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Abstract—The high level of security and the fast hardware and software implementations of the Advanced Encryption Standard have
made it the first choice for many critical applications. Nevertheless, the transient and permanent internal faults or malicious faults
aiming at revealing the secret key may reduce its reliability. In this paper, we present a concurrent fault detection scheme for the S-box
and the inverse S-box as the only two nonlinear operations within the Advanced Encryption Standard. The proposed parity-based fault
detection approach is based on the low-cost composite field implementations of the S-box and the inverse S-box. We divide the
structures of these operations into three blocks and find the predicted parities of these blocks. Our simulations show that except for the
redundant units approach which has the hardware and time overheads of close to 100 percent, the fault detection capabilities of the
proposed scheme for the burst and random multiple faults are higher than the previously reported ones. Finally, through ASIC
implementations, it is shown that for the maximum target frequency, the proposed fault detection S-box and inverse S-box in this paper
have the least areas, critical path delays, and power consumptions compared to their counterparts with similar fault detection

capabilities.

Index Terms—Advanced encryption standard, composite fields, fault detection, S-box, inverse S-box.

1 INTRODUCTION

FOR the drawbacks of the previous symmetric-key
cryptographic standards such as the DES and the
3DES, they have been lately replaced by the Advanced
Encryption Standard (AES) [1]. In particular, the AES has
overcome the drawbacks of the previous standards in terms
of vulnerability to brute force attacks and slow software
implementations. Therefore, since its acceptance as the
symmetric-key standard in 2001, the AES has been utilized
in a variety of security-constrained applications.

Using the AES, the sender and the receiver of the
sensitive data share a secret key to ensure the confidenti-
ality of the information. Nonetheless, a malicious attacker
can take over the secret key and compromise the standard.
One of the methods for extracting the side-channel
information is the fault attacks for which several ap-
proaches have been introduced, see, for instance, [2], [3],
[4], [5], [6], and [7]. It is noted that the internal hardware
failures may also result in malfunctioning of the AES
encryption/decryption. Consequently, several fault detec-
tion schemes have been proposed to date to counteract the
fault attacks and detect the natural faults, see, for example,
(8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], and [25].
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There exist a number of fault detection schemes based on
the error detecting codes, see, for example, [9], [10], [11],
[12], [13], [14], and [15]. Using one parity bit for each byte of
a transformation, one can obtain the structure shown in
Fig. 1 for the round ¢, 1 <i <9, of the encryption of the
AES-128 (128-bit key) to achieve a parity-based fault
detection scheme. Similar structure can be obtained for
the AES-128 decryption. The AES-128 (referred to as the
AES hereafter) encryption/decryption has 10 consecutive
rounds which are similar except for the last one in which
one of the transformations is not used. As seen in Fig. 1, the
output parity bits of each transformation in every round of
the AES encryption are predicted from the inputs using
the prediction boxes denoted by P notations. Then, the
comparisons between the predicted parities (shown by a
matrix with 16-bit entries) and the actual parities (obtained
using the actual parity block) in Fig. 1 can be scheduled so
that the desired fault detection capability is obtained. Parity
predictions of ShiftRows, InvShiftRows, and AddRound-
Key are straightforward and those of MixColumns and
InvMixColumns can be done using the equations given in
[9], [10], [14], and [15]. It is noted that the parity predictions
of the S-box and the inverse S-box proposed in [10] are
based on look-up table (LUT) implementations in which
512 x 9 memory cells are used to generate the predicted
parity bit as well as the 8-bit output. In Fig. 1, let k; be the
128-bit input key to the key expander. Then, all the
modified keys, ie., &}, 0 <14 <10, consist of the 128-bit
expanded key k; and 16-bit parities, if one bit parity is used
for each byte. In [11] and [13], instead of using one parity bit
or two signatures in case of using the scheme presented in
[12] for each byte, one bit parity is used for 128-bit data
using the LUT S-boxes.
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Fig. 1. Parity-based fault detection structure of the ith round in the AES-
128 encryption.

The schemes presented in [8] and [16] use the redundant
unit fault detection approach. It is noted that this results in
the area, power, and delay overheads of approximately
100 percent. In addition, the scheme in [17] proposes using
the transformations in an AES round twice for the same
data to detect the transient errors. The approach in [18]
presents new structures for the S-box and the inverse S-box
with higher complexities compared to the original struc-
tures for detecting 100 percent of single faults. In [19], a
concurrent fault detection scheme based on the merged
S-box (SB) and inverse S-box (ISB) is proposed. It is also
noted that in the schemes proposed in [20] and [21], all the
search space of composite fields are considered for
presenting optimum lightweight fault detection schemes.
Moreover, the approach in [22] is based on implementing
functional redundancy in the AES. The scheme presented in
[23] is for all the transformations in the AES encryption/
decryption independent of the ways these transformations
are implemented. It is also noted that the scheme presented
in [24] uses double-data-rate computation for counteracting
the fault attacks. Additionally, a fault detection scheme
based on the Hamming and Reed-Solomon codes for
protecting the storage elements within the AES is proposed
in [25]. Furthermore, for the logic elements, the scheme in
[10] and the use of the partial duplication of the most
vulnerable elements are proposed in [25].

Among the four different transformations in the AES,
only the S-box and the inverse S-box are nonlinear.
Additionally, all the S-boxes (respectively the inverse
S-boxes) occupy much of the total AES encryption
(respectively decryption) area and their power consump-
tion is around three fourths of that of the entire AES [26].
LUTs can be utilized for implementing the AES S-boxes
and inverse S-boxes in hardware. Nevertheless, this
implementation is not suitable for the applications requir-
ing fast and low-complexity AES implementations [27].
Therefore, in this paper, we focus on the low-area
implementations of the S-boxes and the inverse S-boxes
using composite fields. This approach has received much
attention in the literature, see, for example, [26], [27], [28],
[29], [30], [31], [32], [33], [34], and [35]. Moreover, there
have been low-power implementations for the S-boxes
(respectively the inverse S-boxes) such as the ones in [26]
and [36]. It is noted that the low-power S-box (respectively
inverse S-box) presented in [26] uses composite fields.
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We have presented a low-power and high-performance
parity-based fault detection approach for the S-box, the
inverse S-box, and the merged S-box/inverse S-box within
the AES using composite fields. The contributions of this
paper are as follows:

e We have obtained new formulations for the five
predicted parities for three blocks of the S-box and
the inverse S-box. To reach high multiple and burst
fault detection capabilities, multiple-bit signatures
have been obtained within the blocks constituting
more area in the structures of the S-box and the
inverse S-box.

e Our simulation results show higher burst fault
detection capability for the proposed scheme com-
pared to the previously presented schemes with
similar comparable overheads. This can be used as
an effective countermeasure against the fault attacks
noting that in realistic fault attacks, multiple
adjacent bits are actually flipped [37]. Moreover,
using the proposed scheme, for multiple random
faults, the entire SubBytes and inverse SubBytes are
capable of detecting very close to 100 percent of the
injected faults.

e Through ASIC implementations, it is shown that for
the maximum target frequency, the timing, power,
and area of the proposed scheme are the least
compared to the schemes with similar fault detection
capabilities.

