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1. Development and Application of a K-NN Weather 
Generating Model 

1.1 Introduction 

The main objective of this study is to develop a generic weather generating model 

that can be used to hypothesize plausible climate change scenarios for any given 

basin. Development of weather generator forms a part of a larger Canadian 

Foundation for Climatic and Atmospheric Sciences (CFCAS) funded project 

“Assessment of Water Resources Risk and Vulnerability to Changing Climatic 

Conditions” that aims at improving the prediction of hydrologic extremes, including 

both flood and drought events in the Upper Thames River basin (UTRb) in the 

Canadian province of Ontario. This report describes the development and 

application of a generic weather generator, based on the K-nearest neighbour (K-

NN) algorithm (Buishand and Bradsma, 2001; Rajagopalan and Lall, 1999; Yates et 

al., 2003). 

Global climate is expected to change significantly due to the continuously increasing 

levels of carbon dioxide and other greenhouse gases. By the year 2056 the CO2 

concentration in the atmosphere is likely to double (Jenkins and Derwint, 1990). 

Globally, the 10 warmest years on record have occurred since 1990s (1989-98) with 

1998 the warmest year in atleast a millennium (Mann et al., 1999). Mean annual 

global increases of air temperature of 0.5 C in the last century are evident, and the 

precipitation has increased over land in high latitudes in the Northern Hemisphere 

especially in the cold season (IPCC, 1996). The future projections of climate change 

indicate a global average warming of between 1.5° to 4.5° C, greater surface 

warming at high latitudes in winter, but less during the summer. An increase of 3 to 

15 % in global precipitation is expected mainly due to globally increasing 

temperatures which causes greater evaporation from sea surface water. A year-

round increase in precipitation in high-latitude regions is expected, whilst some 

tropical areas may experience small decreases. Climate change in Canada has 

followed a trend somewhat similar to the global trend. Mean temperature in Canada 

has risen 1.1 C nationally and 1.7 C regionally in the past century (Gullet and 
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Skinner, 1992) and temperature increases are expected to be greater in winter than 

in summer. 

Global climate changes are anticipated to have potentially serious impacts on many 

aspects of the natural environment including the earth’s water resources. Spatial 

and temporal distribution of water would change impacting the availability of water 

to meet human and other needs. On a regional scale, the climatic impacts would be 

influenced by a complex combination of temperature, precipitation, evaporation, 

and changes in runoff production.  Relatively small changes in the precipitation and 

temperature characteristics of a region, which are the principal driving forces behind 

the hydrological cycle, can significantly alter water resource systems of a region. 

Due to increased vigour of the hydrological cycle, the magnitude and timings of 

occurrence of extreme events such as flood and drought are likely to change 

considerably thereby introducing additional uncertainty in the management of 

existing water resource systems (IPPC, 2001). A major concern arising out of 

changed climate scenarios is that of habitat loss as there may be no alternatives to 

some species. The timing and magnitude of specific hydrologic events such as 

freeze-up/break-up, the severity of the spring freshet, or the duration of the low 

flow period is vital to the life cycle of many species. On the human front, the 

economic effects of extreme events can be devastating. For example, income and 

employment losses due to business disruptions are a common feature associated 

with a flood event. Other direct effects include loss to human life and property, loss 

of livestock, and crop damages. 

Reservoir operations, crop production, erosion processes, runoff production and 

many other hydrological processes are likely to be impacted by climate change. 

Revelle and Waggoner, (1983) and Gleick (1987) have indicted that climate change 

can adversely affect the availability of water supply. Patterns of water demand will 

need to alter in response to changes in water supply. Some other impacts of climate 

change that have been identified includes changes in the quantity of runoff 

produced (Gleick, 1986; Lattenmaier and Gan, 1990), and changes in the timings of 

the hydrologic events (Lattenmaier and Gan, 1990; Kite, 1993; Burn, 1994; 

Simonovic, 2001).  Any change in the hydrological processes will ultimately affect 

the water resource systems. Burn and Simonovic (1996) investigated the potential 
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impacts of climate change on the performance of reservoir operations. Hydrologic 

scenarios representing different sets of climatic conditions were generated and used 

as an input to a reservoir operation model. It was concluded that the reservoir 

performance is sensitive to climate change. Westmacott and Burn (1997) evaluated 

the effects of climatic changes on hydrological variables pertaining to the magnitude 

and timing of hydrological events in the Churchill-Nelson River Basin in west-central 

