
Multiobjective optimization of an industrial styrene reactor

Amy K.Y. Yee, Ajay K. Ray, G.P. Rangaiah �
Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

Received 20 July 2001; received in revised form 16 May 2002; accepted 5 August 2002

Abstract

The paper describes a multiobjective optimization study for industrial styrene reactors using non-dominated sorting genetic

algorithm (NSGA). Several two- and three- objective functions, namely, production, yield and selectivity of styrene, are considered

for adiabatic as well as steam-injected styrene reactors. Pareto optimal (a set of equally good) solutions are obtained due to

conflicting effect of either ethyl benzene feed temperature or flow rate. The results provide extensive range of optimal operating

conditions, from which a suitable operating point can be selected based on the specific requirements in the plant.

# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Styrene is one of the most important monomers

produced worldwide, and finds major use in the

production of polystyrene, acrylonitrile�/butadiene�/sty-

rene resins (ABS), and a variety of miscellaneous

polymers in the petrochemical industry (Li & Hubbell,

1982; Chen, 1992; Denis & Castor, 1992). In US, it ranks

fourth in the most manufactured monomer behind

ethylene, vinyl chloride and propylene (Chen, 1992).

Styrene is produced commercially by catalytic dehydro-

genation of ethyl benzene, and the average plant

capacity is over 100 000 tons per year. Therefore, the

investment cost is very high, and even a small improve-

ment in the plant operation can generate significant

revenue. Hence, optimal design and operation of the

styrene reactor are required, as it is the critical equip-

ment in styrene manufacturing process.

Many studies on kinetics, reactor modeling, simula-

tion and optimization of the styrene reactor have been

reported. More than 50 years ago, Wenner and Dybdal

(1948) obtained rate data from experiments for two

types of catalysts. Sheel and Crowe (1969) determined

rate coefficients and heat of reactions from the indus-

trial data of an adiabatic styrene reactor using a pseudo-

homogeneous model. Sheppard, Maier and Caram,

(1986) obtained the best kinetic model by calibrating

several models using catalyst manufacturers’ data. Of

these models, the kinetic model proposed by Sheel and

Crowe (1969) has been widely used (Clough & Ramirez,

1976; Elnashaie, Abdalla & Hughes, 1993; Abdalla,

Elnashaie, Alkhowaiter & Elshishini, 1994; Savoretti,

Borio, Bucalá & Porras, 1999). Pseudo-homogeneous

model had been used by most researchers for simulation

and optimization of industrial reactors (Sheel & Crowe,

1969; Clough & Ramirez, 1976; Sheppard et al., 1986;

Elnashaie & Elshishini, 1994; Savoretti et al., 1999).

Elnashaie et al. (1993) developed a rigorous heteroge-

neous model based on dusty gas model. They used the

model to extract intrinsic kinetic data from industrial

data iteratively. In another paper, Abdalla et al. (1994)

reported intrinsic kinetics for three promoted iron oxide

catalysts using the pseudo-homogeneous and heteroge-

neous model, and compared the performance of these

catalysts.

There had been several studies on optimization of the

styrene reactor but involving single objective function

only. Sheel and Crowe (1969), Clough and Ramirez

(1976) performed multivariable optimization on both

adiabatic and steam-injected reactor to maximize a

profit function. For adiabatic reactor, the former study

selected steam temperature, steam flow rate and reactor

length as the decision variables whereas Clough and
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Nomenclature

A frequency factor (�/); cross-sectional area of reactor (m2)
C molar concentration (kmol/m3)
Cp molar heat capacity (kJ/kmol per K)
D diameter (m)
E activation energy (kJ/kmol)
F molar flow rate (kmol/h)
G mass velocity of the gas mixture (kg/m2 per h)
H cost factor ($/kmol)
k reaction rate constant (kmol/kg per h per barn )
K equilibrium rate constant (bar)
L total length of the reactor (m)
N number (�/)
p partial pressure (bar); probability (�/)
P total pressure (bar)
R universal gas constant (8.314 kJ/kmol per K)
r reaction rate (kmol/kg per h)
S selectivity (%)
SOR steam over reactant (ethyl benzene) molar ratio (�/)
T temperature (K)
X conversion (%)
Y yield (%)
Z length of the reactor (m)
Greek symbols
o void fraction (�/)
r density (kg/m3)
m viscosity (kg/m per s)
DH heat of reaction (kJ/kmol)
l fraction of reactor bed where steam is injected (�/)
d fraction of steam distributed (�/)
Subscripts/superscripts

o initial
b bulk
bz benzene
c cross-over
C catalyst
CO carbon monoxide
CO2 carbon dioxide
eb ethyl benzene
eth ethylene
G gas
gen generation
H2 hydrogen
i reaction i

j component j

m mutation
meth methane
p particle
st styrene
steam steam
t total
tol toluene
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Ramirez (1976) chose steam to ethyl benzene ratio, ethyl

benzene pre-heater exit temperature and steam tempera-

ture. For the steam injection case, steam was split into

two fractions with one part introduced at the inlet of the

reactor and the other part introduced at a particular

location of the bed. Both the fraction and the location

where the remaining part was introduced were the two

additional decision variables in the studies of Sheel and

Crowe (1969), Clough and Ramirez (1976). Results of

both these studies indicated that there was improvement

in performance when steam was divided into two

fractions and injected along the reactor length in

addition to the reactor inlet. Subsequently, Clough

and Ramirez (1976) built a pilot plant and verified this

improvement.

Sheppard et al. (1986) employed optimization to

evaluate two types of catalysts: one with a higher

selectivity and another with a higher activity. They

chose profit function as the objective function and two

decision variables, namely, steam to ethyl benzene ratio

and steam inlet temperature, for both adiabatic and

steam-injected reactor. Their study showed that eco-

nomics for the catalyst with a high selectivity were better

than those for the catalyst with a high activity.

Sundaram, Sardina, Fernandez-Baujin and Hildreth,

(1991) developed a simulator with optimization software

incorporated in it for the entire styrene plant. Complex

method of Box (1965) was employed to perform the

optimization with all plant constraints.