It is noted that the fault detection scheme proposed in this
paper can also be applied to both the low-area S-box and
inverse S-box presented in [27], [28], [30], [32], and the low-
power one proposed in [26].

The organization of this paper is as follows: in Section 2,
preliminaries related to the S-box and the inverse S-box are
presented. The proposed fault detection approach for the
S-box, the inverse S-box, and the merged structures is
presented in Section 3. Furthermore, the time and hard-
ware complexities analysis is preformed in this section. In
Section 4, the results of the simulations of the proposed
approach are presented; through which, the fault detection
capabilities are derived. In Section 5, through ASIC
implementations, the areas, power consumptions, and
critical path delays of the proposed fault detection scheme
and the previously reported ones are compared. Finally,
conclusions are made in Section 6.

2 PRELIMINARIES

In this section, we describe the S-box and the inverse S-box
operations within the AES. Moreover, their low-power
architectures using composite fields are presented.

2.1 The S-Box and the Inverse S-Box

Each S-box substitutes an 8-bit input with an 8-bit output
using a nonlinear operation. In the S-box, the binary field
GF(2%) is constructed using the irreducible polynomial
Plz)=28+2*+2 +2+1. Let X€GF(2®%) and Y ¢
GF(2%) be the input and output of the S-box, respectively.
Then, the S-box consists of the multiplicative inversion, i.e.,
X! e GF(2%), followed by an affine transformation as:
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y=Az ' +b

10001 111 1
11000 111 1
11100011 0
1111000 1f , |o (1)
i1 111000 Tlol
01 111100 1
00111110 1
00011111 0

where 27! and y are the corresponding vectors to the field
elements X! and Y, respectively.

In the inverse S-box, an 8-bit input is substituted with an
8-bit output using a nonlinear operation which is the reverse
of that of the S-box. Let Y € GF(2%) and X € GF(2%) be the
input and output of the inverse S-box, respectively. Then, the
inverse S-box consists of the inverse affine transformation
and then the multiplicative inversion as follows:

z ' =Aly+ 4%

00100101 1
10010010 0
0100100 1 1
10100100 0 2)

“lot1 0100100
00101001 0
10010100 0
01001010 0

where A and b are presented in (1).

It is preferred that the multiplicative inversion of the S-
box and the inverse S-box shown in (1) and (2) is performed
in the composite fields [28]. This is because the direct
calculation of the multiplicative inversion is costly [30]. The
structures of the S-box and the inverse S-box using
composite field and polynomial basis are shown in Fig. 2.
As seen in Fig. 2, for the S-box, the transformation matrix ¥
transforms a field element X = "7 z;a’ in the binary field
GF(2%) to the corresponding representation in the compo-
site field GF(2%)/GF(((2%)%)?) for performing the multi-
plicative inversion. Then, using the inverse transformation
matrix ¥~!, the result of the multiplicative inversion, i.e.,
X!, is obtained. This is performed using the irreducible

polynomial of u? + u + v. It is noted that the decomposition
can be further applied to represent GF((2%)*) as a linear
polynomial over GF(2%) and then GF(2) using the
irreducible polynomials of v* +v+® and w?+w+1,
respectively. Eventually, as seen in Fig. 2, using the affine
transformation, the 8-bit output of the S-box, ie., Y, is
derived. Furthermore, as seen in Fig. 2, for the inverse
S-box, the reverse procedure is performed to obtain the
output X from the input Y. It is noted that in Fig. 2, the
notations for the inverse S-box are presented in parentheses.

All arithmetic operations including the multiplications,
the inversion and the squaring in Fig. 2 are over
GF((22)%). In Fig. 2, the two concentric circles with a plus
inside represent four XOR gates which perform the
modulo-2 addition. Moreover, the three finite field multi-
plications and the inversion in GF((22)*) are shown by
crossed rectangles and (.)"', respectively. Furthermore, the
multiplication by constant v and squaring (.)* in GF((22)*)
are shown in this figure. As seen in Fig. 2 for the S-box,
for the output of the multiplicative inversion o,z + o7 =
(mnz +m)~" we have the following [30]:

on = ((mn +m)m + m*v) " s

2 1 3)
or = ((m +n)m +nn"v)" (n +m)-

Moreover, for the inverse S-box in Fig. 2, one can swap 7
and ¢ in (3) to derive the relation for the multiplicative
inversion.

2.2 Low-Power Architectures

In what follows, we present the low-power implementation
of the S-box (respectively inverse S-box) presented in [26]
using composite field in [30]. For reaching a low-power
architecture with acceptable hardware complexity, it is
suggested in [26] that the structures are partitioned into
three blocks (see Fig. 3). Then, the logic gates within each of
these blocks are implemented using two-level logics consist-
ing of the arrays of ANDs and XORs. Although this method

Block 1 Block 2 Block 3
X%D v 333} BBD y
Gl Ao [P e 4 L I e 1 g P » oy .
I5 ] 0 B PTOD|  SPTE PT
D> D> D>

Fig. 3. Low-power S-box (respectively inverse S-box) architecture using
composite fields and polynomial basis [26].
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Fig. 4. The proposed parity-based fault detection scheme for the S-box (respectively inverse S-box).

increases the area of the composite fields implementation, it
reduces the power consumption significantly [26]. The AND-
XOR structure of each block shown in Fig. 3 results in the low
number of transitions and thus low-power consumption.
This is because the AND array has 50 percent propagation
probability of signal transitions. In [26], similar to many other
publications such as [27], [28], [30], and [32], the irreducible
polynomials u? + u+ v and v? + v+ ®, where v = {1100},
and ® = {10},, are used for the composite fields. Because of
its widespread use in the literature, we also utilize this
composite field in this paper. As seen in Figs. 2 and 3, for
block 1, a field element X for the S-box (Y for the inverse
S-box) in the binary field GF(2%) is converted to the
corresponding representation in the composite field
GF(28)/GF(((2%)*)%). The output of block 1 is then obtained
asy € GF(2Y)(y € GF(2*) for the inverse S-box). As seen in
Figs.2and 3,0 € GF(2)(¢' € GF(2*) for the inverse S-box) is
then derived as the output of block 2. Eventually, using the
irreducible polynomials u? + u + v and v* + v + ®, the out-
put of the S-box, i.e., Y (X for the inverse S-box), is obtained
after conversion from the composite field GF(2%)/
GF(((2%)*)?) to the binary field GF(2%).

3 PROPOSED FAULT DETECTION APPROACH

The parity-based fault detection scheme has received much
attention in the literature, see, for example, [38], [39], [40],
[41], [42], and [43]. In such schemes, the parity of a block is
predicted and compared with the actual parity of the block.
The result is the error indication flag of the corresponding
block which alarms the detected faults. Let 7 and p be the
input and the output of the block under test, respectively.
Then, the predicted parity of p is obtained from the input 7,
ie., Pp(r), and the actual parity is implemented from the
output p, i.e., P,(p). The comparison between the actual and
predicted parities is implemented by an XOR gate to
generate the error indication flag e, = P,(7) + P,(p).