Canada. The magnitude of hydrologic events was found to decrease over time while 

snowmelt runoff events occurred earlier. Mortsch et al. (2000) studied the impact of 

changing climatic conditions on the Great Lakes region under the scenario of 

doubling of CO2 concentration. Climate change scenarios considered by Mortsch et 

al. (2000) indicated declines in runoff and lake levels that could lead to potential 

water allocation problems in the region. Southam et al. (1999) evaluated the impact 

of climate change in Ontario’s Grand River basin under 21 scenarios of future 

surface water supplies, streamflow regulation, population and water use. It was 

concluded that climate change may have serious impacts on the capability of Grand 

River to assimilate wastewater and yield a reliable supply of water for municipal 

purposes while maintaining existing water quality standards. 

At present, there is no ideal method for generating future climate scenarios (Gleick, 

1989; Simonovic, 2001). Existing methods can be classified into three categories: 

empirically-based, process-based and linked methods that combine empirically-

based and process-based concepts. Empirically based models make use of the 

historical observations to identify trends in important climatic variables such as 

temperature and rainfall and changes in important weather patterns such as El Nini-

Southern Oscillation (ENSO) cycle. Process based models use mathematical 

representations of the processes that govern atmospheric and oceanic circulation to 

estimate future climate variables and seasonal changes in climate. Global circulation 

models (GCMs) are the most sophisticated process-based models that simulate the 

climate system. During the last decade, a number of complex GCMs have attempted 

to simulate future anthropogenic climate change scenarios. GCMs have predicted 

considerable warming and changes in precipitation pattern under the well know 

scenario of doubling of CO2 emissions. If these changes materialize, it is suggested 

that the ice regime may be modified in different ways in different regions. For 
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example, in temperate regions such as the southwestern Ontario, the brief and 

capricious river ice cover may disappear completely, or become more intermittent 

(Clair et al., 1996). This could be beneficial to the socio–economic sectors but would 

be harmful to the aquatic life that depends on the ice cover for winter survival.  The 

projections made by GCMs are usually broad and it is not possible to identify specific 

areas and communities that may be vulnerable to climate change, or to anticipate 

the magnitude of economic and ecological impacts. These limitations are caused 

mainly due to the relatively large spatial resolution of GCMs, which is of the order of 

2°×2.5° in the horizontal (latitude × longitude). Such a resolution is unsatisfactory 

for catchment level hydrologic processes and gives rise to uncertainties when 

downscaling is carried out using the output from a GCM. Promising work addressing 

the issue of spatial resolution has been carried out by Hughes and Guttorp (1994), 

and Wilby (1994). But still there is a great deal of uncertainty regarding the regional 

GCM output under future scenarios of increasing CO2 and aerosol changes. Further, 

a climate change scenario based on the output from a GCM represents only one of 

the many future climate change scenarios whereas exploring several alternative 

climate scenarios would be more useful for effective management of water resource 

systems. Estimates of weather variables particularly precipitation on finer 

geographic and temporal scales are needed to predict the potential effects of 

climate change on a regional scale. Development of local weather generators to 

model hydrological impact of climate change has largely been motivated by the 

acknowledged limitations of GCMs in evaluating the regional climatic impacts. 

This report presents a generic weather generator, based on the K-nearest neighbour 

(K-NN) algorithm (Buishand and Bradsma, 2001; Rajagopalan and Lall, 1999; Yates 

et al., 2003) for producing a variety of synthetic weather sequences that can be 

used as an input into hydrological models. Particular emphasis is laid on the 

generation of weather sequences that model unprecedented precipitation events in 

the basin. The rest of the report is organized as follows. A brief background on 

stochastic weather generators is presented in the next section. Section 1.3 outlines 

the methodology used to adapt K-NN algorithm for simulating daily weather 

sequences conditioned upon alternative climate change scenario. Procedure for 

strategic resampling is described in section 1.4. Application of the algorithm to 
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Upper Thames River basin in Canada is described in section 1.5. Model results are 

presented in the section 1.6. The report concludes with the summary of results and 

a discussion of the findings. 

1.2 Background 

Some traditional weather generating approaches are discussed in this section. 