Most real world problems involve the simultaneous

optimization of multiple objectives. Solution and results

of these problems are conceptually different from single

objective function problems. In multiobjective optimiza-

tion, there may not exist a solution that is the best with

respect to all objectives. Instead, there could exist an

entire set of optimal solutions that are equally good,

which are known as Pareto-optimal solutions. A Pareto-

optimal set of solutions is such that when we go from

any one point to another in the set, at least one objective

function improves and at least one other worsens. A
recent review on the applications of multiobjective

optimization in chemical engineering (Bhaskar, Gupta

& Ray, 2000) reported several interesting studies on the

multiobjective optimization of chemical reactors and

processes. Early studies used the parametric method or

the o -constraint method to obtain the Pareto-optimal set

of non-dominant solutions. More recently, our group

has carried out multiobjective optimization studies on
steam reformers (Rajesh, Gupta, Rangaiah & Ray,

2000) and hydrogen plant (Rajesh, Gupta, Rangaiah

& Ray, 2001) using Non-dominated Sorting Genetic

Algorithm (NSGA) (Srinivas & Deb, 1995). In the

present work, two and three objective optimizations

were carried out to obtain optimal operating conditions

for both adiabatic and steam-injected styrene reactors.

Suitable kinetic and reactor models were selected from
the open literature for successfully simulating an in-

dustrial styrene reactor, and then multiobjective opti-

mization was carried out using NSGA. To the best of

our knowledge, this is the first attempt to study multi-

objective optimization of an industrial styrene reactor,

and provides a broad range of quantitative results useful

for understanding and optimizing industrial styrene

production.

2. Process description

Fig. 1 shows the simplified flow diagram for the

production of styrene by dehydrogenation of ethyl

benzene (Li & Hubbell, 1982; Chen, 1992; Denis &
Castor, 1992). Fresh ethyl benzene mixed with recycled

ethyl benzene and steam, is preheated using the product

stream from the reactor, and then mixed with the

Fig. 1. Schematic diagram of catalytic dehydrogenation of ethyl benzene.
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superheated steam to reactor inlet temperature of over

875 K before injecting into the fixed bed catalytic
reactor. Superheated steam provides the necessary heat

of reaction, inhibits coke formation and reduces the

partial pressure of styrene and hydrogen to shift the

thermodynamic equilibrium in favor of the styrene

production. Molar ratio of steam to ethyl benzene in

the feed entering the reactor is usually 15. The reactor

effluent is cooled to quench all reactions in several heat

exchangers, and then directed to the separator to recover
styrene.

Six main reactions occurring in the styrene reactor

are:

C6H5CH2CH3XC6H5CHCH2�H2 (1)

C6H5CH2CH3 0 C6H6�C2H4 (2)

C6H5CH2CH3�H2 0 C6H5CH3�CH4 (3)

2H2O�C2H4 0 2CO�4H2 (4)

H2O�CH4 0 CO�3H2 (5)

H2O�CO 0 CO2�H2 (6)

Dehydrogenation of ethyl benzene, C6H5CH2CH3

(Eq. (1)) is an endothermic reversible reaction, and

proceeds with low yield thermally but with high yield

catalytically. As it is an endothermic reaction producing

two moles of product to one mole of reactant, low

pressure and high temperature favor forward reaction

producing styrene, C6H5CHCH2. At equilibrium, the

reversible reaction (Eq. (1)) results in about 80%

conversion of ethyl benzene. However, the time and
temperature necessary to achieve this give rise to

excessive thermal cracking. The competing thermal

reactions (Eqs. (2) and (3)) degrade ethyl benzene to

by-products such as benzene (C6H6) and toluene

(C6H5CH3), and thus reduce styrene yield. As the rate

of formation of by-products increases with temperature,

an optimal operating temperature is necessary to

compromise between conversion of ethyl benzene to
styrene and by-product formation. In addition, a

selective catalyst is desirable to achieve high styrene

yield at low temperature and to minimize side reactions.

3. Reactor model and simulation

For simulating an industrial styrene reactor, Sheel

and Crowe (1969) employed a model assuming a plug

flow reactor, and heat and mass transfer to as well as

diffusion in the catalyst pellet were lumped in the rate

constants. Thus, the model is a pseudo-homogeneous

model. Later, Abdalla et al. (1994) and Elnashaie and

Elshishini (1994) used this model as well as a more

detailed heterogeneous model, which takes into account

diffusion in the catalyst pellet. Predictions by both the

models are comparable. For selecting one of these

models for optimization, we tried both of them for

simulating the industrial adiabatic reactor, whose design

and operating conditions were reported by Sheel and

Crowe (1969). Catalyst activity is considered constant

due to lack of available data, even though it varies with

both time and reactor length. Governing equations for

the pseudo-homogeneous model as well as design and

operating conditions of the reactor are summarized in

Appendix A. All kinetic and property data are taken

from Elnashaie and Elshishini (1994).

The model equations for both pseudo-homogeneous

and heterogeneous models were solved on CRAY J916

supercomputer using IVPRK and NEQNF subprograms of

the IMSL library for solving ordinary differential and

nonlinear algebraic equations, respectively. The IVPRK

subprogram is based on 5th and 6th order methods of

Runge�/Kutta�/Verner for solving ordinary differential

equations, with automatic selection of step size to ensure

accuracy. Both reactor models gave results comparable

to the industrial data as well as to those reported by

Elnashaie and Elshishini (1994). The results for pseudo-

homogeneous model are shown in Table A3. Computa-

tional time for simulating the industrial reactor by

pseudo-homogeneous and heterogeneous models is,

respectively, 0.062 and 1.1 s. Considering the good

accuracy and significantly smaller computational time

for one simulation by the pseudo-homogeneous model,

this model is chosen for the multiobjective optimization

study.

Fig. 2. Two-bed styrene reactor with steam injection partway of the reactor length.
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4. Multiobjective optimization

This study considers optimization of an existing

reactor in a styrene plant. In such a case, reactor
dimensions, available steam temperature and catalyst

data are generally fixed. Two reactor configurations are

considered for multiobjective optimization. The first is

an adiabatic reactor in which the entire steam enters the

reactor along with ethyl benzene stream at the inlet. In

the second reactor configuration (Fig. 2), a fraction (d )

of steam is mixed with ethyl benzene at the reactor inlet

while the remaining steam is injected at a certain point
along the reactor, say, at l fraction of the total reactor

length. Thus for the adiabatic reactor, d is equal to 1

and l (�/0) is not required.

