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Abstract

Telecommunication and grid computing applications demand high band-

width data channels that offer guarantees with respect to service availabil-

ity. Such applications include: remote surgery, remote experimentation,

video on-demand (VOD), teleconferencing, and bulk transfers. Further-

more, by forecasting traffic patterns internet service providers (ISP) at-

tempt to optimize network resources in order to lower operational costs

during peak periods of bandwidth consumption. Advance reservation for

wavelength division multiplexed (WDM) networks can address some of

these issues by reserving high volume communication channels (i.e., light-

paths) beforehand. In this paper we develop a mathematical model to

solve the problem of scheduling lightpaths in advance. The optimal so-

lution is presented as a mixed integer linear program (MILP) with the

assumption that all traffic is static and the network is centrally controlled.

Furthermore we have developed two novel meta-heuristics based on: 1) a

greedy implementation (local search), and 2) simulated annealing (SA).

The meta-heuristics have shown to produce good approximate solutions

in a reasonable amount of time.
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1 Introduction

Researchers in the fields of computer science and engineering envision

grid computing as the future of real-time parallel and distributed computing.

Supporting multiple regions of a country with additional reserves of electric-

ity, a power grid is an ideal analogy for a grid network. A grid network can

provide supplementary services that include, but are not limited to, data repos-

itories, processing power, and network bandwidth. Historically the advance-

ments made in grid computing technology have been driven primarily by the

e-Science community. The definition of e-Science is generally described as a glob-

ally distributed collaboration for scientific computing enabled by the Internet

[1]. Grid networks for e-Science have been established in numerous locations in

North America and Europe with each being dependent on long distance back-

haul communication links for information and resource sharing. With a goal

of producing over 15 Petabytes of data per year to be accessed and analyzed

globally, the Large Hadron Collider (LHC) Computing Grid Project, aims to

build and maintain a data storage and analysis infrastructure for the worlds

largest physics laboratory, the European Organization for Nuclear Research

(CERN) [2]. A working example of a grid infrastructure, in this case linking

three US based test-bed projects, is the Biomedical Informatics Research Net-

work (BIRN). BIRN allows national collaborations in biomedical engineering

[3], allowing the transfer of information and test-results between the engineers

involved in their respective projects. Another functional grid community is the

George E. Brown Network for Earthquake Engineering and Simulation (NEES)

[9] program. Composed of a diverse group of individuals and organizations,

NEES has a mandate to study the effects of impact and aftermath of seismic

events on common societal structures such as buildings, bridges, roads, etc.

Due to the enormous volumes of data generated by e-Science applications

(i.e., Terabytes and even Petabytes), efficient transportation between end-users

over a shared network becomes a complex problem. For example, today a Ter-
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abyte file would require the use of a postal courier service for the timely delivery

of its electronic data. This of course is due to a lack of quality of service (QoS)

in the public Internet’s best effort service model. Turning the attention towards

a more business-oriented example, in 2002 the movie industry created the first

specifications for digital cinema. It is expected that these specifications will

inspire theatres to also go “all digital” (i.e., digital projectors). Unfortunately

the transportation and distribution infrastructure of how a digital movie gets

from the film studio to a local theatre is still under debate [21].

In this paper, we address the problem of static lightpath establishment

(SLE) for connection requests that are made in advance. With SLE, all con-

nection requests are known ahead of time and the RWA problem is performed

offline [22]. Furthermore, the original SLE problem assumes that all connection

requests are reserved and established on the same date and last for an unde-

termined length of time. However, since a WDM network can be considered a

semi-dynamic system when future traffic demands are predictable (i.e., light-

path reservations provide a lifespan) the original SLE problem will not be able

to efficiently optimize network resources. Therefore, we extend the original SLE

problem, so that requests specify not only a source and destination but also a

start time and duration. From now on we will refer to this new problem as

the advance reservation static lightpath establishment (ARSLE) problem. It

is our aim that the ARSLE problem will address network connectivity issues

for grid applications that demand a high bandwidth connection between grid

resources which use advance and/or co-allocation reservation services. For this

research, we assume there are two independent levels of scheduling. While the

first level schedules resources at the network layer (e.g., lightpaths), the second