Stochastic generation of weather variables especially precipitation has been an 

extensive research topic. A number of weather generators based on parametric 

statistical techniques have been effectively used to generate plausible climate 

scenarios, and have themselves been used as downscaling techniques in global 

climate change studies (Wilks, 1992). Daily weather generators are most common 

due to the wide availability of meteorological data on this time scale, and due to the 

fact that most impact assessment models are driven by daily data. The traditional 

weather generating approach (Nicks and Harp, 1980) focuses on independent 

generation of precipitation first while the remaining variables are modelled 

conditioned upon precipitation occurrence (i.e. precipitation or no precipitation). 

Daily precipitation amounts are generated using a two-state first order Markov 

model from an assumed probability distribution fitted to the observed values. 

Different model parameters are fitted to each period in order to capture the 

seasonality in the values of the variables themselves and in their cross-correlations. 

More complex models describe more than one precipitation state (e.g. low, medium, 

and high precipitation amounts). Todorovic and Woolhiser (1975) combined the first 

order Markov model for daily precipitation occurrence with a statistical model for 

daily non-zero precipitation amounts. Exponential distribution was used to describe 

the precipitation amounts. More elaborate models have been proposed for the 

distribution of precipitation amounts given the occurrence of a wet day. Katz 

(1977), Buishand (1978), and Stern and Coe (1984) used two-parameter gamma 

distribution to describe the occurrence of precipitation amount on wet days. Smith 

and Schreiber (1974), Woolhiser and Roldan (1982), and Wilks (1999) fitted three-

parameter mixed exponential distribution to describe precipitation amounts on wet 

days. An excellent review of stochastic weather models has been presented by Wilks 

and Wilby (1999). 

Although a large number of precipitation models have been developed, many 
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practical applications require that weather generators produce other meteorological 

variables in addition to precipitation. To generate other variables probability 

distributions are fitted independently for each variable for each period and for each 

precipitation state. Assumption is made that each variable is conditionally 

independent and identically distributed. Richardson (1981) describes a Markov-chain 

exponential model in which the precipitation is generated independently of the other 

variables. The other variables are generated by using a multivariate model with the 

parameters of the variables conditioned on the wet or dry status of the day as 

determined by the precipitation model. Stochastic weather generators of the type 

proposed by Richardson (1981) are commonly referred to as WGEN (for ‘weather 

generator’ as in Richardson and Wright, 1984). WGEN is a multivariate time series 

model that can be used to generate stochastically the daily values of maximum and 

minimum temperatures, precipitation and solar radiation for any required length of 

time. Daily precipitation in WGEN is modelled by a two parameter gamma 

distribution which tends to match the observed data significantly better than the 

simple exponential distribution used by Richardson, 1981. 

Crop production and natural ecosystem models often require additional weather 

variables such as wind speed and relative humidity. Nicks et al. (1990) describe an 

extended version of WGEN called WXGEN that takes into account the non-normal 

distribution of wind speed and relative humidity. However, wind speed is not linked 

to any of the other variables and relative humidity is linked only to precipitation 

occurrence. Wind speed and dewpoint (from which relative humidity can be derived) 

are included in the weather generator GEM (Generation of weather elements for 

Multiple Applications) developed by Hanson and Johnson (1998). Their model 

permitted dependence among all the weather variables assuming normal 

distribution for these two variables. Parlange and Katz (2000) further extended 

WGEN to include daily mean wind speed and dewpoint in the model. The key to the 

extension is the transformation of the variables that are not normally distributed, for 

example power transformation was used to take into account the positively skewed 

distribution of wind speed. Their model is effectively a hybrid of WXGEN and GEM, 

combining the individual improvements of these stochastic weather generators. 

Application of the model to the data in the Pacific Northwest was presented. 
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A major drawback associated with the ‘Richardson type’ weather generators is that 

the persistent events such as drought or prolonged rainfall are not very well 

reproduced by them. To overcome this problem, serial approach to weather 

generation has been presented by Rackso et al. (1991) and Semenov et al. (1998) 

among others. In this approach, the sequence of dry and wet series of days is 

modelled first and the precipitation amounts and other variables are generated 

conditioned on the wet or dry series. Rackso et al. (1991) used predefined 

distributions for modelling of wet and dry series whereas semi-empirical 

distributions are used in LARS-WG (Semenov and Barrow 1997; Semenov et al., 

1998). Since LARS-WG uses every single observation in the modelling process, it is 

expected to perform better than the models such as those of Rackso et al. (1991) 

that are based on the fitting of a predefined distribution to the observed data. 