In the presented parity-based fault detection scheme, we
divide the structures of the S-box and the inverse S-box
using polynomial basis into 3 blocks as shown in Fig. 2 so

that it can also be used for the low-power structures
presented in [26] (see Fig. 3). One can obtain that for the
S-box and inverse S-box presented in Fig. 2 [30], blocks 1
and 3 occupy around 86 percent of the area of the entire
operations. Therefore, these two blocks are more susceptible
to the internal faults and more prone to fault attacks.
Consequently, we propose using two bits predicted parities
for each of these two blocks. Furthermore, one predicted
parity is used for block 2. The details of the proposed
schemes are presented below.

3.1 S-Box

In the proposed scheme, five predicted parities are derived
for three blocks of the S-box. Then, by comparing these with
the five actual parities, five error indication flags are
obtained. All five flags should be zero for the error free
computations. The proposed fault detection scheme for the
S-box is shown in Fig. 4. As seen in this figure, for block 1,
two predicted parities, i.e., P, and P}, are obtained using
the parity prediction unit (PP;). As seen from Fig. 4, the
predicted parity of the second block Py, is obtained by the
parity prediction unit (PF). Furthermore, for block 3, two
predicted parities, i.e., If’,}3 and 15},23, are derived using the
parity prediction unit (PF).

The derivations of the actual parities are also shown in
Fig. 4. As seen from Fig. 4, two actual parities for the two
most and least significant bits of v, i.e, Pj, = >0, and
P} = 31,7, have been derived from the output of block 1
using two trees of XOR gates. Similarly, as shown in Fig. 4,
the two actual parities for block 3 are obtained from the
output of block 3 for the four most and least significant bits
of Y, ie, Pl =37, y; and P4 =% v, In addition, one
actual parity is obtained for block 2 as Py, = Z?:o 0;. Then,
as shown in Fig. 4, by comparing the predicted and actual
parities, the error indication flags of three blocks, i.e., e;-e;5,
are obtained.

The following lemma is used from [30] for the multi-
plication in GF((22)%) used in blocks 1 and 3. Then, using
this lemma, the predicted parities for the S-box in Fig. 4 are
derived.
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Lemma 1 [30]. Let U = (U3,UQ,U1,U()) and V = (1}3,1}2,1}1,1}0)
be the inputs of a multiplier in GF((2%)%). Then, the result of
multiplication, i.e., Z =UV, is

23 = ug(v3 + va + vy +vg) + uz(vs + v1)

+ w1 (v3 + v2) + ugus,
20 = ug(vs + v1) + ug (v + vg) + uv3 + Ugue, (4)
21 = ugvy + U (v3 + v2) 4wy (v1 + vo) + vy,

zZ0) = U3(1)3 + 7)2) + U3 + Ui + Upvg.-

Using Lemma 1, we present the formulations for these five
predicted parities in the following theorem, the proof of
which has been presented in Appendix A.

Theorem 1. Let X € GF(2®) be the input of the S-box. Then, the
five predzcted pm’ztzes of the three blocks of the S-box in Fig. 4,
ie, By, P}, Py, Pl, and P}, are obtained as follows:

Dy = 2:(D + 25) + 24 B + 23(B+ 1) + 20D + 2172, (5)
If’bz1 =a7(G+x6) + 24l + 21(C+ E) + 23 Va5 + Px, (6)
Py = F2 V1) + Py, (7)

Pl = 03H + 02(G + ) + 61(J + C) + 6, J, (8)

I:)g& = 93(C+ .770) + 92(H + 13) + 64 (I—l— 1‘7) + 90(A + .732),
(9)

wherex1 +x6=A, x5 +A=B,x3+x2=C,Px+H=D,
r+xs=E z+xs=F, FH+zy=G, =z9+z7r=0H,
B+ C =1I,and E + F = J. Furthermore, “+” and V represent
the modulo-2 addition using an XOR gate and the OR operation,

respectively. Moreover, Py = ZLO x;and Py, = v + .

3.2 Inverse S-Box

As seen in Fig. 4, similar to the S-box, for blocks 1-3 of the
inverse S-box, five predicted parities are derived using the
parity prediction units. This is also depicted in Fig. 4. It is
noted that the notations for the inverse S-box are denoted
by parentheses to be contrasted from those for the S-box.
Additionally, similar to the S-box, the actual parities of the
three blocks for the inverse S-box are derived using XOR
trees. It is noted that for blocks 1 and 3, the actual parities
are obtained as P}, = >0 > ~/and P% = 3"i_, . for block 1
and P}, =Y, x; and P} = Y% x; for block 3. Then, as
seen in Fig. 4, by comparing the predicted and actual
parities, five error indication flags of three blocks, i.e., ¢}-€f,
are obtained.

Using Lemma 1 and considering Theorem 1, we present
the formulations for the five predicted parities of the
inverse S-box for the three blocks shown in Figs. 2 and 4 in
the following theorem whose proof is presented in
Appendix B.

Theorem 2. Let Y € GF(2%) be the output of the inverse S-box.
The five predicted parities of the three blocks of the inverse
S-box in Fig. 4 are obtained as follows:

Pl = yoe + ys(ys + ys + a) + yob + yrys + b, (10)
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P% = yi(yr +ys + h) + yoa + ys(ys + va) + ysh + o +e,

(11)
Py = (Yo VN + Py, (12)
Py =0,F +03(Py +d+yr) +0,(C+yr + ya)
+605(@+y1 +y2), (13)
Py = 0 (yn + d) + 04(yo + 9) + 0, (5 + 9) + 0 (v + /), (14)

where ys+yr=a, yi+a=b yi+y:=c¢ ys+ys=d,
ctd=e Py+yi+ys=f Pr+y=g and ys+yo = h.
Furthermore, “+” and V represent the modulo-2 addition
using an XOR gate and the OR operation, respectively.
Moreover, Py = 3" yi and Py =~} + 7.

3.3 Merged S-Box and Inverse S-Box

In some low-complexity implementations that use encryp-
tion or decryption at a time, multiplicative inversions of the
S-box and the inverse S-box are shared (see, for example,
the joint encrypter/decrypter in [30] and [32] and the
merged encryption and decryption S-boxes/inverse S-boxes
in [31]). The multiplicative inversion in the finite field
GF(2®) is needed for both the S-box and the inverse S-box.
Therefore, one can merge them in order to reuse the
multiplicative inversion and its parity predictions. It is
noted that when there is no need to utilize both the S-box
and the inverse S-box at the same time, this merged
structure leads to a low-area design. Fig. 5 shows the
merged S-box and inverse S-box and their corresponding
predicted parities for the three blocks. As seen in this figure,
the multiplicative inversion in Fig. 2 is used for both the
S-box and the inverse S-box. On the other hand, as seen
in Fig. 5, two multiplexers are used for choosing the
transformation matrix and the inverse and affine transfor-
mations (for the S-box with the select input SB = 1) and the
inverse affine and transformation matrices and the inverse
transformation (for the inverse S-box with the select input
ISB = 1). The parity prediction unit is also shown in Fig. 5.
As seen in this figure, these multiplexers also choose
between the predicted parities of blocks 1 and 3 for the
S-box and the inverse S-box. As a result, a parity-based fault
detection merged structure is obtained.

