog2ðduþ1
2 e þ 4m� 4u� 9ÞeÞTX.

Case II: If u� 2 > m� u� 3 or u > m�1
2 , then the

position xn�1 will have the most four-term elements. In

this column, we have m� u single-term elements, one

two-term element, one three-term element, and u� 2

four/five-term elements. This results in the delay of

TA þ ð1þ dlog2ðdm�u2 e þ 4u� 5ÞeÞTX. tu
An example is presented in Appendix A to illustrate the

proposed multipliers. Note that the same area/time com-

plexity can be obtained by using u ¼ nþ 1.

7 MONTGOMERY SQUARING OVER GF ð2mÞ
After multiplication, squaring is the most important

operation in finite field arithmetic. This operation is

considered in polynomial basis by Wu in [27] for the

general case of irreducible polynomials and irreducible

trinomials as a special case. In [5], some general squarers

are proposed using the MM algorithm. An optimized

squarer is proposed in [16] for irreducible trinomials using

the MM algorithm. That squarer is designed using r ¼ xk as

the Montgomery factor for irreducible trinomials and it is

shown that it has the delay of TX, whereas the delay of

squaring in PB is at most 2TX .
Our proposed bit-serial and bit-parallel multipliers can

be used to do the squaring for general case of irreducible

polynomials. However, it is possible to design efficient

squarers for some important cases of special irreducible

polynomials. For irreducible trinomials, the Montgomery

factor r ¼ xk�1 can be used to design squarers as well.

However, the results will be similar to those of [16].

Therefore, we do not consider the squaring operation for

irreducible trinomials and instead, we focus on bit-parallel

squaring using type-II irreducible pentanomials. Squaring

using the Montgomery multiplication can be formulated as

C ¼ A2 � x�u mod F ðxÞ

¼
Xm�1

i¼0

aix
2i

 !
� x�u mod F ðxÞ:

ð27Þ

Now, we show that efficient squarers can be designed

using the Montgomery factors xn or xnþ1. Let xn be the

Montgomery factor. In this case, (27) can be rewritten as

C ¼
Xm�1

i¼0

aix
2i�n mod F ðxÞ: ð28Þ

Here, we only consider odd values of m as they are more
important than even values of m [20]. First, we assume that
m and n are odd numbers. As a result, (28) can be written as

C ¼ am�1x
2m�n�2 þ

Xm�2

i¼mþn2

aix
2i�n

þ
Xmþn�2

2

i¼nþ1
2

aix
2i�n þ

Xn�1
2

i¼0

aix
2i�n mod F ðxÞ:

ð29Þ

Now, we present the following lemma to find the area
and time complexities of Montgomery Squaring (MS) using
type-II irreducible pentanomials:

Lemma 2. Let m and n be odd positive integers and n < m�3
2 ,

and F ðzÞ ¼ zm þ znþ2 þ znþ1 þ zn þ 1 be an irreducible
polynomial. In this case, C ¼ A2 � x�n mod F ðxÞ can be
obtained with the maximum delay of 2TX using at most
ðm�3

2 þmþ 4Þ two-input XOR gates.

Proof. Let us represent (29) in the first row of Fig. 9, where
the gray and white cells represent the coordinates of A
and zeros, respectively. There are three sums in (29). The
second sum in (29) does not require any reduction and is
shown in the middle part of the first row in Fig. 9
indicated by indices from 1 to m� 2. The last sum
produces negative powers of x, and using the fact that
xj ¼ xmþj þ xnþ2þj þ xnþ1þj þ xnþj for negative js, it can
be reduced as

Xn�1
2

i¼0

aix
2i�n ¼

Xn�1
2

i¼0

aix
mþ2i�n þ

Xn�1
2

i¼0

aix
2iþ2

þ
Xn�1

2

i¼0

aix
2iþ1 þ

Xn�1
2

i¼0

aix
2i:

ð30Þ

Four sums on the right side of (30) are shown in rows
2-5 of Fig. 9. The first sum in (29) produces terms with
degrees greater or equal to m and using xmþj ¼
xnþ2þj þ xnþ1þj þ xnþj þ xj for j � 0, it is reduced as

Xm�2

i¼mþn2

aix
2i�n ¼

Xm�2

i¼mþn2

aix
2i�mþ2 þ

Xm�2

i¼mþn2

aix
2i�mþ1

þ
Xm�2

i¼mþn2

anþi
2
x2i�m þ

Xm�2

i¼mþn2

anþi
2
x2i�n�m:

ð31Þ
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Fig. 9. Squaring for odd values of m and n; n < m�3
2 .