Performance evaluation of WGEN and LARS-WG at 18 sites chosen from different 

parts of the world carried out by Semenov et al. (1998) confirmed the superiority of 

LARS-WG. It matched the observed data more closely than the WGEN which may be 

attributed to the use of more complex distributions in LARS-WG. Both generators, 

however, had difficulty in reproducing the annual variability in monthly means of the 

variables. 

A number of applications of weather generators for multisite simulation of variables 

have been reported in the literature. Smith (1994) presented an extension of the 

Markov model to bivariate time series of daily precipitation at two different stations. 

Further extension to more stations was limited by the number of parameters needed 

to be incorporated in the model. Wilby (1994) developed a stochastic model for the 

synthesis of daily precipitation data by weather type analysis. The model was 

applied to generate daily rainfall at two sites in southern England. Wilks (1998) 

developed a multisite version of first order Markov model with mixed exponential 

distribution for wet day precipitation amounts. Use of mixed exponential distribution 

rather than gamma distributions produced synthetic sequences with interannual 

variability similar to the observed data. Means, variances, and interstation 

correlations of monthly precipitation totals were well preserved in the model 

proposed by Wilks (1998).  
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A number of parametric weather generators have been developed but they have 

several drawbacks. First and most importantly, they do not reproduce various 

aspects of spatial and temporal dependence of variables adequately. Second, an 

assumption has to be made regarding the form of probability distribution of the 

variables, which is often subjective. Third, non Gaussian features in the data cannot 

be adequately captured as multivariate autoregressive models (MAR) models 

implicitly assume a normal distribution which is difficult to satisfy. Fourth, a large 

number of parameters are separately fitted to each period and the number further 

increases if the simulations are to be conditioned. Fifth, the models are not easily 

transportable to other sites due to the site-specific assumptions made regarding the 

probability distributions of the variables. 

Nonparametric methods can circumvent most problems associated with the 

parametric methods. Simple nonparametric techniques essentially involve random 

resampling from the historical data to generate synthetic sequences of required 

duration. Such sequences often fail to capture time correlation of the data series. 

Complex procedures have been developed that can capture to a large extent the 

prominent time correlation between the weather data. The most promising non 

parametric techniques for generating weather data is the K-NN resampling 

approach. The works of Young (1994), Lall and Sharma (1996), Lall et al. (1996), 

Rajagopalan and Lall (1999), Buishand and Brasma (2001), and Yates et al. (2003) 

describe various forms of K-NN resampling scheme.  A K-NN algorithm typically 

involves selecting a specified number of days similar in characteristics to the day of 

interest. One of these days is randomly resampled to represent the current day’s 

weather. Young (1994) employed a K-NN strategy to select a day randomly from 

amongst the 3 to 5 nearest neighbors. A discriminant function was used to identify 

the days having weather closest to the current day’s weather. Young’s model mostly 

preserves the correlation between the temperature and the precipitation and the 

wet or dry spell statistics. Simulated sequences, however, showed reduced 

persistence and underestimation of the fraction of dry months. 

 

Lall and Sharma (1996) presented a nearest neighbour bootstrap for resampling 

hydrologic time series. Multivariate nearest neighbour probability density estimation 
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provided the basis for the resampling scheme developed. Resampling is done from k 

nearest neighbors in terms of a weighted Euclidean distance. Prior assumptions 

regarding the distribution of the precipitation amounts were not necessary. To 

preserve temporal dependence, a new day is resampled from the historical data set 

by conditioning on the simulated values for previous days. Rajagopalan and Lall 

(1999) compared nearest neighbour resampling with a parametric time series 

model.  Six daily weather variables were simultaneously generated for Salt Lake 

City, Utah. Comparison of the results with those obtained using a parametric time 

series model clearly demonstrated the superiority of the nonparametric approach. 

Unlike the method of Young (1994) who used only 3-5 nearest neighbors for 

resampling, Rajagopalan and Lall (1999) used relatively large number of nearest 

neighbors for resampling. Lall et al. (1996) used K-NN resampling scheme with 

kernel density estimators to represent the probability distributions of dry spell 

lengths, wet spell lengths, and wet day precipitation amounts.  