3.4 Complexity Analysis

In what follows, we obtain the hardware and time complex-
ities of the proposed schemes for the S-box and the inverse
S-box. We use two-input gates in the implementation of the
predicted parities of the proposed schemes in (5)-(14). We
have obtained the number of gates needed for implementing
the predicted parities of the S-box in (5)-(9) as 33 XORs, 19
NANDs, two XNORs, and one NOR gate. Moreover, for the
inverse S-box, one needs 40 XORs and 19 NANDs to
implement (10)-(14). Furthermore, for obtaining the actual
parities of blocks 1-3, 2 XORs (one XOR for each of P}, and
P2)),3 XORs (for Pyy),and 6 XORs (three XORs for each of P},
and P%,) are needed, respectively. Moreover, five XOR gates
are used for comparing the five predicted and actual parities
to obtain the indication flags. In Section 5, through ASIC
implementations, we derive the chip area of the proposed
schemes for the S-box and the inverse S-box. Furthermore,
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Fig. 5. Merged S-box and inverse S-box and the corresponding predicted parities for different blocks.

the area, critical path delay, and power consumption
overheads are derived.

The timing overhead of the proposed scheme can be
overlapped by the time needed for performing the operations
in blocks 1-3. In other words, as seen in Fig. 4, the predicted
parities are obtained concurrently with the time needed for
the blocks. Table 1 presents the details of the timings of the
three blocks for the S-box and the inverse S-box (presented in
Fig. 2) as well as those for obtaining the predicted parities of
these blocks. As seen in this table, for all the blocks, the times
needed for deriving the predicted parities are less than those
of the operations. Therefore, no overhead exists for obtaining
these predicted parities. Itis also noted that the actual parities
are obtained in the time allotted to the next block. Therefore,
the only timing overhead is for obtaining the actual parity of
block 3 and comparing it with the corresponding predicted
parity (see Fig. 4). These are equal to 27x and 1T¥,
respectively. Therefore, the total timing overhead is 37’y for
both operations.

The implementations of the S-box and the inverse S-box
using composite fields are area efficient in comparison with
those using LUTs. Moreover, the critical path delay can be
reduced using subpipelining. In [27], subpipelining of the
S-box and the inverse S-box is done by placing one, two,
and three-stage registers between the blocks. Although the
subpipelining techniques used in [27] are based on the
implementations of the S-box and the inverse S-box over

GF((2')?), similar pipelining techniques can be used for
the composite field GF(((2)%)?) (see, for example, [32]).
The proposed fault detection scheme can take advantage of
subpipelining without adding delay to the original pipe-
lined structure. In the pipelined fault detection scheme, we
use the parity prediction units of each pipelined block and
obtain the error indication flag. According to Table 1, one
can observe that the critical path delays of the predicted
parity bits of each block of the S-box and the inverse S-box
is less than the critical path delay of that block. Therefore,
we can use the parity prediction schemes in the pipelined
structures of the blocks without affecting the frequency of
the clock signal; the predicted parity bits of the blocks are
obtained in the same clock cycle as the outputs of the
blocks are calculated. Calculating the actual parity and
comparing it with predicted parity to obtain the error
indication flag can be done in the next clock cycle. Using
the abovementioned pipelined structure, one can see that
the time overhead will be only one extra clock cycle which
may be overlapped with other computations in the
pipelined fault detection implementation of AES.

4 SIMULATION RESULTS

In the following, we evaluate the proposed fault detection
scheme for single stuck-at errors, burst faults, and multiple
random faults to model both natural faults and fault attacks.

TABLE 1
The Timing Details of the Proposed Concurrent Scheme for the S-Box and the Inverse S-Box
Operation Block 1 Block 2 Block 3
original predicted parity original predicted parity original predicted parity
S-box 10Tx + 1T'4 5Tx + 1Ty 3Tx + 2Ty 2Tx + 1Ty 8Tx + 1Ty 61Tx + 1Ty
Inverse S-box 10Tx + 1T'4 5Tx + 1Ty 3Tx + 2Ty 2Tx + 1Ty TTx + 1T 4 ATx + 1Ty
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The single stuck-at errors are at the output of the S-box
(the inverse S-box). Such errors are covered 100 percent in
the proposed scheme which is the same as those of the
schemes in [18] and [20]. However, due to the technological
constraints, injecting single stuck-at errors may not be
applicable in practice [37]. Therefore, we rely on simula-
tions to consider both the burst and the multiple permanent
and transient faults; the details of which are presented in
the following.

4.1 Burst Faults

Although the fault attacker gains more information through
injecting single faults, due to the technological constraints,
injecting single stuck-at faults may not be applicable in the
practical fault attacks [37]. Therefore, in realistic fault
attacks, multiple adjacent bits are actually flipped. More-
over, natural failures can be of the correlated type causing
neighboring faults [37]. Consequently, in what follows, we
consider the fault detection capability of the proposed
scheme for neighboring faults referred to as burst faults.

Because of the nonlinear structure of the S-box (respec-
tively the inverse S-box), the burst faults in a block of the
S-box (respectively the inverse S-box) appear as random
multiple errors at the output of that block. Moreover, the
burst faults that occur in two adjacent blocks appear as
multiple random errors at the outputs of the adjacent
blocks. For deriving the burst fault detection capability of
the proposed scheme, we have performed error simulations
for blocks 1-3 of the S-box and the inverse S-box in Fig. 4;
the details of which are presented in the following.

Linear Feedback Shift Registers (LFSRs) are used for
injecting the errors at the output of one block or two
adjacent blocks for modeling the burst faults. The stuck-at
error model used forces multiple output bits to be stuck at
logic one (for stuck-at one) or zero (for stuck-at zero)
independent of the error-free values. We use Fibonacci
implementation of the LFSR with four (for the outputs of
blocks 1 and 2) or eight (for the random input and output of
block 3) output taps for injecting the errors, where the
numbers, locations, and types of the errors are randomly
chosen. In this regard, according to the maximum sequence
length taps presented in [44], the maximum sequence
length polynomial for the feedback are selected as L, (X) =
X'+ X and Ly(X) = X+ X* + X* + X2 for the four and
eight output taps, respectively. Moreover, for our simula-
tions, we use the ModelSim SE 6.2d [45]. We have injected
100,000 burst faults at the outputs of the blocks for 100,000
random 8-bit inputs of the S-box and the inverse S-box.
Then, we have used the five error indication flags at the
outputs of three blocks of the S-box and the inverse S-box to
detect the burst faults. The results of our simulations show
that for the S-box and the inverse S-box 71,257 and 72,321 of
the faults are detected, respectively. This yields to 71.3 and
72.3 percent burst fault detection capabilities for these two
structures, respectively. It is noted that these are higher
compared to the scheme in [18] for the original S-box and
the one in [20], which have the burst fault detection
capability of close to 50 percent. The complete comparison
of the fault detection capabilities of the proposed schemes
and the previous ones are presented in the next section.
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TABLE 2
Fault Detection Capabilities of the Proposed Schemes
After Injecting 1,000,000 Random Multiple Faults