Apart from the profitability as was used by earlier

investigators, other possible objectives for optimizing a

styrene reactor are the amount of styrene produced (Fst),

selectivity of styrene (Sst) and the yield of styrene (Yst).

Maximize J1�Fst (7)

Maximize J2�Sst�
Fst � F o

st

Fo
eb � Feb

(8)

Maximize J3�Yst�
Fst � F o

st

F o
eb

(9)

Since profitability is strongly correlated with Fst and

cost data vary from plant to plant and from time to

time, we have considered combinations of only Yst, Sst

and Fst for two- and three-objective optimization.

For optimizing the operation of an adiabatic reactor,

four decision variables are available. These and their

bounds are:

550BTebB800 K (10)

1BPB2:63 bar (11)

7BSORB20 (12)

27:56BF o
ebB40:56 kmol=h (13)

The lower bound on ethyl benzene feed temperature

(Teb) is chosen as 550 K to ensure that the temperature

of ethyl benzene and steam mixture at the reactor inlet,

T1 (Fig. 2) is not too low for the reaction to occur. The

upper bound on Teb is set at 800 K to prevent

undesirable side reactions before ethyl benzene enters

the reactor (Clough & Ramirez, 1976). The range for the
inlet pressure, P is chosen based on the pressure at

which industrial styrene reactors usually operate. The

lower limit of the steam to ethyl benzene molar ratio,

SOR (steam over reactant), is set at 7 to prevent coke

formation on the catalyst surface and to remove coke

deposits from the catalyst surface thereby regenerating

it. However, if SOR is increased to a very high value, it

will affect the economics of the process as extra energy is
required to produce the excess steam and its subsequent

condensation at the downstream of the reactor. Hence,

it is usual industrial practice to restrict SOR at 20. The

lower and upper bounds for the initial ethyl benzene

flow rate, Feb
o are taken to be �/25 and �/10% of the

nominal value (36.87 kmol/h). These bounds are con-

sistent with industrial practice since a plant can often be
operated at a much lower capacity but not at a much

higher capacity.

In addition to the above four decision variables, two

additional variables (d , fraction of steam used at the

reactor inlet and l , location of the injection port for the

remaining steam expressed as a fraction of the total

reactor length) can also be selected for optimizing

steam-injected reactor.

0:1BdB1 (14)

0:1BlB1 (15)

The lower bound is set at 0.1 instead of 0 to reduce the

search space and thus facilitate optimization. The results

presented later show that optimal d and l are above the
lower limit, and practically the same results were

obtained even with the lower limit of 0. It may or may

not be possible to change l in an existing reactor.

However, this is also considered as the decision variable

in order to consider a more general optimization

problem.

The optimization is subject to three other constraints:

FsteamB454 kmol=h (16)

850BT1B925 K (17)

850BT2B925 K (18)

The constraint on the total steam rate, Fsteam is based

on the size-limitation of the downstream condenser as

even though the furnace can produce more steam at a

lower temperature, the product condenser may not be
able to handle the increased throughput (Sheel &

Crowe, 1969). Note that T1 is the temperature of the

ethyl benzene and steam mixture entering the reactor

inlet (Fig. 2) and T2 is the temperature at z�/lL . The

constraints on the temperatures (Eqs. (17) and (18)) are

based on the minimum temperature required for reac-

tion to take place and the temperature at which catalyst

starts to deactivate (Clough & Ramirez, 1976). Only
Eqs. (16) and (17) are applicable for adiabatic reactor.

All the three equations are for steam-injected reactor.

Optimization programs used in this work are for

minimization of objective functions without constraints

(other than bounds on decision variables). Maximiza-

tion of a function (J) can be converted to a minimiza-

tion problem by using the transformation of I�/1/(1�/

J ) or I�/[1/J ] if J "/0. The constraints in Eqs. (16)�/(18)
are incorporated into each of the objective functions

(Eqs. (7)�/(9)) using penalty functions. The modified

objective functions are:

I1�
1

Fst

�104
X5

i�1

fi (19)
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I2�
1

Sst

�104
X5

i�1

fi (20)

I3�
1

Yst

�104
X5

i�1

fi (21)

where

f1�(Fsteam�454)� ½(Fsteam�454)½ (22)

f2�(850�T1)� ½(850�T1)½ (23)

f3�(T1�925)� ½(T1�925)½ (24)

f4�(850�T2)� ½(850�T2)½ (25)

f5�(T2�925)� ½(T2�925)½ (26)

Table 1

Values of NSGA parameters used in this work

Number of generations, Ngen 100

Population size, Npop 50

Sub-string length coding for each decision variable, l 32

Crossover probability, pc 0.7a

Mutation probability, pm 0.002

Maximum niche count distance, s 0.05a

Exponent in sharing function, a 2.0

Seed for random number generator, Sr 0.75

a In case 3, pc�0.5, s�0.7.

Fig. 3. Results for two-objective optimization (Case 1, maximization of Fst and Sst). (a) Pareto set; and (b�/e) values of decision variables

corresponding to the points shown in (a), �/ indicates industrial operating point.
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Decision variables and their bounds are those shown

in Eqs. (10)�/(15). The resulting optimization problems

are solved using an adapted version of genetic algo-

rithm, referred to as NSGA for multiobjective optimiza-
tion. Genetic algorithms and NSGA are briefly

described in Appendix B. Further details on NSGA

are available elsewhere (Srinivas & Deb, 1995; Bhaskar

et al., 2000). Table 1 shows the values of NSGA

parameters used to obtain the solutions. In the present

study, several different values of these parameters were

tried and best values were then chosen based on

smoothness and spread of the Pareto optimal solution.
These parameters are problem specific and should be

selected properly for a particular problem. It was found

that a slightly different set of NSGA parameters must be

chosen for case 3.