The four sums in (31) are shown in rows 6-9 of Fig. 9.
Finally, the term am�1x

2ðm�1Þ�n is reduced as

am�1x
2m�n�2 ¼ am�1ðxm þ xm�1 þ xm�2 þ xm�n�2Þ

¼ am�1ðxm�1 þ xm�2 þ xm�n�2 þ xnþ2

þ xnþ1 þ xn þ 1Þ mod F ðxÞ:

This is shown in the last row of Fig. 9. Considering the

overlaps between the odd and even powers of x

separately, at most four terms (gray cells) contribute to

any position which results in the delay of 2TX .

To obtain the area complexity of squaring using Fig. 9,

we start from position 0 and consider all the overlaps.

For even i satisfying 0 � i � n� 1 (nþ1
2 coordinates), ci is

a summation of three terms. For odd i satisfying 1 � i �
n� 2 (n�1

2 coordinates), ci is a summation of two terms.

The coordinates cn; cnþ1, and cnþ2 are summations of four

terms, however, one XOR gate is reused twice (first cells

of rows 7-9 overlapping with row 10). For even i

satisfying nþ 3 � i � m� 1 (m�n�2
2 coordinates), ci is a

summation of two terms. For odd i satisfying nþ 4 �
i � m� 2 (m�n�4

2 coordinates), ci is a summation of three

terms. Thus, there are m�3
2 two-term, m�3

2 three-term, and

three four-term coordinates (reusing one XOR gate

twice), which result in using at most ðm�3
2 þmþ 4Þ

two-input XOR gates to obtain the coordinates of C. tu
We present the explicit formulation to obtain ci below,

where m and n are odd numbers and n < m�3
2 . Note that in

all of the cases, i is increased by 2 (e.g., i ¼ 1; . . .n� 2

means i ¼ 1; 3; . . . ; n� 4; n� 2)

a0 þ amþn
2
þ am�1; i ¼ 0;

ai�1
2
þ anþ1

2 þi�1
2
; i ¼ 1; � � � ; n� 2;

ai
2�1 þ ai2 þ amþnþi2

; i ¼ 2; � � � ; n� 1;
an�1

2
þ an þ amþn

2
þ am�1; i ¼ n;

an�1
2
þ amþn

2
þ i ¼ nþ 1;

amþ2nþ1
2
þ am�1;

anþ1 þ amþn
2
þ i ¼ nþ 2;

amþn
2 þ1 þ am�1;

amþi�1
2
þ amþn

2 þi2; i ¼ nþ 3; � � � ;m� n� 2;
anþ1

2 þi�1
2
þ i ¼ nþ 4; � � � ;m� 2;

amþi
2 �1 þ amþi2

;
ai�ðm�nÞ

2

þ amþi�1
2
; i ¼ m� n; � � � ;m� 1:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

For other values of m and n;C can be obtained similarly.

The results are presented in Appendix B and verified by

Visual C++ simulations. Similar results can be obtained by
using r ¼ xnþ1 as the Montgomery factor.

8 COMPARISON

In this section, we compare our results to their best counter-

parts from the same category available in the literature.