Operation Initial Detected | Fault Coverage
values (%)

Lo ={9D} 966,324 = 97%
L3 ={AFA2},

S-box Lo ={B0}p 972,198 = 97%
L3 ={3DA9%}

Lo ={73}y, 968,775 = 97%
L3z ={2BBF},

Lo ={9D}, 977,760 =~ 98%
L3 ={AFA2},

Inverse Lo ={B0}, 969,139 = 9%
S-box L:; =1 3DA9} h

Lo ={73}, 971,815 = 9%
L3z ={2BBF},,

4.2 Multiple Faults

The fault detection capability of the presented scheme
depends on the number of the S-box and the inverse S-box
blocks and the number of the predicted parities used for
them. Two predicted parities have been used for blocks 1
and 3 of the S-box and the inverse S-box which constitute
much of the area. Because at least one predicted parity is
used for each block of the S-box and the inverse S-box, all
odd number of errors in each of three blocks can be detected
using the error indication flags. The error indication flags of
blocks 1 and 3 can also detect certain even number of errors
comprising two odd number of errors in two partitions of
these blocks. In the remaining of this section, it is shown
that for the entire SubBytes, the error coverage is very close
to 100 percent.

For the randomly distributed multiple faults in the entire
S-box and inverse S-box, the fault detection capabilities can
be obtained. It is noted that in our simulations, we use a
transient stuck-at error model. Nonetheless, the simulation
results are also the same for the permanent errors, including
the permanent internal failures and the malicious fault
attacks aiming at destroying the chip. Similar to the burst
faults, we use LFSRs for injecting the errors. This is
performed using a 16-output tap LFSR for injecting the
random multiple errors at the outputs of three blocks
utilizing L3(X) = X' + X'2 + X? + X and an 8-bit LFSR for
applying the random input of the S-box or the inverse S-box
using Ly(X) = X8 + X* + X3 + X2 [44].

The results of our simulations for three different initial
values of the LFSRs L, and L3 polynomials are depicted in
Table 2. As seen in this table, after injecting 1,000,000
random multiple faults, the fault detection capabilities for
one S-box or inverse S-box are close to 97 percent. It is
interesting to note that for the entire SubBytes or inverse
SubBytes, i.e., 16 S-boxes or inverse S-boxes, respectively,
injecting this number of multiple faults resulted in the fault
detection of very close to 100 percent. As a matter of fact, in
this case, the faults are detected by the 5 x 16 = 80 flags for
the entire SubBytes or inverse SubBytes transformations,
yielding to approximately complete fault detection capabil-
ities, i.e., approximately 100 x (1 —275%)%.
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TABLE 3
Comparing the Areas, Critical Path Delays, Power Consumptions, and Fault Detection Capabilities of the Proposed
and Previously Presented Fault Detection Schemes for the S-Box Using the 65-nm CMOS Standard Technology

Fault detection Target frequency: 500 MHz Target frequency: 1 GHz Target frequency: 1.1 GHz Fault coverage (%)
scheme Area Delay | Total power Area Delay | Total power Area Delay Total power Burst Multiple
(9"1,2) ‘ (ns) ‘ OW) @m 2) (ns) OW) (!97n2) (ns) ‘ OW) faults faults
Redundant units [8],
United S-box [16] 523 1.23 72 542 0.95 15.4 54.7 0.87 16.9 100% 100%
(LUTs) x 10% x 10% x 103 x 10% x 10% x 10%
Parity-based
scheme in [13] 29.5 0.59 43 29.5 0.59 84 29.5 0.59 9.5 = 50% = 50%
(256 x 9 LUT) x 103 x 103 x 103 x 103 x 103 x 103 (SubBytes) (SubBytes)
Parity-based
scheme in [10] 57.1 0.68 7.8 57.1 0.68 15.6 57.1 0.68 17.1 = 50% = 50%
(512 x 9 LUT) x 10% x 10% x 103 x 10% x 10% x 10%
Multiplication = 75% = 75%
approach in [12] 876 1.88 630.3 1829 0.96 3000.7 2121 0.88 3600.1 (multiplicative | (multiplicative
(polynomial basis) inversion) inversion)
Structure-independent
scheme in [23] 754 1.90 5749 1459 0.97 22638 1763 0.87 2902.5 = 50% = 50%
(polynomial basis)
Scheme in [18] Target Target Target
for the original S-box 881 1.92 607.7 1748 0.96 2709.4 is not is not is not = 50% = 97%
(polynomial basis) achieved | achieved achieved
Parity-based
scheme in [21] 865 1.82 616.2 1645 0.96 2507.8 1742 0.88 2921.8 = 50% = 97%
(polynomial basis)
Parity-based Target Target Target
scheme in [20] 858 1.90 620.0 1755 1.0 2672.9 is not is not is not = 50% = 97%
(normal basis) achieved achieved achieved
Proposed scheme 953 1.80 712.3 1683 0.95 2600.2 1730 0.87 2912.2 71.3% = 97%
(polynomial basis)

5 ASIC IMPLEMENTATIONS AND COMPARISONS

In this section, we present the results of the syntheses we have
performed for the proposed and previously presented fault
detection schemes of the S-box and the inverse S-box. We
have used the STM 65-nm CMOS standard technology [46] for
the syntheses. Moreover, VHDL has been used as the design
entry to the Synopsys Design Vision [47]. We have set the
target frequency as 500 MHz, 1 GHz, and 1.1 GHz corre-
sponding to the delays of 2, 1, and 0.91 ns, respectively. Using
Synopsys Design Vision, we have obtained the maximum
target frequency in which our fault detection structure can

operate without violating the timing constraints. This
maximum target frequency has been obtained as 1.1 GHz in
the 65-nm technology. The proposed fault detection schemes
and the ones presented in [8], [10], [12], [13], [16], [18], [20],
[21], and [23] have been synthesized and their areas, delays,
and power consumptions are derived. The results for
different target frequencies are shown in Table 3 (for the
S-box) and Table 4 (for the inverse S-box). As seen in these
tables, areas (um?), critical path delays (ns), total power
consumptions (1W), and fault coverages (percent) are shown.
In the following, the syntheses details of the structures are
explained.