level schedules the end devices required by grid applications (e.g. supercom-

puters). We further assume that both the application layer and the network

layer have independent scheduling mechanisms and therefore scheduling on ei-

ther layer is not performed concurrently. Since machine scheduling is a topic

that is beyond the scope of this paper, our intent is to solely focus on scheduling
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at the network layer. However, this does not mean that solving the duel net-

work/machine scheduling problem is infeasible, simply that the solution requires

additional knowledge regarding constraints such as device capacity and applica-

tion availability. These issues will of course add more overhead to any solution

as well as significantly increase the overall complexity of such a problem.

The rest of this paper is organized as follows. Section 2 presents an

overview of the literature related to this work. Section 3 formally describes

the ARSLE problem and provides a new MILP to solve the problem optimally.

Section 4 provides a simple example problem for the purpose of explaining the

MILP. Section 5 describes the meta-heuristics and algorithms used to find a

good approximate solution to the ARSLE problem. Finally, Section 6 evaluates

the performance of the meta-heuristics and the optimal solution, and Section 7

summarizes the work.

2 Literature Review

Allocating the resources of an optical network in advance is actually a

special case of the static lightpath establishment (SLE) problem [15]. SLE is a

dual problem: 1) a network design problem in which the objective is to minimize

the number of lightpaths that pass through a particular link at any given time

(i.e., minimize congestion); and 2) a network operation problem of maximizing

the number of established connections for a fixed number of wavelengths. An

integer linear program (ILP) for the original SLE problem has been formulated

and shown to be NP-complete in [22] and [15]. For the design problem of

minimizing the number of wavelengths needed to support a set of lightpaths,

Wang et al. proposed a tabu search (TS) algorithm in [20], while Banerjee and

Sharan use an evolutionary algorithm in [5] to generate an approximate solution.

Since SLE will allocate network resources to start at time zero and last for

an indefinite period of time, connection requests only need to specify a source

and destination. However, to apply advance reservation techniques, researchers
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have had to fix both a start time and duration to each connection request. This

type of advance reservation problem for SLE is presented by Kuri et al. in [14]

and [13] by presenting the idea of scheduled lightpath demands (SLDs). In [14]

the authors formulate a mathematical model to find the optimal solution that

minimizes wavelength usage for SLD in a WDM network. Furthermore, they also

propose a simulated annealing (SA) and tabu search (TS) algorithm to find good

approximate solutions for minimizing congested links. The authors of [16] also

focus on SLD by proposing two unique algorithms, namely the independent sets

algorithm (ISA) and the time window algorithm (TWA). These two algorithms

are based on circular arc graph theory, where prior to routing the SLDs are

divided into subsets of the time disjoint demands with the ISA, while TWA

divides the SLDs into groups of time-overlapping demands.

There are some grid applications, e.g., bulk transfers, that may know in

advance when and where data needs to be transmitted, but are flexible regarding

the exact start time. These types of advance reservation network problems are

interesting because they can be treated as standard scheduling problems, where

the goal may be to minimize either the average completion time or the tardiness

of a requested bulk transfer. Chen and Lee in [7] discuss flexible start times

for advance reservation scheduling by attempting to optimize network resources

through the release and reconfiguration of candidate reservations in a video

on-demand (VOD) system. In a similar fashion, the authors of [8] propose an

algorithm for scheduling advance reservations with laxities in grid networks.

In this case the laxity of task or job is defined as “the difference between its

deadline and the time at which it would finish executing on that resource if it

starts executing at its start time” [8]. Smith et al. also study advance reservation

scheduling in [17] by analyzing the performance of different job types, e.g., jobs

that can and cannot be restarted.
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3 Problem Formulation

In this section, we describe the ARSLE problem in a formal manner by

explaining its objective while introducing the notation used to solve the opti-

mal solution. The ARSLE problem is a scheduling problem which attempts to

minimize the average tardiness (i.e., delay) of all advance connection requests.