Table 2 compares our proposed bit-serial Montgomery

multipliers to those of [21] and [5]. Note that these multipliers

can be derived from the digit-serial multipliers of [2] and [5],

respectively, if the digit size is equal to one. Although our

bit-serial multipliers can be used for the general Montgomery

factor r ¼ xu; 1 � u � m, they are only compared for two

values of u ¼ m� 1 and u ¼ m. This is because no pre-

computation is required in the initialization step of the

multiplication algorithms. The critical path delay of the

multiplier proposed in [5] is 2TA þ 2TX and it has the latency

ofm clock cycles. Our proposed LSB-first bit-serial multiplier

of Fig. 4 has the critical path delay ofTA þ 2TX and the latency

of ðmþ 1Þ and m clock cycles for r ¼ xm and r ¼ xm�1,

respectively. We have also proposed an MSB-first bit-serial

multiplier (Fig. 2) which has the critical path delay ofTA þ TX
and the latency of ðmþ 1Þ and m clock cycles for r ¼ xm and

r ¼ xm�1, respectively. Thus, both of our bit-serial multipliers

are faster than the bit-serial multiplier of [5]. Note that our

MSB-first bit-serial Montgomery multiplier is the fastest

bit-serial Montgomery multiplier. All of these three bit-serial

Montgomery multipliers require ð2m� 1Þ XOR gates and

ð2m� 1Þ AND gates and two m-bit registers. As seen from

Table 2, the LSB-first bit-serial PB multiplier and our

MSB-first Montgomery multiplier have the same and least

time complexity. Thus, our MSB-first MM (with the LSB-first

PB multiplier) can be used in the digit-serial MM algorithms,

such as the one presented in [11], to reduce the overall time

complexity (see Remark 1). Also, the LSB-first bit-serial

PB multiplier and our MSB-first Montgomery multiplier

have the same area/time complexity.
We compare our proposed bit-parallel Montgomery

multiplier using irreducible trinomials with the Montgom-
ery multiplier [16], two PB multipliers [23], [3], and an
SPB multiplier as shown in Table 3. Note that although
bit-parallel multipliers can be derived from digit-serial
multipliers using the digit size m, they are not optimized.
Based on Table 3 all of the multipliers have the same area
complexity. The time complexity of our multiplier is lower
than those of [23], [3], and [16] and equal to the ones
proposed in [6].
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TABLE 2
Comparison of Bit-Serial Multipliers over GF ð2mÞ



Our second bit-parallel Montgomery multiplier is de-
signed for Type-II irreducible pentanomials. In this case, we
have proven that two Montgomery factors can result in
efficient hardware implementation. Then, we have designed
two bit-parallel multipliers. Here, we compare our multi-
pliers to the multipliers of [6] and [4] which are based on
type-II irreducible pentanomials. The results are shown in
Table 4. The multiplier of [6] uses v ¼ nþ 1 for the SPB and it
has the same time complexity as our FMM. However, our
multiplier uses two Montgomery factors, i.e., u ¼ n; nþ 1,
and requires a few gates less than the one presented in [6].
The multiplier of [4] has higher delay than our fast
multiplier, but it requires less hardware. The comparison
of the multiplier of [4] and our LCMM depends on the value
of n. For some value of n, our LCMM is faster and for some
values of n, they have the same delay. Note that in [4], n
should satisfy 2 � n � bm2 c � 1, whereas in our design it
should satisfy 2 � n � m� 3. The area complexity of [4] also
depends on n. For some values of n, it has less XOR gates
than our LCMM, whereas for some values of n our LCMM
requires less XOR gates. To show the differences among
those multipliers, we usem ¼ 163 which is recommended by
NIST for elliptic curve digital signatures algorithm [20].
There are three irreducible pentanomials of degree 163 and
2 � n � bm2 c � 1. We present the complexity of the multi-
pliers using these three pentanomials in Table 5.

To the best knowledge of the authors, squaring using
type-II irreducible pentanomials has not been considered

before. However, in [27], it is shown that at most
4ðm� 1Þ additions are required for squaring using general
irreducible pentanomials. In [28], the complexity of squar-
ing is presented for some pentanomials after optimization.
We compare the results reported in [27] and [28] to ours in
Table 6. It is clear that in our presented squarers, the delay
is reduced to 2TX for type-II irreducible pentanomials with
slightly less number of XOR gates. This delay is equal to the
delay of squaring in the PB using trinomials (xm þ xk þ 1Þ,
where mþ k is an odd number.