5. Results and discussion

Optimization of the industrial styrene reactor is

studied for the design and operating conditions given

in Table A2 except for the inlet temperature (T1),

namely, 922.59 K which refers to the temperature of

the ethyl benzene and steam mixture. For optimization,

both Teb and SOR are the decision variables, and hence

temperature of the superheated steam is fixed at 1025 K

(Clough & Ramirez, 1976) and T1 is calculated by
energy balance for the chosen values of Teb, SOR and d .

This calculation takes into account some steam (50.4

kmol/h) at Teb in the ethyl benzene feed, consistent with

industrial practice in order to avoid undesirable reac-

tions prior to the reactor. Note that SOR includes this

amount also. An optimization problem that involves

two or more objective functions often give rise to Pareto

set when decision variables act in conflicting manner. A
Pareto set is such that when one moves from one point

to another on the Pareto, at least one objective improves

while at least one other objective worsens. Hence,

neither of the solutions dominates over each other,

and all solutions on the Pareto are equally good. One

has to use additional information to choose an operat-

ing point from among the entire set of equally good

optimal solution for efficient operation. This point is
usually determined by engineer’s experience and require-

ment, and is often site specific.

6. Two-objective optimization

Three cases of two-objective optimization are possible
for the three objectives, namely, maximization of Fst, Sst

and Yst (Eqs. (7)�/(9)). Results for these cases are

discussed below.

6.1. Case 1. Maximization of Fst and Sst

Fig. 3a shows the Pareto optimal set obtained after

100 generations with 50 chromosomes when the two

objective functions considered are Fst and Sst (Eqs. (7)

and (8)). The CPU time to generate the Pareto set was

45 s on a CRAY J916 supercomputer. Each point on the

Pareto set corresponds to a set of decision variables

given in Fig. 3b�/e, where each of these decision

variables is plotted against one of the Objectives, Fst.

Fig. 3b�/e reveal that optimum values for three of the

decision variables (P , SOR and Feb
o ) are nearly constant

and that the Pareto was due to conflicting effect of the

decision variable (Teb), which when increased increases

Fst but decreases Sst. Table 2 compares objective

functions (Fst and Sst), decision variables (Teb, P , SOR

and Feb
o ) and calculated values of Yst for three selected

chromosomes, A, B and C (shown in Fig. 3a). The

conversion, temperature and pressure profiles for the

three chromosomes (A, B and C) are shown in Fig. 4.

Table 2 as well as Fig. 3a reveal that as we move from

point A to point C, Fst increases while Sst decreases

primarily due to increase of Teb from 651.5 to 800 K.

Fig. 3b shows that Teb has a strong opposing effect on

Fst and Sst. High Teb maximizes styrene produced (Fst)

while low Teb maximizes styrene selectivity (Sst). This is

due to the fact that the main reaction (Eq. (1)) is a

reversible endothermic reaction. Temperature decreases

along the length of the reactor, and, therefore, high

temperature is required to achieve high conversion of

ethyl benzene to styrene. This is shown in Fig. 4 where

higher temperature profile for chromosome C results in

higher values of Yst (which is related to conversion)

when compared with chromosome A. However, high

temperature promotes thermal cracking leading to a

decrease in the styrene selectivity. The optimal results

also show that the decision variable, Feb
o (Fig. 3e), hits

the upper bound while moderately low SOR is chosen

for optimal operation. It is obvious that high reactant

flow rate will produce more styrene. High SOR is

Table 2

Operating conditions and objective function (case 1) values corre-

sponding to chromosomes A, B and C shown in Fig. 3a

Parameter Chromosome A Chromosome B Chromosome C

Fst (kmol/h) 8.45 11.04 15.01

Sst (%) 94.86 92.69 87.51

Teb (K) 651.53 713.52 799.98

P (bar) 1.84 1.84 2.03

SOR (�) 10.74 10.69 10.94

Feb
o (kmol/h) 38.63 40.31 40.47

Yst (%) 21.88 27.38 35.26

Fbz (kmol/h) 0.24 0.50 1.25

Ftol (kmol/h) 0.22 0.37 0.90

Profit ($ per h) 330 467 673
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preferred for styrene operation as it shifts reaction 1 to

the forward direction. However, the optimal SOR did

not hit the upper bound as the constraint on total steam

flow rate (�/454 kmol/h) restricted the optimal SOR

value.
A profit function can be used as a guideline to select

an operating point from the Pareto set. For this

purpose, a simplified profit function is defined as:

Profit�Revenue by selling styrene and byproducts

�ethyl benzene cost�steam cost

�FstHst�FbzHbz�FtolHtol� [Fo
eb�Feb]Heb

�FsteamHsteam (27)

where, Hst is the cost of styrene (�/$103/kmol), Hbz is

the cost of benzene (�/$30.8/kmol), Htol is the cost of

toluene (�/$33.9/kmol), Heb is the cost of ethyl benzene

(�/$45.6/kmol) and Hsteam is the cost of superheated

steam (�/$0.36/kmol). The price of styrene, ethyl

benzene, benzene and toluene are based on recent (April

2001) published prices from on-line Purchasing maga-
zine (http://www.purchasing.com). The above profit

function and cost coefficients just serve as a guideline

as these prices vary with time. Also, note that the profit

function defined in Eq. (27) does not include operating

cost (except cost of ethyl benzene and steam) such as

separation costs involved in separation of by-products

(benzene and toluene) from styrene and unconverted

reactant.
Using the profit function in Eq. (27), profit for the

three chromosomes is compared in Table 2. The

maximum profit of $673 per h is obtained for chromo-

some C for which Fst is 15.01 kmol/h and Sst is 87.51%.

This is marginally better than industrial operating point

(Sheel & Crowe, 1969; Elnashaie et al., 1993) shown by

�/ in Fig. 3a. It can be seen that the industrial operating

point (with Fst�/14.9 kmol/h, Sst�/85.15% and profit of
$651 per h) lies slightly below the Pareto. Hence,

operating the styrene reactor corresponding to chromo-

some C, improves not only the profit by about 4% but

also selectivity by more than 2%. Nevertheless, the

Pareto obtained by the two-objective optimization

(Fig. 3a) provides a set of optimal solutions and some

of these are better if one wants to produce styrene with

higher selectivity. High selective production will also
reduce operating costs as cost of separation of by-

products from styrene will be low, which has not been

included in the profit function Eq. (27).