Scheduling is performed on an optical network by efficiently allocating connec-

tion requests that specify a source, destination, requested service time (RST),

and duration. In this case, the start time of each request is a variable that is

greater or equal to its RST. To solve the optimal solution for the ARSLE prob-

lem, we use mathematical modeling to formulate a mixed integer linear program

(MILP). It should be noted that the techniques used to formulate the optimal

solution have been influenced by the mathematical models developed in [19] and

[15], respectively. Here, it should be noted that in [19], the authors formulate

a MILP to minimize the weighted completion time a set of jobs will require

when scheduled to machines within a manufacturing system, while the ILP in

[15] maximizes the number of established connections that can be handled in an

optical network. By utilizing both formulations together, the former provides

the means to prevent connection requests from overlapping in time, while the

latter addresses routing and wavelength assignment constraints.

3.1 Notation

We now define the notation used to formulate the MILP proposed to

minimize the average tardiness of a connection request. It is assumed that the

following parameters are given:

• J is the set of jobs (i.e., the set of connection requests).

• L is the set of links.

• W is the set of wavelengths.

• rj is the requested service time (RST) of job j.
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• dj is the duration of job j.

• h is a very large number.

• aj,p =





1, if path p is an alternate path for job j

0, otherwise.

• bl,p =





1, if link l is on path p

0, otherwise.

3.2 MILP Formulation

The mixed integer linear program is now defined as follows:

Minimze:

∑
j∈J

(Sj−rj)

|J| (1)

Subject to the following constraints:

Sj ≥ rj , ∀j ∈ J (2)

∑

p∈P

(dj · bl,p ·Xj,p,w + h · bl,p ·Xj,p,w + h · bl,p ·Xk,p,w)

+ Sj − Sk + h · Yj,k ≤ 3h, ∀j ∈ J,∀k ∈ J, j 6= k,∀l ∈ L,∀w ∈ W (3)

Yj,k + Yk,j = 1, ∀j ∈ J,∀k ∈ J, j 6= k (4)

∑

p∈P,w∈W

Xj,p,w · aj,p = 1, ∀j ∈ J (5)

Xj,p,w ∈ {0, 1}, ∀j ∈ J,∀p ∈ P,∀w ∈ W (6)

Yj,k ∈ {0, 1}, ∀j ∈ J,∀k ∈ J, j 6= k (7)

rj ≥ 0, ∀j ∈ J (8)
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Sj ≥ 0, ∀j ∈ J (9)

The objective function (1) minimizes the average tardiness of a connection re-

quest. Constraint (2) ensures that a connection request does not start before its

release time. The set of constraints (3) and (4) ensure that at most one request

can be scheduled on a certain link and wavelength at a time. Constraint (5) says

one request can only be scheduled on one wavelength and on one path and en-

sures that a request can only be scheduled on one of its alternate paths. While

expressions (6) and (7) are binary constraints, Equations (8) and (9) specify

non-negative values.

4 Example Problem

In this section, we present a simple example for the purpose of explaining

and understanding the solution provided by the MILP presented in Section 2.

The following example was solved using ILOG CPLEX version 9.1 by converting

the MILP into an AMPL (A Modeling Language for Mathematical Program-

ming) [10] script. First consider the small bidirectional network in Fig. 1 and

the set of connection requests in Table 1. The table provides both the source

and destination of each connection request as well as its RST and duration.

Furthermore, it should be assumed there are 2 wavelengths per link.

Table 1: Connection Requests for Example Problem
Jobj Sourcej Destinationj RSTj Durationj

J1 B A 0 3
J2 A B 0 6
J3 C A 4 4
J4 B C 3 3
J5 C A 2 5
J6 A B 5 2
J7 C A 3 7
J8 B A 0 6

The objective of the ARSLE problem is to minimize the average tardiness
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Figure 1: Network Topology for Example Problem

Table 2: Route and Wavelength Assignments Solved by MILP
Jobj Pathj Wavelengthj Start Timej Delayj

J1 2(B-C-A) 1 0 0
J2 1(A-B) 1 0 0
J3 4(C-B-A) 1 6 2
J4 5(B-C) 2 3 0
J5 3(C-A) 2 2 0
J6 1(A-B) 2 6 1
J7 3(C-A) 1 3 0
J8 1(B-A) 2 0 0

of a connection request. Using the topology from Fig. 1 with the set of input

parameters in Table 1, the MILP returns an objective of 0.375, which means

that on average each request will experience a delay in service of 0.375 time

units. While Table 2 lists the lightpath assignments with start times and delay

in tabular form, Fig. 2 illustrates the schedule of each link over time.