Therefore, our squarer together with our proposed FMM
can be used to accelerate scalar multiplication in ECC.

9 CONCLUSIONS

In this paper, we have studied the Montgomery multi-
plication and squaring overGF ð2mÞ. Using new Montgomery
factors, we have proposed two bit-serial Montgomery multi-
pliers which are faster than the previously published
Montgomery multipliers. Also, we have proposed new bit-
parallel Montgomery multipliers for the general and two
special classes of irreducible polynomials. The time and area
complexities of these multipliers match the best results
reported in the literature. We have shown that among
the general irreducible pentanomials, type-II irreducible
pentanomials are very suitable for the proposed multiplier.
Then, we have designed two bit-parallel Montgomery
multipliers. Our LCMM requires less hardware than the
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TABLE 3
Comparison of Bit-Parallel Multipliers Using Irreducible Trinomials over GF ð2mÞ

TABLE 4
Comparison of Bit-Parallel Multipliers Using Irreducible Pentanomials over GF ð2mÞ



shifted polynomials basis multiplier, however, for a few
irreducible pentanomials, it has a higher delay. Our FMM
multiplier is faster than dual basis multiplier, but requires
more hardware. Also, FMM has the same time complexity in
comparison to the SPB multiplier, but it can be implemented
with two Montgomery factors. Moreover, it can be used with
our proposed squarer for type-II irreducible pentanomials
which has the delay of two XOR gates. This is the lowest
reported delay for squaring using pentanomials. As a result,
scalar multiplication in ECC can be accelerated by using our
multipliers and squarer.

APPENDIX A

Example 1. Assuming F ðzÞ ¼ z7 þ z4 þ z3 þ z2 þ 1 and
using u ¼ 2, we can obtain the matrix M for the bit-
parallel Montgomery multiplication as follows:

The column A0ð0Þ requires no XOR gate. The Column

A0ð1Þ requires three XOR gates to compute ða1 þ a6Þ;
ða2 þ a6Þ, and ða3 þ a6Þ. The Column A0ð2Þ also requires

three XOR gates, one to compute ða0 þ a5Þ, one for ðða1 þ
a6Þ þ a5Þ as ða1 þ a6Þ is reused, and one for ðða2 þ a6Þ þ
a5Þ as ða2 þ a6Þ is reused. In Column A0ð3Þ, one XOR is

required for ða6 þ a4Þ and one for ðða0 þ a5Þ þ a4Þ as

ða0 þ a5Þ is reused. In the FMM, ða1 þ a6 þ a5 þ a4Þ is

obtained by ðða1 þ a6Þ þ ða5 þ a4ÞÞ reusing ða1 þ a6Þ
which results in using two XOR gates with the delay of

2TX. In the LCMM, ða1 þ a6 þ a5 þ a4Þ is obtained by

ðða1 þ a6 þ a5Þ þ a4Þ reusing ða1 þ a6 þ a5Þ. In this case,

one XOR gate is required but the delay is 3TX . In the

column A0ð4Þ, one XOR gate is required for obtaining

ða5 þ ða3 þ a6ÞÞ as ða3 þ a6Þ is reused. Obtaining ðða6 þ
a4Þ þ ða3 þ a6ÞÞ requires one XOR gate as both ða6 þ a4Þ
and ða3 þ a6Þ are reused. There are two possibilities to

compute ða0 þ a5 þ a4 þ a3 þ a6Þ. In the FMM, it is

considered as ðða0 þ a5 þ a4Þ þ ða3 þ a6ÞÞ, where both

ða0 þ a5 þ a4Þ and ða3 þ a6Þ are reused. But the addition

is postponed to the final XOR tree, thus no XOR gate is

required. In the LCMM, ðða0 þ a5 þ a4Þ þ ða3 þ a6ÞÞ is

obtained by an XOR gate and the delay of 3TX. Note that

A0ð�1Þ and A0ð�2Þ are obtained similarly.