Fig. 4. Conversion, temperature and pressure profiles corresponding

to chromosomes A, B and C and industrial operating point shown in

Fig. 3a. (Case 1: maximization of Fst and Sst).

Fig. 5. Effect of the penalty coefficient in the objective functions (Eqs.

(19)�/(21)) and catalyst activity on the Pareto for the adiabatic reactor.

A.K.Y. Yee et al. / Computers and Chemical Engineering 27 (2003) 111�/130118
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It can be seen from the results in Fig. 5 for three

values of the penalty coefficient in Eqs. (19)�/(21), that

penalty value in the range considered has negligible

effect on the Pareto. This is probably due to use of only

objective function values (and not its derivatives) and a

fitness function in GA. Fig. 5 also shows the effect of

catalyst activity, which could deteriorate over a period

of time. To simulate this, values of frequency factor (Ai)

in Table A1 are multiplied by 0.8. This reduction in

catalyst activity decreases optimal selectivity by about

1% for the same value of Fst.

6.2. Case 2. Maximization of Sst and Yst

In this case, simultaneous maximization of Sst and Yst

(Eqs. (8) and (9)) is considered with the same set of

decision variables with bounds (Eqs. (10)�/(13)) and

constraints (Eqs. (16)�/(18)). Pareto and corresponding

decision variables (Fig. 6a�/e) reveal that once again Teb

has opposing effect on the objective functions while the

other three decision variables are nearly constant. This is

similar to the observation discussed earlier for case 1.

However, optimal value of Feb
o is at the lower bound in

Fig. 6. Results for two-objective optimization (Case 2, maximization of Sst and Yst). (a) Pareto set; and (b�/e) values of decision variables

corresponding to the points shown in (a), �/ indicates industrial operating point.
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case 2 compared with case 1 where optimal Feb
o was at

the upper bound. This is expected as maximization of

Yst, is one of the objective functions in case 2, low

reactant flow rate is selected to achieve higher styrene

yield. Comparing the industrial data and the results

obtained in case 2, it is found that the Pareto set

obtained is better than the industrial operating point
(Fig. 6a).

6.3. Case 3. Maximization of Fst and Yst

Fig. 7a�/e show the Pareto and corresponding deci-

sion variables when Fst and Yst (Eqs. (7) and (9)) are

maximized. This result is obtained using some of the GA

parameters different from the other two cases (see Table

1). For case 1, high but constant Feb
o was required to

maximize Fst and Sst, while low but constant Feb
o was

required to maximize Sst and Yst for case 2. When Fst

and Yst (case 3) were maximized simultaneously, Feb
o

found to be the controlling variable that resulted in non-

dominated optimal solutions. The other three decision

variables (Teb, P and SOR) are practically constant. Fig.

7a further shows that the industrial point lies at one end

of the Pareto, and it is perhaps one of the optimal

solutions. However, the Pareto in Fig. 7a provides

numerous optimal solutions (similar to Figs. 3a and

Fig. 7. Results for two-objective optimization (Case 3, maximization of Fst and Yst). (a) Pareto set; and (b�/e) values of decision variables

corresponding to the points shown in (a), �/ indicates industrial operating point.
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6a), which are equally attractive and can provide a

better solution if one likes to select an optimal point of
high yield.

6.4. Case 3A. Maximization of Fst and minimization of

Fsteam

Since the profitability of styrene production is

affected by the amount of steam used, another case to

simultaneously maximize Fst and minimize flow rate of

steam (Fsteam) is studied. These results presented in Fig.

8, show that the Pareto in this case are due to the

conflicting effect of SOR and Feb
o . For minimizing

Fsteam, the process should employ less Feb
o and less Fsteam

subject to the limits on SOR. On the other hand,

maximizing Fst requires larger Feb
o subject to the limits

on both Feb
o and SOR. The other two decision variables,

Teb and P are practically constant over the range of the

Pareto, with the former at its upper bound (to reduce

Fsteam) and the latter at about 2.2 bars.

Fig. 8. Results for two-objective optimization (Case 3A, maximization of Fst and minimization of Fsteam). (a) Pareto set at 100; (b�/e) values of

decision variables corresponding to the points shown in (a); �/ indicates industrial operating point.
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7. Three-objective optimization

More meaningful results can be expected if all three

objectives (Fst, Sst and Yst) are maximized simulta-

neously. When three-objective optimization (case 4)

was performed using the same model for styrene reactor,

the computation time required for obtaining the Pareto

set was found to be the same as that for two-objective

optimization cases, namely, 45 s on Cray J916 super-

computer for 50 chromosomes and 100 generations. The

Pareto and corresponding decision variables from the

three-objective optimization are presented in Fig. 9a�/b

and c�/f, respectively. It can seen from Fig. 9a�/b that,

when one moves from one point to another in the Pareto

set, both Yst and Fst increases but Sst decreases. It was

observed in two-objective function cases that Pareto was

due to the conflicting effect of Teb in cases 1 and 2, and

Feb
o in case 3. Fig. 9c shows that Teb once again is the

leading variable responsible in producing the Pareto for

the 3-objective function case. Decision variable, Feb
o is

scattered with some trend of increasing with Fst (Fig.

9c). This is due to the opposing effect of Feb
o on three

objectives as seen in cases 1, 2 and 3 (Fig. 3e Fig. 6e Fig.

7e): high but constant Feb
o is required to maximize Fst

and Sst (case 1); low but constant Feb
o is required to

maximize Sst and Yst (case 2); and Feb
o is the controlling

Fig. 9. Results for three-objective optimization (Case 4, maximization of Fst, Sst and Yst). (a) and (b) Pareto set; and (c�/f) values of decision variables

corresponding to the points shown in (a) and (b); �/ indicates industrial operating point.
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variable responsible in yielding the Pareto in case 3.