5 Approximate Solutions Using Meta-heuristics

In this section, we propose using meta-heuristics to solve the advance

reservation static lightpath establishment problem. Meta-heuristics can be de-
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Figure 2: Visualized Link Schedule Solved by the MILP

scribed in general terms as a set of strategies that guide subordinate heuristics

in such a way to produce good quality solutions [6]. Typically, meta-heuristics

are applied to combinatorial optimization problems that are considered expo-

nentially complex. Usually the optimal solution of an exponentially complex

problem cannot be found in a reasonable amount of time when the data set

is very large. However, it is common practice to use meta-heuristics that find

good approximate solutions in a realistic amount of time, albeit there is no

guarantee on optimality. In this work, we have chosen to study the impact sim-

ulated annealing (SA) will have on the ARSLE problem. Although there are

a number of alternate meta-heuristics that may also be suitable for this prob-

lem, we have elected to examine SA since there is extensive literature written

about its method [18, 4]. This paper should not reflect an exhaustive study on

meta-heuristics with respect to the ARSLE problem.

5.1 Greedy Advance RWA Algorithm

The greedy advance routing and wavelength assignment algorithm (GARWA)

is a local search on the ARSLE problem, i.e., at each stage of the algorithm the

local optimum is found. The GARWA algorithm considers a set of requests in

any arbitrary order, where each request specifies a source, destination, RST, and
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duration. When solving the ARSLE problem, the algorithm simply performs

routing and wavelength assignment for k-shortest paths with w wavelengths per

link in a sequential manner (i.e., it schedules each request one after another

without regard for requests that exist further down the list). In this way, the

algorithm will find a set of earliest start times corresponding to every path and

wavelength combination for each request. The algorithm will then assign the

request to the path and wavelength combination with the minimum start time

in that set. It should be noted that this algorithm follows the wavelength conti-

nuity constraint, which specifies that a lightpath must use the same wavelength

along all links of its route. This method of search will favour requests that are

shorter in length (i.e., number of hops) from source to destination because on

average fewer resources will be used when compared to requests that traverse

many hops. Therefore, one could intuitively assume that this method would

also favour requests which have shorter durations over those with longer ones.

We present the pseudocode for the greedy ARWA algorithm is Appendix A.1.

5.2 Simulated Annealing

Simulated annealing was first suggested as a meta-heuristic algorithm for

solving combinatorial optimization problems by Kirkpatrick et al. in [12]. The

algorithm is based on a natural process involving the cooling of liquid solids

in states of higher energy to crystalline lattices of minimal energy. In this

way, during periods where the temperature is very high, the particles of a solid

will drastically rearrange themselves and wander randomly through states of

higher energy but, during cooler periods the particles will only make moderate

changes. SA is advantageous over many iterative algorithms because it avoids

being trapped within local minima by probabilistically moving to worse config-

urations by means of an acceptance rule which is governed by the Metropolis

criterion. The Metropolis criterion specifies a nonzero probability of switching

to a configuration with a higher cost and is defined in pseudocode as follows: if

∆Ci,j ≤ 0 then accept configuration change, else if exp(−∆Ci,j/c) > rand(0, 1]
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then accept configuration change. In the definition of the Metropolis criterion,

C is the cost of a configuration and c is a control parameter, which are analo-

gous to energy and temperature, respectively [18]. Appendix A.2 provides the

pseudocode for the general simulated annealing algorithm.

To adapt SA to a new combinatorial optimization problem, it is necessary

to develop the following three mechanisms: 1) a cost or objective function, 2) a

perturbation function, and 3) a cooling schedule.

1) The cost function of ARSLE has been discussed in Section 3. To reiterate:

the cost function is simply the objective of the problem. Therefore the

cost function that minimizes the average tardiness of a request is given by

Equation (1).