Brandsma and Buishand (1998) describe the application of nearest neighbour 

resampling procedure to single site simulation of daily precipitation and temperature 

for multiple stations in the Rhine Basin. Conditional simulation of weather variables 

on atmospheric flow was also considered by them. Bardosy and Plate (1992) also 

describes a space-time model for generating daily precipitation data using 

atmospheric circulation patterns. Buishand and Brandsma (2001) extended the 

nearest-neighbor resampling to simultaneous simulation of daily precipitation and 

temperature at multiple stations in the German part of the Rhine Basin. A moving 

window of 61 days was used. For a historical record of N years the nearest 

neighbors are selected from 61N days. Since the resampling is done from the 

historical data, the correlation between precipitation at different stations and that 

between daily precipitation and temperature is automatically preserved. Yates et al. 

(2003) describe a K-NN resampling scheme that largely preserves important cross 

correlations and autocorrelations. Mahalanobis distance metric (Davis, 1986), was 

used to determine the closeness of any given neighbor to the current vector. Use of 

Mahalanobis distance is considered superior than the Euclidean distance approach 

as it does not require explicit weighing and standardization of the variables. A 

resampling strategy is introduced that can be used to generate desired climate 
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scenarios.  A simulated annealing (SA) based non parametric approach has been 

presented by Bardosy (1998) in which the reshuffling of data is carried out in a 

manner that retains important statistical properties of the observed data series.  

The SA approach is quite intensive computationally but may prove to be particularly 

useful for simulation of series with short time steps. 

1.3 The K-NN Algorithm 

This section describes the K-NN algorithm used in this study. Consider that the daily 

historic weather vector consists of p variables. Here p = 3 including maximum 

temperature (TMX), minimum temperature (TMN), and precipitation (PPT)). 

Suppose the number of stations considered in the model is q and the data is 

available for N  years. Let j
tX denotes the vector of weather variables for day t  

and station j, where Jt ,...,1= , and qj ,...,1= ; J  being the total number of days in 

the time series. The vector consisting of the current day weather variables is called 

the feature vector and can be expressed, in expanded form, as 

],...,,[ ,,2,1
j
tp

j
t

j
t

j
t xxxX =  where j

tix , represents the value of the weather variable i  at 

time step t and for station j . Suppose that the simulation with K-NN model begins 

on day t  corresponding to January 1. The algorithm cycles through various steps to 

select a day having weather closest in characteristic to the current day’s weather 

from amongst the predetermined number of nearest neighbors. The weather of the 

selected day is adopted to represent the weather for given day in the simulation 

period. The closeness of the current weather vector, j
tX  to various potential 

neighbors is determined using the Mahalanobis distance metric which does not 

require explicit weighing and standardization of the variables (Yates et al., 2003). 

Buishand and Brandsma (2001) selected k-nearest neighbors in terms of a weighted 

Euclidean distance which requires that the weather variables be standardized. 

Different steps of the algorithm are described next. 

1. Compute regional means of the p  variable across the q  stations for each 

day of the historical record 

],...,,[ ,,2,1 tpttt xxxX =
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where ∑
=

=
q

j

j
titi x

q
x

1
,,

1
, pi ,...,1=  

2. Determine the size, L  of data block that includes all potential neighbors to 

the current feature vector from which resampling is to be done. A temporal window 

of width w is chosen and all days within window are considered as potential 

candidates to the current feature vector. Yates et al. (2003) used a temporal 

window of 14 days which implied if that if the current day is January 20 then the 

window of days consist of all days between 13 January and January 27 for all N 

years but excluding January 20. Thus, the data block of potential neighbors from 

which to resample consist of 1*)1( −+= NwL  days. A fixed length, 14-day 

temporal window was used in this study. For 14=w  and 38=N , 569=L . 

3. Compute mean vectors across q  stations for each day in the data block 

consisting of potential neighbors using the expressions given in step 1. 

4. A covariance matrix tC  is computed for current day t  using the using the 

data block of size pL× . 

5. The weather on the first day t (e.g., 1 January) comprising all p  variables at 

q  stations is randomly chosen from the set of all days of the historic record of N 

years (e. g., all January 1 days have equal probability of selection) and includes all 

p  variables. The algorithm proceeds to select one of the nearest neighbors to 

represent the weather of the given day in the simulation period. 

6. Compute Mahalanobis distances between the mean vector of the current 

day’s weather, tX  and the mean vector for day i, iX where Li ,...,1= . 