When three objective function optimization is per-

formed, the effect of Feb
o is cumulative, which results in

the scatter of Feb
o (Fig. 9e). Fig. 9a�/b shows that the

industrial point lies at one end of the Pareto and is

perhaps one of the optimal solutions.
Fig. 10a�/d show the comparison of the results for

three-objective optimization and the two-objective cases

Fig. 10. Comparison of the Pareto set for three-objectives (Case 4 shown as I) with two-objectives (Case 1 shown as " in (a) and (b), and Case 2

shown as ^ in (c) and (d)); �/ indicates industrial operating point.

Table 3

Comparison of two-objective (case 1: maximization of Fst and Sst) and three-objective (case 4: maximization of Fst, Sst and Yst) optimization results

for a few selected values of Fst for the adiabatic reactor

Fst (kmol/h) (Objective 1) Case 1 Case 4

Sst (%) (Objective 2) Yst (%) (Calculated) Sst (%) (Objective 2) Yst (%) (Objective 3)

12.02 91.58 29.86 89.48 37.30

10.62 93.14 26.16 91.47 32.00

10.64 93.14 26.16 89.79 37.40

9.47 93.96 23.85 92.16 31.60

Table 4

Comparison of two-objective (case 2: maximization of Sst and Yst) and three-objective (case 4: maximization of Fst, Sst and Yst) optimization results

for a few selected values of Yst for the adiabatic reactor

Yst (%) (Objective 1) Case 2 Case 4

Sst (%) (Objective 2) Fst (kmol/h) (Calculated) Sst (%) (Objective 2) Fst (kmol/h) (Objective 3)

38.03 89.70 10.54 88.30 12.85

32.26 92.20 8.89 91.77 10.08

32.49 92.20 8.89 91.08 11.40

25.65 94.65 7.04 94.37 7.68
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1 and 2. Tables 3 and 4 compare the results of two-

objective cases (case 1 and case 2) with the three-

objective case (case 4) for the same Fst (Table 3) and

the same Yst (Table 4) quantitatively. Fig. 10a�/b and

Table 3 show that for a fixed Fst, three-objective

optimization results in a higher Yst but marginally lower

Sst than in case 1 of two-objective optimization. In

addition, by comparing the two Pareto points having

almost the same Fst (10.62 and 10.64 kmol/h) for the

three-objective optimization, it is found that one of the

points gives higher Sst (91.47%) but lower Yst (32.00%)

than another point (89.79, 37.40%). This is also ob-

served in case 2 as shown in Table 4 for almost the same

Yst (32.26 and 32.49%), there is an improvement in Fst

while Sst is lower.

A chromosome with the highest profit (Eq. (27)) is

selected for each case of two-objective and three-

objective optimization for the adiabatic reactor. The

decision variables, objectives and profit corresponding

to these selected chromosomes are shown in Table 5

along with those for the current industrial operating

point. The profit for the industrial operating point is

lower than case 1. However, it is higher in cases 2 and 3,

and three-objective optimization (case 4). It is because

profit strongly depends on Fst which is not one of the

objectives in cases 2 and 3, and converged three-

objective results do not include the region of industrial

operating point (Fig. 9a�/b). The profit for case 3A

($673 per h) is comparable to cases 1 and 3 as

maximization of styrene produced is an objective func-

tion and there is an upper bound on the amount of

steam used (FsteamB/454 kmol/h) in all of them.

Table 5

Summary of the optimization results for adiabatic reactor

Parameter Industrial Case 1 Case 2 Case 3 Case 3A Case 4

Fst (kmol/h) 14.90 15.01 10.89 14.48 14.79 13.09

Sst (%) 85.15 87.51 88.83 84.70 87.10 88.18

Yst (%) 40.30 35.26 39.47 40.80 36.69 38.23

Teb (K) 800.00 799.98 787.25 800.00 799.98 776.13

P (bar) 2.40 2.03 1.76 2.45 2.16 1.99

SOR (�) 12.29 10.94 12.54 12.47 10.10 13.16

Feb
o (kmol/h) 36.87 40.47 27.58 35.49 40.31 34.24

Fbz (kmol/h) 1.37 1.25 0.85 1.36 1.13 1.10

Ftol (kmol/h) 1.20 0.90 0.52 1.25 1.06 0.66

Profit ($ per h) 651 673 482 637 673 565

Fig. 11. Comparison of the Pareto set at Ngen�/100 for two-objective

optimization (Case 1, maximization of Fst, and Sst) for adiabatic and

steam-injected reactor.

Fig. 12. Comparison of the Pareto at Ngen�/100 for three-objective

optimization (Case 4, maximization of Fst, Sst and Yst) for adiabatic

and steam-injected reactor.
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8. Steam-injected reactor

Optimization problem of the industrial reactor assum-

ing some steam injection at a point along the length of

the reactor, is now studied. In this reactor configuration

(Fig. 2), the total steam is divided into two portions: one

part (dFsteam) is introduced at the reactor inlet while the

remaining portion [(1�/d )Fsteam] is injected at some

location along the reactor length (z�/lL ) to achieve

the pseudo-isothermal condition. The optimization

problem solved is the same as before (Eqs. (7)�/(13),

(16) and (17)) except for two additional decision

variables (Eqs. (14) and (15)), namely, fraction of steam

used at the reactor inlet (d) and location at which the

steam is injected (l). Only results for case 1 of two-

objective optimization and three-objective (case 4)

optimization are discussed in detail. The CPU time

taken to obtain one Pareto set for 100 generations and

50 chromosomes is 159 s on Cray J916 supercomputer.

Figs. 11 and 12 show the comparison of Pareto set

obtained for adiabatic and steam-injected reactor, for

case 1 and three-objective optimization, respectively.

These figures reveal that splitting steam into two parts

gives better optimal results at higher Fst. Low Fst is not

possible to obtain as it tends to violate the constraint on

T1 (Eq. (17)). Figs. 13 and 14 show the plot of six

decision variables corresponding to each point on the

Pareto for two-objective (case 1, Fig. 11) and three-

objective (case 4, Fig. 12) optimization, respectively. It is

observed that the effect of four decision variables (Teb,

Fig. 13. Comparison of values of decision variables for adiabatic (k) and steam-injected reactor (") corresponding to the points on the Pareto set in

Fig. 11.
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P , SOR and Feb
o ) is similar to that obtained for the

adiabatic reactor. Low Teb leads to T1 less than 850 K

(allowable lower bound, Eq. (17)) due to the diversion of

some steam for later injection (at z�/lL ), and, there-

fore, violates the constraints on Fsteam and T1 (Eqs. (16)

and (17)). Hence, the optimal Teb selected for steam

injection reactor is not as low as that of the adiabatic

reactor. Fig. 15 compares temperature and pressure

profiles for adiabatic and steam injection reactor for two

objective optimization (case 1) at the same Fst value of

15.01 kmol/h. This figure shows that the temperature in

the case of steam injection drops drastically at approxi-

mately 30% of the reactor length, which decreases Yst.