2) The perturbation or generation procedure is a device for making transitions

from one state to another. The perturbation is more formally defined such

that configuration i can generate configuration j by randomly exchanging

an element in configuration i with one from the neighbourhood of i [18].

The perturbation procedure for our problem is as follows: First, choose

at random job j from the set J . Next, perform the GARWA algorithm

for only job j. Finally, update the start time, path, and wavelength of

job j to the next earliest start time such that the new path/wavelength

combination for this job is not the same as its predecessor.

3) The final mechanism is the cooling schedule, which is broken up into four

parts, namely: an initial temperature, a final temperature, the length of

the Markov chain, and a decrementing rule. While the initial and final

temperatures are trivial conceptually, the length of the Markov chain and

the decrementing rule are a bit more involved. The length of the Markov

chain is simply the number of configurations or solutions the problem

will explore at any given temperature, the reader is referred to [18, 4],

for an in depth analysis of Markov chains. Furthermore, the decrement

rule is simply how the temperature decreases. In many instances the
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decrement rule is a negative exponential process. For our purposes, we

will evaluate two cooling schedules which have previously appeared in the

literature. The first cooling schedule is based on what is referred to as a

simple implementation as described in [18], while the second, proposed by

Huang et al. in [11] is considered more elaborate. We have made only one

modification to the cooling schedules. In both cases, the schedules use the

following decrement rule

ck+1 = αk · ck, k = 0, 1, 2 . . . (10)

Finally, it should be noted that to effectively implement the simple an-

nealing schedule, it is necessary to describe the size of the problem. We

have defined the size of the ARSLE problem by

N = |W | · |J | · p, (11)

where W is the set of wavelengths, J is the set of requests or jobs, and p

is the maximum number of alternate paths allowed per request.

6 Numerical Results

The evaluation section is broken into two parts. In the first part it is our

intention to compare the performance of the proposed meta-heuristics with that

of the MILP (i.e., the optimal solution) on a small network. It is necessary to

evaluate the MILP using a network topology with only a few nodes and a small

number of connection requests since the time to compute the optimal solution

will drastically increase with size of the problem (e.g., nodes, requests, wave-

lengths, etc.). The second part of the evaluation analyzes the meta-heuristics on

a larger scale by contrasting the performance results of each scheduling model

using the NSFNET topology with additional wavelengths and more connection

requests. Both SA heuristics, as well as the GARWA algorithm, were imple-
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mented in C++. The MILP was written in AMPL syntax and solved using

ILOG CPLEX version 9.1. All tests were performed on a desktop PC with a

Pentium 4 3GHz processor and 2GB RAM running Windows XP.

6.1 Small Problem Size

The network topology used in these simulations is a small hypothetical

campus-to-campus optical network depicted in Fig. 3. It is assumed that each

link is bidirectional and equipped with 2 wavelengths. For each request, our traf-

fic model generates source and destination pairs that are uniformly distributed

among all nodes. Source and destination pairs will also have 2 alternate paths to

choose from. To the best of our knowledge there is no distribution curve which

can effectively represent advance reservation traffic, therefore the requested ser-

vice time of a request is uniformly distributed between 0 and some maximum

window size. In these simulations the window size is assumed to be a length

of 60 minutes. Furthermore, each request is accompanied by a holding time

that follows an exponential process where the average holding time 1/µ = 30

minutes. Finally, the number of consecutive Markov chains with no change in

cost (simple annealing schedule) is calculated as 1% of N (i.e., the problem

size). Using each of the previously discussed solution methods, the average tar-

UWO

Waterloo

McMaster

Toronto

Figure 3: Hypothetical Campus-to-Campus Optical Network
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diness with respect to the number of requests is shown in Fig. 4. The graph

shows that the average tardiness experienced by a request will increase with

the number of requests. Of course this would be anticipated since more con-

nection requests would increase the service delay. It can be seen in the graph

that both SA schedules consistently outperform the GARWA algorithm but fail

to reach the optimal solution. This is expected since SA gives no guarantee

on optimality, but should be able to find good approximate solutions that are

better than local searches such as greedy algorithms. We refer the reader to
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Figure 4: Average Tardiness for Small Problem