T
ittiti XXCXXd )()( 1 −−= −  

where T represents the transpose operation, and 1−
tC  is the inverse of covariance 

matrix 
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7. Determine the number of first K nearest neighbors to be retained for 

resampling out of the total of L  neighbors.. The choice of K is vital for best 

reproduction of the desired statistics in the simulated sequences. Resampling with 

small number of nearest neighbors is unlikely to maintain diversity in the simulated 

sequences. Similarly, a relatively large value of K might not reproduce the required 

statistics in the simulated data. Lall and Sharma (1996) suggested the use of the 

generalized cross validation score (GCV) which is similar to Akaike information 

criteria (AIC) in the traditional AR models for choosing K. Rajagoplan and Lall 

(1999) and Yates et al. (2003) have recommended the use of heuristic method to 

choosing K according to which LK = . The performance of algorithm with this 

value of K was found to be good. In this study 569=L , and hence a value of K 

equal to 24 has been adopted. 

8. Sort the Mahalabonis distances in ascending order and retain the first K 

nearest neighbors. Assign weights to each of these j neighbors according to the 

probability metric defined as 

∑
=

= K

i

j

i

jp

1
/1

/1
. The neighbor with the shortest distance is 

assigned the highest weight, where the neighbor with the longest distance (i.e. the 

Kth neighbour) gets the least weight. Lall and Sharma (1996) developed this 

function through a local Poisson approximation of the probability density function of 

state space neighbors. 

9. The weather on the given day in the simulation period is represented by the 

day 1+t , which is selected from amongst the K-nearest neighbors. To obtain the 

day 1+t , a random number , )1,0(⊂r  is first generated and if Kprp <<1 , then a 

day j for which r is closer to jp  is selected. If 1pr ≥ , the day corresponding to 1d  

is selected and if Kpr ≤ , then the 1+t  day corresponding to Kd  is selected.   

Steps 6 to 9 are repeated to generate as many years of synthetic data as required. 

If multiple sequences of data are required, then the algorithm starts at step 5.  

With K-NN algorithm, the spatial dependence is preserved by resampling 

simultaneously the same day weather as the weather for all the stations. To 
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preserve temporal dependence, a new day is resampled from the historical data by 

conditioning on the simulated values for previous days. Due to the manner in which 

the given day’s weather is simulated, autocorrelations for different variables, cross 

correlations between the variables and interstation correlations are most likely to be 

preserved. Further, no assumptions need to be made regarding the probability 

distributions of various variables. 

1.4 Strategic Resampling 

This section describes how strategic resampling could be carried out to generate 

synthetic weather sequences with required attributes. In hydrological studies, it is 

often desired to test various models with the weather data that consists of divergent 

pattern relative to the historically observed climate, such as a gradual warming 

trend over a certain period of time and region. Exploring the response of 

hydrological models to a single sequence of weather data would lead to a solution 

with limited practical significance. Ideally, the response of the model should be 

evaluated with an ensemble of weather sequences so that a better understanding of 

the complex phenomenon that drives the model could be obtained. With strategic 

resampling, a large variety of weather sequences may be generated and 

subsequently used as an input into hydrological models. Strategic resampling simply 

implies that a new set of years from the historical record based on some prescribed 

conditioning criteria shall be used in the K-NN algorithm to derive new weather 

sequences with required attributes.  With strategic resampling, it would also be 

possible to generate synthetic weather sequences that adequately model the 

drought and flood conditions. 

Strategic resampling can be carried out in the following manner. Assume that a year 

has l  periods of d days each. The regional periodical mean for variable i
tjy ,  where 

i is the year, j is the station and t is the day, may be computed as follows 

 

∑∑
= =×

=
q

j

d

t

i
tj

i
l y

qd
M

1 1
,

1
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where i
lM  is the regional periodical mean corresponding to period l  and year i . 

The regional periodical mean for period l  of the entire record may be computed as 

∑
=

=
N

i

i
ll M

N
M

1

1
 

The regional periodical deviations for each year and for each period are computed 

as l
i
l

i
l MMD −=  

Once the deviations are computed for different years and different periods, a ranked 

list of years for a particular period can be generated by sorting the years according 

to the magnitude of deviations of that period. Suppose a ranked list for the month 

of January is required, then different years are ranked according to the deviation 

computed for January. The deviations for each year are computed as the difference 

between the mean value of the variable in January for that year and the overall 

historical mean of the variable as described above. An index is then assigned to 

each year in the ranked list based on the relative position of that year in the sorted 

list. A general integer function of the following form can be used to select different 

years from the ranked list (Yates et al., 2003).  