Thus, temperature must be brought up at this section to

achieve higher Yst. The decision variable plots (Fig. 13)

show that the optimal location of steam injection is

about 30% of the reactor length and that the optimal

value of steam split is about 50%. If less steam is injected

into the reactor inlet, T1 will be low slowing reaction 1,

which will lower Yst. It is also observed in Fig. 4 that Yst

increases drastically with high inlet temperature, and

thus it will not be advantageous to inject less steam at

the reactor inlet. However, if large amount of steam is

injected at the reactor inlet, T2 obtained will be lower.

The optimal value of about 50% split of total steam,

therefore, ensures moderately high T1 and T2.
Results for the chromosome with highest profit in

cases 1 to 4 are summarized in Table 6, which shows that

Fig. 14. Comparison of values of decision variables for adiabatic (k) and steam-injected reactor (") corresponding to the points on the Pareto set in

Fig. 12.
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the profit calculated based on Eq. (27) for steam-

injected reactor is better than the corresponding value

in Table 5 for adiabatic reactor, by 4�/12%. This

improvement is primarily due to the increase in the
amount of styrene produced, and less by-products

formation. Comparing the objective function values

(Fst, Yst and/or Sst) in Tables 5 and 6, it is observed

that steam-injected reactor generally gives higher values

of the objective functions than the adiabatic reactor.

The comparison of the results of steam injected

reactor for three-objective function and the two-objec-

tive function (case 1) are shown in Table 7 for selected
chromosomes. These are similar to those for the

adiabatic reactor in Table 3.

9. Conclusions

Several multiobjective optimization problems for

both adiabatic and steam-injected styrene reactors

were formulated, and then solved by NSGA. Pareto

optimal sets were successfully obtained for all situations
considered The Pareto set and optimal operating con-

ditions for different combinations of two objectives, are

different. The trend of decision variables at the optimum

in all cases can be explained qualitatively, which shows

that the multiobjective optimization results obtained by

NSGA are reliable. The results of multiobjective opti-

mization shows that objectives such as production rate,

selectivity and yield besides profit can be improved
compared with the current operating condition. As

expected, steam injection is better than adiabatic opera-

tion. The optimal results obtained are, in general,

valuable for engineer to study and understand the

reactor operation, and in choosing the best operating

conditions to satisfy specified objectives. Although

NSGA has been reasonably successful for multi-objec-

tive optimization, our experience shows that suitable
values for its parameters will have to be selected through

several trials and that it often gives near optimal

solutions. Hence, NSGA requires further improvements

Fig. 15. Temperature and pressure profile for two-objective optimiza-

tion (Case 1, maximization of Fst and Sst) for both adiabatic and

steam-injected reactor at the same Fst of 15.01 kmol/h.

Table 6

Summary of the optimization results for steam injected reactor

Parameter Case 1 Case 2 Case 3 Case 4

Fst (kmol/h) 15.51 12.56 15.97 13.97

Sst (%) 87.26 88.70 85.00 87.50

Yst (%) 38.43 45.21 39.64 39.62

Teb (K) 795.08 799.91 800.00 791.41

P (bar) 2.59 2.10 2.63 2.54

SOR (�) 10.89 15.53 11.06 11.30

Feb
o (kmol/h) 40.36 27.78 40.29 35.27

l (�) 0.30 0.33 0.11 0.24

d (�) 0.52 0.47 0.97 0.57

Fbz (kmol/h) 0.81 0.83 0.95 0.77

Ftol (kmol/h) 1.45 0.77 0.99 1.23

Profit ($ per h) 703 544 723 633

Table 7

Comparison of two-objective (case 1: maximization of Fst and Sst) and three-objective (case 4: maximization of Fst, Sst and Yst) optimization results

for a few selected values of Fst for the steam injected reactor

Fst (kmol/h) (Objective 1) Case 1 Case 4

Sst (%) (Objective 2) Yst (%) (Calculated) Sst (%) (Objective 2) Yst (%) (Objective 3)

12.32 92.75 30.40 92.19 32.67

13.73 91.55 33.84 90.63 36.50

13.74 91.55 33.84 90.68 36.44

14.06 91.20 34.74 88.53 39.54
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for obtaining optimal solutions of multi-objective pro-

blems accurately and reliably.

Appendix A: Model, design and operating conditions for a

styrene reactor

The governing equations for the pseudo-homoge-
neous model, which was used for the multiobjective

optimization, are given below (Sheel & Crowe, 1969;

Elnashaie & Elshishini, 1994).

Mass balance:

dXi

dz
�

rbAtri

Fo
eb

(A1)

where, Xi is the fractional conversion of ethyl benzene in

each of the three reactions, i�/ 1, 2 and 3. For the other

three reactions, i�/4, 5 and 6, Xi is given by:

dXi

dz
�

rbAtri

Fo
steam

(A2)

Energy balance:

dT

dz
�

X6

i�1

(�DHi)rbAtriX
j

FjCpj

(A3)

Pressure drop along the reactor length is given by

Ergun equation:

dP

dz
�1�10�5 (1 � o)Go

Dpo
3rG

�
150(1 � o)mG

Dp

�1:75Go

�
(A4)

Rate expression and kinetic data for the six react-

ions are summarized in Table A1, while the design

and operating conditions for an industrial reactor

are shown in Table A2. The predicted results by

the model are compared with the industrial data in
Table A3.