TABLE 4
Comparing the Areas, Critical Path Delays, Power Consumptions, and Fault Detection Capabilities of the Proposed
and Previously Presented Fault Detection Schemes for the Inverse S-Box Using the 65-nm CMOS Standard Technology

Fault detection Target frequency: 500 MHz Target frequency: 1 GHz Target frequency: 1.1 GHz Fault coverage (%)
scheme Area Delay | Total power Area Delay | Total power Area Delay Total power Burst Multiple
(om?) ‘ (ns) ‘ OW) 6m?) (ns) OW) O#m?) (ns) ‘ OW) faults faults
Redundant units [8],
United S-box [16] 523 1.23 72 54.2 0.95 15.4 54.7 0.87 16.9 100% 100%
(LUTs) x 10° x 10° x 10° x 10° x 10° x 10°
Parity-based = 50% = 50%
scheme in [13] 29.5 0.59 4.3 29.5 0.59 8.4 29.5 0.59 9.5 (Inverse (Inverse
(256 x 9 LUT) x 103 x 103 x 10% x 10% x 103 x 103 SubBytes) | SubBytes)
Parity-based
scheme in [10] 57.1 0.68 7.8 57.1 0.68 15.6 57.1 0.68 17.1 = 50% = 50%
(512 x 9 LUT) x 10% x 10° x 103 x 103 x 10% x 10%
Structure-independent
scheme in [23] 783 1.72 581.3 1450 0.97 2262.6 1683 0.89 2893.4 = 50% = 50%
(polynomial basis)
Scheme in [18]
for the original S-box 886 1.85 629.4 1689 0.97 2711.1 1993 0.88 3612.6 = 50% = 97%
(polynomial basis)
Parity-based
scheme in [21] 865 1.85 623.6 1667 0.96 2692.3 1964 0.88 3528.5 = 50% = 97%
(polynomial basis)
Parity-based Target Target Target
scheme in [21] 855 1.85 574.0 1578 1.0 2374.4 is not is not is not = 50% = 97%
(normal basis) achieved achieved achieved
Proposed scheme 916 1.68 636.4 1481 0.96 2200.5 1709 0.88 2812.8 72.3% = 97%
(polynomial basis)
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As seen in Table 3 for the S-box, the first three schemes,
i.e., the schemes presented in [8], [16], [13], and [10], use the
LUT S-box in their structures. The schemes in [8] and [16]
use the S-box followed by the inverse S-box. These can be
implemented using two 256 x 8 LUTs. Then, the result is
compared with the input to detect the faults in the structure
of the S-box or the inverse S-box. It is noted that although its
fault detection capability reaches 100 percent, this method
has the critical path delay and the area overheads of close to
100 percent. Furthermore, as seen in Table 3, because of the
use of LUT S-box, areas and power consumptions are
higher than the schemes using composite fields.

Additionally, the schemes in [13] and [10] use the error
detecting codes (parity) for the LUT S-box, where the S-box
is expanded. Similar to the scheme in [8] and [16], using the
LUT S-box increases the areas and power consumptions of
these schemes considerably. In the low-cost scheme pre-
sented in [13], the modulo-2 addition of the predicted
parities of the input and output of the S-box along with the
S-box itself are stored in a 256 x 9 LUT. Then, a comparison
with the actual parities is performed for deriving the error
indication flags. As seen in Table 3, the burst and multiple
fault detection capabilities of this scheme for the entire
SubBytes (not each S-box) is around 50 percent. The parity-
based scheme presented in [10] utilizes a 512 x 9 LUT to
store the predicted parities as well as the output of the
S-box. This results in reaching the burst and multiple fault
detection capability of approximately 50 percent for each
S-box at the cost of more area and power consumption and
slightly more delay compared to the scheme in [13].

As presented in Table 3, the last six fault detection
schemes use the S-box using composite fields; represented
either in polynomial basis or normal basis. It is noteworthy
that sub-pipelining of these fault detection S-boxes has not
been performed and these syntheses are only intended to
compare different presented schemes. The scheme in [12]
uses two flags for the fault detection of the nonlinear part of
the S-box, ie., the multiplicative inversion. This is per-
formed by comparing the result of multiplying the input
and the output of the multiplicative inversion with the
actual result, i.e., {01},. As seen in Table 3, this yields to the
fault detection capability of approximately 75 percent. The
structure-independent scheme in [23] uses one-bit parity in
the multiplication scheme for obtaining the fault detection
capability of around 50 percent for the S-box. Although the
fault detection capability is less than that of [12], as seen in
Table 3, better area and power consumption results are
obtained.

The results for the proposed scheme in this paper are
shown in bold face in Table 3. As depicted in the table, for the
target frequency of 1.1 GHz, the proposed scheme in this
paper for the S-box has the least area, power consumption,
and critical path delay among the schemes that have similar
or slightly more fault detection capabilities, i.e., the schemes
presented in [8], [16], [18], [21] and [20]. Specifically,
compared to the schemes presented in [18], [20], and [21],
for the low frequency of 500 MHz, the presented scheme in
this paper is faster at the expense of more area. Nonetheless,
as seen from the table, the maximum target frequency of
1.1 GHz cannot be achieved for the schemes of [18] and [20].
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Nevertheless, in higher frequencies, e.g., 1.1 GHz in Table 3,
the presented scheme outperforms the one proposed in [21]
in terms of area, power consumption, and delay. It is also
noted that the schemes proposed in [18], [20], and [21] yield
to the fault detection capability of around 50 percent for the
burst faults which is less compared to the presented scheme
in this paper.

It is also noted that compared to the schemes with lower
fault detection capability in Table 3, for this maximum
target frequency, the proposed scheme is more compact.
Moreover, it has less power consumption except for the
scheme presented in [23]. Nonetheless, the fault detection
capabilities of the structure-independent scheme in [23] for
burst and multiple faults are around 50 percent, i.e.,
approximately half of that of the proposed scheme for the
multiple faults and less for burst faults. Finally, using
subpipelining, the critical path delay of the proposed
scheme can be considerably reduced. This can result in
even better critical path delays compared to the schemes
using LUTs at the expense of more hardware utilizations for
the pipelining registers. It is noted that the subpipelined
composite field structures are still much more compact than
the schemes taking advantage of LUTs.

We have also implemented the proposed scheme for the
inverse S-box for the three target frequencies; the results of
which are presented in Table 4 in bold face. As seen in this
table, in addition, the schemes for the inverse S-box presented
in [8], [16], [10], [13], [23], [18], [21] and [20] have been
synthesized and their areas, delays, and power consump-
tions are derived. As seen from Table 4, similar to the S-box,
for the low frequency of 500 MHz, the presented scheme for
the inverse S-box is the fastest compared to [18], [20], and [21].
Additionally, for the maximum target frequency of 1.1 GHz,
it has the lowest area, delay, and power consumption
compared to those of [18], [20], and [21]. It is also noted that
as presented in Table 4, the target frequency of 1.1 GHz
cannot be achieved by the scheme in [21]. As depicted in
Table 4, for the highest frequency to achieve, i.e., 1.1 GHz, the
proposed scheme in this paper is the most compact scheme
with the lowest power consumption compared to the
schemes presented in [8], [16], [10], [13], [18], [21] and [20].
It is also noted that similar to the S-box, the fault detection
structure of the inverse S-box can be subpipelined so that
with a reasonable hardware overhead, the critical path delay
is highly reduced. The proposed scheme in this paper has
more area and less power consumption compared to the one
in [23]. As mentioned previously, however, the fault
detection capability of the scheme in [23] for the burst and
multiple faults is around 50 percent. This is less than the fault
detection capabilities of 97 and 72.3 percent for the proposed
scheme for the multiple and burst faults, respectively.