Table 3 and Table 4 for a more detailed statistical comparison of each method

when the number of requests is 30 and 50, respectively. From the tables it is

clear there is a significant increase in computation (solve) time when solving

for the optimal solution. Therefore we can conclude that the time required to

produce an approximate solution is negligible compared to solving the optimal

solution. It should be noted that the results when using the GARWA heuristic

have been omitted from the table because the solve times are in the order of

microseconds. Finally, Fig. 5 (a) and (b) show the probability density function

in terms of tardiness experienced per request for each of the proposed solution

methods.

6.2 Large Problem Size

The network topology used in these simulations is the 16 node nation-

wide network NSFNET (Fig. 6). It should be assumed that each of the 25
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Table 3: Solution Comparison with 30 Requests

Method Avg. Solve
Time (sec)

Average Tardiness (min)

Min Max Std Mean

GARWA N/A 15.01 33.12 6.58 22.79
Simple 0.022 10.01 27.66 6.76 18.52

Elaborate 0.106 8.37 24.06 4.79 15.14
MILP 3668.7 4.55 23.69 5.68 11.59

Table 4: Solution Comparison with 50 Requests

Method Avg. Solve
Time (sec)

Average Tardiness (min)

Min Max Std Mean

GARWA N/A 33.24 58.41 8.03 46.21
Simple 0.045 32.07 51.29 6.61 41.81

Elaborate 0.322 18.11 42.12 7.07 31.98
MILP 8804.7 15.41 33.32 5.50 27.65

links in NSFNET is bidirectional and is equipped with 8 wavelengths. In these

simulations the maximum window size is increased to a length of 180 minutes.

Furthermore, the maximum number of alternate paths per source and destina-

tion pair is increased to 5. Again, the source and destination of each request is

generated randomly and uniformly distributed among all nodes. As well as each

request is accompanied by a holding time that follows an exponential process

where the average holding time 1/µ = 30 minutes. Finally, we also calculate

the number of consecutive Markov chains with no change in cost (simple an-

nealing schedule) as 1% of N (i.e., the problem size). Since it was shown in the

previous section that solving for the optimal solution can be very expensive in

terms of time, it will not be desirable to attempt to solve a problem with many

nodes and many requests. Therefore it is our intent in this section to com-

pare the performance of only the proposed meta-heuristics. Fig. 7 (a) shows

that average tardiness with respect to the number of requests for each meta-

heuristic. Again, it is evident that the elaborate annealing schedule produces

superior results. However, as we can see in Fig. 7 (b), by choosing to employ

the elaborate schedule we must incur a significant cost in time. This cost can

be attributed to the nature of the final temperature. The final temperature for
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Figure 5: Probability Density Function for Small Problem

the simple schedule is determined by failing to improve on the current solution

over some fixed number of Markov chains. In contrast, the elaborate schedule

uses a variable number of Markov chains while it attempts to place the solution

into steady state equilibrium. Finally, the probability density function in terms

of delay (tardiness) experienced by a request is illustrated in Fig. 8 (a) and (b)

when the number of requests is 300 and 500, respectively.

7 Conclusion

A new combinatorial optimization problem referred to as the advance

reservation static lightpath establishment (ARSLE) problem has been presented.

ARSLE is a scheduling problem which minimizes the average tardiness of re-

quests. We have presented a new mixed integer linear program (MILP) to solve

the ARSLE problem optimally. However, since the time to compute the opti-

mal solution increases exponentially, we have proposed heuristics based on SA

to solve good approximate solutions. Furthermore, we proposed two SA sched-
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Figure 6: Nationwide Backbone Network Topology NSFNET

ules based on what the literature views as: 1) a simple schedule, and 2) an

elaborate schedule. Through experimental results, it was shown that although

the elaborate schedule generated solutions of better quality, the simple schedule

converged on an approximate solution faster.