1)]1([ +−=
i
wSi

w rNINTI  

where i
wI  is the index corresponding to year i  and period w , r  is a normally 

distributed random number between 0 and 1, i
wS  is the shape parameter that can 

be suitably adjusted to bias certain years over others. Suppose that the years in the 

ranked list are arranged such that the coldest year has an index of 1 and the 

warmest year has an index of N . If it is required to create bias towards the 

selection of warmer years, then i
wS  should be assigned a value greater than 1. 

Similarly, values i
wS  less than 1 would create bias towards selection of colder years. 

The exact value of i
wS  would, however, depend upon the amount of biasing 

required. If no biasing is required, value of shape parameter i
wS  is set to 1. To 
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produce a subset of years that could be used to generate a weather sequence with 

attributes similar to that of historical data series, a simpler function that returns 

random integers between the specified upper and lower bounds may be used. 

1.5 The Upper Thames River Basin 

The Thames River watershed is nestled in the agricultural heartland of southwestern 

region located in the Canadian province of Ontario. The southwestern Ontario is a 

highly developed region and as such the basin faces pressure from urban and rural 

land uses. The Thames River is the major river of the basin. It is 273 km long and 

has a catchment area of around 5,825 km2, making it the second largest watershed 

in southwestern Ontario. Despite these pressures, The Thames remains one of the 

most biologically diverse rivers in Canada. The water quality of the Thames River is 

impacted by drainage practices, runoff, spills and bank alterations among others.  

Most of the precipitation comes in the form of winter snow. Rainfall occurs mainly in 

spring, with some in fall. 

1.5.1 Data Description 

Daily maximum temperature, minimum temperature and precipitation data from 9 

nine stations in the basin was used for the period 1964-2001. The geographical 

location of stations as determined from their latitudes and longitudes is shown in 

Figure 1. The data used in this study is Environment Canada corrected. The mean 

annual values of different weather variables and the latitude and longitude of each 

meteorological station are presented in Table 1. The meteorological stations in the 

basin are distributed across an area of approximate dimension 60 km (east – west) 

by 50 km (north-south). The interstation distances range from approximately 10 km 

to 60 km. 
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Figure 1 Geographical location of different stations in the basin 

There were a large number of missing records in the available data which were 

filled-in using a two-step procedure. In the first step, missing records for London, 

Ilderton, Foldens, Stratford and Woodstock were filled in with the mean values. 

Once the data set for these five stations was complete, the missing records for 

Embro, Dorchester, Tavistock and Fullarton were filled in. At these four stations the 

precipitation records were available but maximum temperature and minimum 

temperature records were missing for the entire period. The weighted average 

inverse distance square method was used to estimate the missing temperature data 

for these four stations. The method has the advantage in that the estimated values 

will always be less than the greatest and greater than the smallest value of the 

temperature at the surrounding stations.  The calculation of distances between 

various stations was based on the latitude and longitude of the stations which are 

shown in Table 1.  It was not possible to use the weighted average inverse distance 

square method for London, Foldens, Startford and Woodstock data as there were 
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many days in the record for which the data is missing for either one or more of the 

remaining stations i. e. Embro, Dorchester, Tavistock and Fullarton. 

 

Table 1 Station Characteristics 

S. No. Station Latitude 

(Deg N) 

Longitude 

(Deg W) 

Mean 

Ann. TMX. 

(C) 

Mean 

Ann. TMN 

(C) 

Total Ann. 

PPT (mm)

1 Foldens 143 ′o  7480 ′o  11.98 3.21 945 

2 Ilderton 343 ′o  6281 ′o  12.71 3.27 1010 

3 London 243 ′o  981 ′o  12.37 2.42 980 

4 Stratford 2243 ′o  081 ′o  11.43 2.37 1056 

5 Woodstock 843 ′o  6480 ′o  12.45 2.52 942 

6 Embro 5143 ′o  6580 ′o  11.88 2.52 984 

7 Dorchester 043 ′o  281 ′o  12.28 2.57 1035 

8 Tavistock 9143 ′o  0580 ′o  11.83 2.50 1048 

9 Fullarton 3243 ′o  7480 ′o  11.80 2.50 1013 

 

1.6 Model Application 

The K-NN model described above was applied to the data from Upper Thames River 

Basin in southwestern Ontario province of Canada. A simulation period of around 20 

times the length of historical record is generally considered sufficient to provide a 

reliable estimate of the desired statistics. Model runs were therefore carried to 

generate 800 years of synthetic weather data for various potential climate change 

scenarios. For each scenario considered, the statistics of interest are computed from 

the simulated sequence and compared to the statistics of observed record using box 

plots. Box plots are preferred method of data analysis in many applications as they 

show the range of variation in the statistics of simulations and provide a 
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straightforward method of comparing the statistics of simulations with the historical 

data. 