The maximum delay in FMM occurs in the position x3

(in computing c3), where c3 ¼ ðða5 þ a1Þb0 þ ða4 þ
a0Þb1Þ þ ða3b2 þ ða2 þ a6Þb3Þ þ ðða1 þ a6Þ þ a5Þb4 þ ðða0 þ
a5Þ þ a4Þb5 þ ðða3 þ a6Þ þ ða6 þ a4ÞÞb6. By implementing

the terms with the order represented by the brackets, c3

is obtained with the delay of TA þ ð2þ dlog2ð5ÞeÞTX ¼
TA þ 5TX. Note that the delay of the LCMM can be

obtained similarly. tu

APPENDIX B
For odd m and n; n � mþ1

2 , we have ci ¼

a0 þ amþn
2
þ am�1; i ¼ 0;

a i
2b c þ a n

2b cþ1þ i
2b c; i ¼ 1; . . . ; n� 2;

ai
2�1 þ ai2 þ amþn2 þi

2
; i ¼ 2; . . . ;m� n� 2;

ai�ðm�nÞ
2

þ ai
2�1 þ ai2; i ¼ m� n; . . . ; n� 1;

a n
2b c þ an þ amþn2

þ am�1; i ¼ n;
a2n�mþ1

2
þ a n

2b c þ amþn2
þ am�1; i ¼ nþ 1;

anþ1 þ amþn
2
þ amþn

2 þ1 þ am�1; i ¼ nþ 2;
ai�ðm�nÞ

2

þ amþn
2 þi�n2

; i ¼ nþ 3; . . . ;m� 1;

a n
2b cþ1þ i

2b c þ amþi2 �1 þ amþi2
; i ¼ nþ 4; . . . ;m� 2;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

which requires at most ðm�3
2 þmþ 4Þ XOR gates. For

odd m, even n, and n < m�3
2 , we have ci ¼

a0 þ an2 þ am�1; i ¼ 0;
a i

2b c þ a mþnþ2
2b cþ i

2b c; i ¼ 1; . . . ; n� 1;

ai
2�1 þ ai2 þ an2þi2; i ¼ 2; . . . ; n� 2;
an

2�1 þ an þ am�1; i ¼ n;
a mþnþ2

2b c þ a mþnþ2
2b cþ nþ1

2b c i ¼ nþ 1;

þ am�1;
a2nþ2

2
þ a mþnþ2

2b c þ am�1; i ¼ nþ 2;

a mþn
2b cþi�n�1

2
þ a mþn

2b cþi�nþ1
2

i ¼ nþ 3; . . . ;m� n� 2;

þ a mþnþ2
2b cþ i

2b c;
an

2þi
2
þ a mþn

2b cþ i�nþ1
2b c; i ¼ nþ 4; . . . ;m� 1;

ai�ðm�nÞ
2

þ a mþn
2b cþi�n�1

2
i ¼ m� n; . . . ;m� 2;

þ a mþn
2b cþi�nþ1

2 ;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

which requires at most ðm�3
2 þmþ 2Þ two-input XOR gates.

For odd m, even n, and n � mþ1
2 , we have ci ¼
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TABLE 5
Comparison of Multipliers for Irreducible Pentanomials

TABLE 6
Comparison of Squarers for Irreducible Pentanomials



a0 þ an2 þ am�1; i ¼ 0;
a i

2b c þ a mþn
2b cþ1þ i

2b c; i ¼ 1; . . . ;m� n� 2;

ai
2�1 þ ai2 þ an2þi

2
; i ¼ 2; . . . ; n� 2;

ai�ðm�nÞ
2
þ a i

2b c; i ¼ m� n; . . . ; n� 1;

an
2�1 þ an þ am�1; i ¼ n;
a2n�mþ1

2
þ a mþnþ2

2b c þ am�1; i ¼ nþ 1;

an
2þ

nþ2
2
þ a mþnþ2

2b c þ am�1; i ¼ nþ 2;

ai�ðm�nÞ
2

þ a mþn
2b cþi�n�1

2
þ i ¼ nþ 3; . . . ;m� 2;

a mþn
2b cþi�nþ1

2
;

an
2þi

2
þ a mþn

2b cþ i�nþ1
2b c; i ¼ nþ 4; . . . ;m� 1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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