Table A1

Rate expression and data for the six reactions (Elnashaie & Elshishini,

1994)

Reaction expression Ei (kJ/kmol) Ai

r1�/k1(peb�/pstpH
2
/Keb) 90 981.4 �/0.0854

r2�/k2peb 207 989.2 13.2392

r3�/k3pebpH
2

915 15.3 0.2961

r4�/k4psteampeth
0.5 103 996.7 �/0.0724

r5�/k5psteampmeth 65 723.3 �/2.9344

r6�/k6(P /T3)psteampCO 73 628.4 21.2402

2 Notes: ki (kmol/kg per s per barn )�/exp(Ai�/Ei /RT ); p refers to

partial pressure of the reactant given in the subscript; equilibrium

constant, Keb for reaction 1 is given by exp[�/(122 725�/126.3 T�/

0.002194 T2)/8.314 T ].

Table A2

Design and operating conditions for the industrial reactor (Sheel &

Crowe, 1969; Elnashaie & Elshishini, 1994).

Quantity Numerical value

Reactor diameter 1.95 m

Reactor length/catalyst bed

depth

1.7 m

Catalyst bulk density 2146 kg/m3

Catalyst particle diameter 0.0047 m

Bed void fraction 0.445

Catalyst composition 62% Fe2O3, 36% K2CO3, 2% Cr2O3

Inlet pressure 2.4 bar

Inlet temperature 922.59 K

Ethyl benzene in the feed 36.87 kmol/h

Styrene in the feed� 0.67 kmol/h

Benzene in the feed� 0.11 kmol/h

Toluene in the feed� 0.88 kmol/h

Steam 453.1 kmol/h

3 These three components are present as impurities in the ethyl

benzene feed shown in Fig. 2.

Table A3

Comparison of the simulation results with the industrial data (Sheel &

Crowe, 1969; Elnashaie & Elshishini, 1994).

Quantity at reactor exit Industrial data Simulation results

Exit temperature (K) 850.0 849.75

Exit pressure (bar) 2.32 2.33

Ethyl benzene conversion (%) 47.25 46.74

Ethyl benzene flow rate (kmol/h) 19.45 19.63

Styrene flow rate (kmol/h) 15.57 15.40

Benzene flow rate (kmol/h) 1.5 1.44

Toluene flow rate (kmol/h) 2.03 2.05

Appendix B: Genetic algorithm (GA) and NSGA

GA is a search technique developed by Holland

(1975). This method mimics the principles of natural

evolution. For this technique, the set of decision

variables is first decoded string structures in binary

numbers (0 and 1). These are known as ‘chromosomes’

and hence create a population (gene pool). Each of these
chromosomes is then mapped into its real value using

lower and upper bounds specified for the decision

variables. A model of the process will then compute

an objective function for each chromosome and these

functions reflect the ‘fitness’ of the chromosome.

The optimization search proceeds through three

operations: reproduction, crossover and mutation. The

reproduction operation selects good strings in a popula-
tion and forms a mating pool. The chromosomes are

copied based on their fitness value. No new strings are

produced in this operation. The crossover allows for a
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new string formation by exchanging some portion of the

string (chosen randomly) with the string of another

chromosome generating daughter chromosomes in the

mating pool. If the daughter chromosomes are less fit
than parent chromosomes, they will slowly die natural

death in the subsequent generation. The effect of cross-

over can be detrimental or good. Hence, not all strings

are used for crossover. A crossover probability, Pc is

used, where only 100 Pc percent of the strings in the

mating pool are involved in crossover while the rest

continue unchanged to the next generation. The last

operation is mutation. This operation changes 1 to 0 and
vice versa using a small mutation probability Pm. The

mutation alters a string locally to create a better string.

Mutation is needed to create a point in the neighbor-

hood of the current point, thereby achieving a local

search around the current solution and to maintain

diversity in the population. The entire process is

repeated till some termination criterion is met (the

specified maximum number of generations is attained,
or the improvements in the values of the objective

functions become lower than a specified tolerance). A

detailed description of GA is documented in Holland

(1975) and Goldberg (1989).

The optimal solution to a multipleobjective function

results in Pareto optimal set rather than unique solution.

A Pareto set is such that when one moves from one

point to another on the Pareto, one objective function
improves while the other worsens. Neither of the

solutions dominates over each other and all the sets of

decision variables on the Pareto are equally good.

Hence, the simple genetic algorithm is modified to a

new algorithm known as NSGA to obtain Pareto

solution. This new algorithm differs by the way the

operators are selected.

NSGA uses a ranking method to emphasize the good
points and a niche method to create diversity in the

population without losing a stable sub-population of

good points. In the new procedure, several groups of

chromosomes at any generation are identified and

classified into fronts. Each of the members in a

particular front is assigned a large, common, front

fitness value (a dummy value) arbitrarily. The dummy

fitness value is then modified according to a sharing
procedure. The points in this (or any other) front are

then distributed evenly in the decision variable domain

by dividing it by the niche count of the chromosome.

The niche count is a quantity that represents the number

of neighbors around it. The niche count gives an idea of

how crowded the chromosomes are in the decision

variable space. This helps spread out the chromosomes

in the front since crowded chromosomes are assigned
lower fitness values. This procedure is repeated for all

the members of the first front. These chromosomes are

then temporarily removed from consideration. All the

remaining ones are tested for non-dominance. The non-

dominated chromosomes in this round are classified into

the next front. These are all assigned a dummy fitness

value that is slightly lower than the lowest shared fitness

value of the previous front. Sharing is performed
thereafter. The sorting and sharing is continued till all

the chromosomes in the gene pool are assigned shared

fitness values. The usual operations of reproduction,

crossover and mutation are now performed. Non-

dominated members of the first front that have fewer

neighbors, will get the highest representation in the

mating pool while dominated members of later fronts

will get lower representations (they are still assigned
some low fitness values, rather than ‘killed’, in order to

maintain the diversity of the gene pool). Sharing forces

the chromosomes to be spread out in the decision

variable space. It is to be noted that any number of

objectives (both minimization and maximization pro-

blems) can be solved using this procedure. Hence, the

method searches for a better set of operating conditions

for multi-objective optimization. Additional details
about the algorithm, its comparison over other techni-

ques and some comments on the choice of the computa-

tional parameters to be used in NSGA, are described

elsewhere (Srinivas & Deb, 1995; Deb, 2001).
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