Furthermore, we have compared the areas, critical path
delays, and power consumptions of the proposed schemes
for the S-box and the inverse S-box with those for the
original ones presented in [32]. For this purpose, we have
implemented both the original and the fault detection S-box
and inverse S-box for several target frequencies ranging
from 500 MHz to 1.1 GHz. The results are shown in Fig. 6.
As seen in Figs. 6a and 6d for the S-box and the inverse
S-box, respectively, the areas of both the original structures
(solid lines with o marks) and the fault detection ones



1336

1800

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO.9, SEPTEMBER 2011

—&— Original ot + 3000F | —o— Original o+ > Original
1600} | =+ Proposed FD ! e Proposed FD *__,.-* 18f +. oo Proposed FD |-
2500 +
1400 1.6 )
i = 2000 7
g— 2 < 14
E 1200 ;;-, -
2 8 1500 2 o
1000 '
1000
800 !
500
600 08
500 600 700 800 900 1000 1100 500 600 700 800 900 1000 1100 500 600 700 800 900 1000 1100
Target frequency (MHz) Target frequency (MHz) Target frequency (MHz)
(@) (b) ()
1800 2
—o6— Original e 30001 | —e— Original &— Original
1600} | =+ Proposed FD .::.+' s Proposed FD * 1.8 e Proposed FD |
2500 ok
+ 1.6 ",
1400 ’ *,
N’E; ;3. 2000 g 14 -
E 1200 g, E-
z 8 1500 812
1000
1000 1 N 1
800 0.8 1
500

600
500 600 700 800 900 1000 1100

Target frequency (MHz)

(d)

500 600 700

Target frequency (MHz)

6
500 600 700 800 900 1000 1100
Target frequency (MHz)

()

800 900 1000 1100

(e)

Fig. 6. The areas, critical path delays, and power consumptions of the original [32] and the proposed fault detection S-box and inverse S-box.
(a) Area (S-box). (b) Power (S-box). (c) Delay (S-box). (d) Area (Inverse S-box). (e) Power (Inverse S-box). (f) Delay (Inverse S-box).

(dotted lines with + marks) for different target frequencies
are depicted. As seen in these figures, as the target
frequency increases, it is reached by increasing the occupied
area. This yields to having the areas ranging from 698-1,338
and 662-1,334 pm? for the original S-box and inverse S-box,
respectively. Moreover, for the fault detection S-box and
inverse S-box presented in this paper, the areas of 953-1,730
and 916-1,709 pm? are achieved, respectively.

Moreover, the results of our implementations for the
power consumptions of the original and the fault detection
S-box and inverse S-box are depicted in Figs. 6b and 6e,
respectively. As seen from these figures, for the low-target
frequencies, the power consumptions of the original struc-
tures and the fault detection ones are close to each other.
Nonetheless, as seen in Figs. 6b and 6e, these differences
increase after applying tighter critical path delay constraints.
As an example, for the target frequency of 1.1 GHz, the power
consumption for the original S-box (respectively inverse
S-box) becomes 2.2 mW (2.3 mW). Moreover, for the fault
detection S-box (respectively inverse S-box) it reaches
2.9 mW (2.8 mW). Finally, the critical path delays of the
original structures and those for the proposed scheme in this
paper for the S-box and the inverse S-box are presented in
Figs. 6¢c and 6f. As seen in these figures, for the target
frequency of 500 MHz, the critical path delays of the original
and the fault detection S-box are 1.54 ns (working frequency
of 649 MHz) and 1.80 ns (working frequency of 555 MHz),
respectively. Furthermore, for the inverse S-box, the critical
path delays of 1.44 (working frequency of 694 MHz) and
1.68 ns (working frequency of 595 MHz) are obtained for the

original and fault detection structures, respectively. It is also
noted that, for the maximum target frequency to achieve, the
original and fault detection S-box (inverse S-box) reaches the
critical path delay of 0.87 ns (0.88 ns), i.e., the working
frequency of 1.15 GHz (1.14 GHz). As seen in Fig. 6, this is for
the cost of the increased areas and power consumptions for
the structures.

We conclude this section by deriving the area, delay, and
power consumption overheads of the proposed scheme for
the S-box and the inverse S-box. To this end, we have
considered the areas, delays, and power consumptions of the
original operations presented in [32] and the fault detection
structures shown in Fig. 6. Then, we have obtained the
overheads; the results of which are presented in Fig. 7. The
results in this table show that for the low frequency of
500 MHz for the S-box (see the dotted lines with o marks) and
the inverse S-box (see the solid lines with + marks), the area
overheads are approximately 36 and 38 percent, respectively
(see Fig. 7a). Moreover, in this frequency, the overheads for
the critical path delays and the power consumptions for the
S-box are 16 and 40 percent, respectively. Additionally, for
the inverse S-box, for the target frequency of 500 MHz, the
critical path delay and the power consumption overheads of
16 and 25 percent are obtained, respectively. However, as we
increase the target frequency, the critical path delay over-
head decreases (see Fig. 7c). It is noted that as seen in Fig. 7c,
no timing overhead is observed for the target frequencies
higher than 1 GHz. Finally, as presented in Section 4, with the
mentioned overheads, the fault detection scheme proposed
in this paper achieves high fault coverages. This makes the
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Fig. 7. The area, delay, and power consumption overheads of the proposed schemes for the S-box and the inverse S-box. (a) Area overhead.

(b) Power overhead. (c) Delay overhead.

presented fault detection S-box and inverse S-box suitable
choices in counteracting the fault attacks and detecting the
internal failures.

6 CONCLUSIONS

In this paper, we have presented a high-performance fault
detection approach for the S-box and the inverse S-box. The
proposed scheme is based on using error detecting codes
(parities) for the fault detection of the S-box, the inverse
S-box, and the merged S-box/inverse S-box using composite
fields. The structures of the S-box and the inverse S-box have
been divided into three blocks. Then, based on the vulner-
ability of the blocks to the internal and malicious faults, the
number of predicted parities are decided. Utilizing 5
predicted parities for the S-box and the inverse S-box, the
fault detection capability of the proposed scheme is close to
97 percent for multiple faults for one S-box and inverse S-box.
Moreover, if the entire SubBytes and inverse SubBytes are
considered, this becomes very close to 100 percent.
Furthermore, we have performed ASIC implementations
using the 65-nm CMOS standard technology for the
proposed concurrent fault detection architectures and the
previously reported ones. It is shown that for the maximum
target frequency of 1.1 GHz, the proposed architectures for
the S-box and the inverse S-box have the least areas, power
consumptions, and critical path delays compared to the
schemes with similar fault coverages. It is noted that using
subpipelining, the maximum working frequencies for the
proposed scheme in this paper can be considerably in-
creased. Considering the fault detection capabilities of very
close to 100 percent and the applicability of the proposed
scheme to both the low-area and low-power S-box and
inverse S-box, the proposed concurrent fault detection S-box
and inverse S-box are suitable choices for having reliable AES
encryption/decryption hardware architectures.