This paper primarily focused on the meta-heuristic referred to as simu-

lated annealing (SA). However, there is actually a wide range of different meta-

heuristics with a variety of solution strategies. Some include but are not limited

to: tabu search (TS), genetic algorithms (GAs), and evolutionary algorithms

(EAs). Therefore, we would recommend that future works in this area consider

some of these alternative solution methods for the ARSLE problem as one may

prove to be better than another.

In this work, the problem specifies that all advance connection requests

are scheduled at one time. However, this problem may not address the entire

spectrum of applications. For instance, in many cases, wide area networks may

want to only reconfigure connections (i.e., lightpaths) on a per request bases

instead of all at the same time. Therefore, we would like to propose that future

work take a slightly different angle on this problem by only minimizing the

tardiness of a single or new request. In this new problem, requests may now
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Figure 7: Average Tardiness and Solve Time for Large Problem

arrive dynamically, and the current state of the network is updated such that

all reservations retain their reserved start time, but may change paths and/or

wavelengths such that the tardiness of the new advance connection request is

minimized.

Obviously the ARSLE problem only addresses lightpaths, i.e., optical

connections that utilize the entire bandwidth of a wavelength channel across the

network. Since the motivation for this work was to address applications with

high bandwidth demands, it was intuitive to assume the use of optical networks

for the communication technology. However, it could be expected that there

will also be a demand for advance connection requests that would only require a

fraction of the communication channel. It is therefore our intent to expand this

research to encompass the MPLS framework. This of course would mandate

the addition of a bandwidth parameter to each advance connection request so

that both quality of service and efficiency is maintained while scheduling traffic

engineered tunnels.
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Figure 8: Probability Density Function for Large Problem

A Appendix

A.1 Greedy ARWA Pseudocode

In the pseudocode to follow, it should be assumed that the functions

ISINTERSECTING and ISOVERLAPPING will return true if two separate

paths use a common link and if two requests overlap in time, respectively.

1: for r = 1 to RequestCount do
2: for p = 1 to r.AlternatePathCount do
3: for w = 1 to WavelengthCount do
4: r.StartT imes[p][w] = r.ReleaseT ime;
5: StartT imeUpdate = true;
6: while StartT imeUpdate = true do
7: TempStartT ime = r.StartT imes[p][w];
8: for all i such that i is a reserved request do
9: if ISINTERSECTING(r.AltPathSet[p], i.PathId)

and r.Id 6= i.Id and w = r.Wavelength
and ISOVERLAPPING(r, i, r.StartT imes[p][w]) then

10: r.StartT imes[p][w] = i.StartT ime + i.Duration;
11: end if
12: end for
13: if TempStartT ime = r.StartT imes[p][w] then

20



14: StartT imeUpdate = false;
15: else
16: TempStartT ime = r.StartT imes[p][w];
17: end if
18: end while
19: end for
20: end for
21: BestStartT ime = r.StartT imes[1][1];
22: BestPathIndex = 1;
23: BestWavelength = 1;
24: for p = 1 to r.AlternatePathCount do
25: for w = 1 to WavelengthCount do
26: if StartT imes[p][w] < BestStartT ime then
27: BestStartT ime = StartT imes[p][w];
28: BestPathIndex = p;
29: BestWavelength = w;
30: end if
31: end for
32: end for
33: r.Wavelength = BestWavelength;
34: r.PathId = r.AltPathSet[BestPathIndex];
35: r.Reserved;
36: end for

A.2 General Simulated Annealing Pseudocode

For the readers benefit, the generalized simulated annealing algorithm,

compiled from [18, 4], is now provided in pseudocode.

1: k = 0;
2: Sc = initial solution;
3: Sb = Sc;
4: ck = initial temperature;
5: while stopping criteria is not true do
6: Sn = PERTURB(Sc);
7: if C(Sn)− C(Sc) ≤ 0 then
8: accept neighbour solution;
9: else if exp(−[C(Sn)− C(Sc)]/c) < rand[0, 1) then

10: accept neighbour solution;
11: end if
12: if C(Sn) < C(Sb) then
13: Sb = Sn;
14: end if
15: ck+1 = DECREMENTRULE(ck);
16: k = k + 1;
17: end while
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