APPENDIX A

Proof of Theorem 1. First, we obtain the two predicted
paritiesof block 1,i.e., P}, = P, and P} = P, in(5)and (6).
As seen from Fig. 2, block 1 consists of the transformation

matrix ¥, a field multiplication, modulo-2 additions, and

squaring followed by the multiplication by the constant .
From [30], one can obtain that for the input of 7,

(17, M6, M5, M4), the result of the squarer-v is

MY = (7 + Nas N7 + M + 75, M4y 75).- (15)

Moreover, using (4) with the inputs w=mn and
v =1y, + 7, one can obtain the result of the field multi-
plication in this block. By modulo-2 adding the coordi-
nates of v, = (v3,72) and v = (v1,%), i-e., two most and
least significant bits of (15) and that of the result of the
multiplication, respectively, one can obtain

Pbll = n3(n6 + 1) + m2(n7 + 16 + 15 + 1) + M0 (16)
+no(n7 +n6) + 17 + 16 + 15 + M2,

P2 =3y + moms -+ mna + mo(ns + 1) + 06 + 1m0 + 0. (17)

By substituting the coordinates of n with those of X and
reordering the results in (16) and (17), one reaches the
following

pbll = x7(xg + x4 + 3 + 22 + 1) + 24(26 + 25 + 71)
+l‘3(1‘6—|—1‘5 —|—(L‘4—|—(L‘1) +1’0(1‘6+£K5—|—£L’4—|—$3
+ X2 +-T1) + x122,

(18)

Pb21 = z7(x6 + x5 + T4 + x2) + Ta(T6 + T5 + T3
+x2+xl)+$1(I6+5L'3+LL'2+ZL'Q>+$2\/CL’5+P)(.
(19)

Using subexpression sharing, it is straightforward to
obtain (5) and (6) from (18) and (19), respectively. It is
also noted that the predicted parity of block 2 in (7) is
derived from that of block 3 in the scheme in [18] noting
that P, = v + 7.

Now, we derive the two predicted parities of block 3,
ie., Py = Py, and P} = Py. As seen from Fig. 2, block 3
consists of the mixed inverse and affine transformation
matrices and two field multiplications. It is straightfor-
ward that using (1), we obtain the formulations for these
mixed transformation matrices as follows:
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y=A¥ g +b
11100011 1
10000001 1
10111110 0
11100000 0 (20)
“l1 100100170
0010000 1 1
00001111 1
00110001 0

Eventually, Py, and Py, ie., two predicted parities of
block 3 in Fig. 2, are obtained as follows Py, =
06 + 05 + 03+ 01 + 09 and Pyl = 05 + 04 + 03 + 0. Then,
by multiplying © = 6 and v = n, + 7, and also v = 6 and
v =1y, using (4), one can obtain the coordinates of o.
Substituting these in above, the following is obtained for
the two predicted parities of block 3 of the S-box in Fig. 2:

]5[)13 = 93($7 + l’o) + 92($7 + x5+ 24 + .1‘2) (21)
+ 01 (x6 + x5 + 23 + o) + Oo(x6 + x5 + T2 + 0),

]5[;23 = 03(x3 + 29 + x0) + Oa(w7 + 23 + 20)
+ 01 (z7 4+ 26 + o5 + 23 + 29 + T1) + o6 + 22 + T1).

(22)

Then, using subexpression sharing for (21) and (22), one

can obtain (8) and (9) and the proof is complete. O
APPENDIX B

Proof of Theorem 2. As seen in Fig. 2, the S-box and the
inverse S-box share block 2. Therefore, the predicted
parity of this block is the same for them.

Now, we obtain the two predicted parities of block 1,
i.e., P} and P2 in (10) and (11). As seen from Fig. 2, block 1
consists of the transformation matrix ¥ preceded by the
inverse affine transformation. Moreover, as seen in Fig. 2,
similar to the S-box, a field multiplication, modulo-2
additions, and squaring followed by the multiplication by
the constant v are utilized in this block. Similar to the
S-box, using (4) with the inputs v = 0;and v = 03, + 0y, one
can obtain the result of the field multiplication in this
block. Moreover, one can obtain that the result of the
squarer-v in Fig. 2 is

012v = (07 + 04,07 + 0 + 05,04, 05). (23)

By modulo-2 adding the two most and least significant
bits of the result of the squarer-v in (23) and that of the
result of the multiplication, respectively, one can obtain

pbll = 0'3(0'6 + 0'4) —+ 0'2(0'7 + 06 + 05 + 0'4) + 010%

(24)
+ oo(o7 + 06) + 07 + 06 + 05 + 02,

Ple = 0307 + 020¢ + 0104 + 0’0(0'5 + 0'4) + o + 09 + 0y.
(25)

One can substitute the coordinates of o with those of YV
using (2). This is performed by utilizing the following as
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the result of mixing the inverse affine and transformation
matrices

c=YA'y+TA D

00100011 1
01010100 0
011001171 1
00000101 1 (26)

“looo1 110 0| |1
10001110 1
11110011 1
01100011 0

Then, by reordering the result in (24) and (25), the
following is derived

PL=yo(ys +ys + 2 +v1) +ys(yr + Yo +ya +y3)

- (27)
+(yr +ys +y1) + yrya +yr +ys + y1s

P2 = yi(yr + s + ya + v0) + v (yr + v6) + y3(ys + va)

(28)
+ys(ya +yo) + Y6 + Y3 + Y2 + y1 + Yo.

Using subexpression sharing, it is straightforward to
obtain (10) and (11) from (27) and (28), respectively.
Now, we derive the two predicted parities of block 3
of the inverse S-box in Fig. 2, i.e, 15;}3 = IE’X,l and
P2 = Px,. As seen from Fig. 2, block 3 consists of the
inverse transformation and two field multiplications. It is
straightforward that considering the inverse transforma-
tion matrix we obtain Py, and PX, as follows Py, =
N7 +mn5 +na+m and Px, =17 + 16 + 15 + 12 + no. Then,
by multiplying v = ¢ and v = 0}, + ¢; and also « = ¢’ and
v =0, using (4), the coordinates of 7 are obtained.
Substituting these in above, the following is derived

Dy =0y(Py+ys+uys+1)+04(Py +yr+ys +ys + 1)
+ 0 (yr+ya+ e+ +1) +0(yr +ys +ya +y2+ 1),
(29)

131123 =0(ys +ys +y1) +0(Pr + 92 +yo+ 1)

(30)
+ 0 (Py +ys +y2 + 1) + 04(Py + Y6 +ya + 1)

Then, using subexpression sharing for (29) and (30), one
can obtain (13) and (14) and the proof is complete. O
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