The statistics of interest considered here are mean, standard deviation and 

correlation coefficients of the data. The bottom and top horizontal lines in the box in 

a box plot indicate the 25th and 75th percentile respectively of the statistics 

computed from the simulated data. Median is represented by the horizontal line 

within the box. The whiskers are lines extending from each end of the box to show 

the extent of the rest of the data. The whisker extends to the most extreme data 

value within 1.5 times the interquartile range of the data. Outliers are data with 

values beyond the ends of the whiskers and have been shown by dots. The 

statistics of the historical record are represented by dots and joined by solid lines. 

The dependence nature is evaluated using lag-0 cross correlation values across the 

variables. Time dependence of variables is evaluated using lag-1 autocorrelation. 

Interstation correlations are described by pairwise scatter plots. Alternative climate 

change scenarios are described in the next section. 

1.6.1 Case 1:  Reproduction of Historic Data Statistics 

The first simulation was carried out to produce a series with nearly the same 

statistical attributes as the historic data series. A new subset of years that constitute 

the driving data for the model is obtained by using an integer function that returns 

integers between the specified upper and lower bounds. In our model, the upper 

bound was set to N, and lower bound was 1. To generate N years of data, the 

integer function was called N number of times. With this method, each year has 

equal probability of being selected. However, some years may be selected more 

than once. A new data set is thus obtained and the K-NN algorithm uses this data 

set to generate required number of years of synthetic data. Comparison of various 

statistical attributes computed from the K-NN simulations with those for the 

observed record is presented below. Results are presented for London only since 

the results for other stations are almost similar. 
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Figure 2 Box plots of monthly mean maximum temperature 

Figure 2 shows the box plots of simulated values of mean TMX values for London. 

Although the model was applied on daily data, the statistics from the daily data 

have been aggregated to the monthly timescale to facilitate presentation of the 

results. The statistics of simulations are shown by box plots while the solid lines 

with dots show the same statistics for the historical data. Comparison of historical 

monthly values with the simulated values clearly showed that the model was able to 

adequately reproduce the historical values. The model slightly underestimated the 

mean TMX for the month of April but for the rest of the months, the simulated 

values are very close to the observed historical values. This is highly satisfactory 

given the fact that monthly statistics are not explicitly specified in fitting the K-NN 

model, unlike the parametric models that are fitted separately to each month. It 

may be recalled that since the K-NN model is driven by daily weather data, 

reproduction of monthly statistics may be considered as the indication of the 

robustness of the algorithm. 
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Figure 3 Box plots of total monthly precipitation 

Figure 3 provides the box plots of total monthly precipitation for London. It can be 

seen from the box plots that the historical mean of the total precipitation is close to 

the median of the simulated data for all the months.  A number of values were 

found to lie beyond the whiskers but these outliers constitute only a fraction of the 

total number of years (800) simulated. Moreover, the outliers give an indication of 

the variety in the simulated data. The total annual precipitation simulated by the 

model (984 mm) matched very closely with the historical value (980 mm). Overall 

the performance of the model in simulating the total monthly precipitation was very 

good. 

 

Figure 4 Box plots of standard deviation of precipitation 
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Simple parametric time series models for daily precipitation often underestimate the 

standard deviation of monthly totals (Buishand, 1978, Katz and Parlange, 1998).  

Therefore, it is important to compare the standard deviations of monthly totals 

when a non-parametric technique such as the K-NN algorithm is used. The box plots 

of standard deviations of precipitation aggregated to monthly time scale are shown 

in Figure 4. As can be seen from the box plots the model satisfactorily reproduced 

the standard deviations of the historical data. 

 

 

Figure 5 Box plots of correlation between TMAX and PPT  

 

 

Figure 6 Lag-one autocorrelation of PPT at London 
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Parametric models often fail to reproduce the correlation structure among the 

variables. To evaluate the performance of K-NN algorithm based nonparametric 

model with respect to reproduction of correlation statistics, it was decided to 

analyse the correlation structure produced by the model, and to compare it with the 

historical structure. Box plots for correlation between TMX and precipitation, and 

autocorrelation of PPT are shown in Figure 5 and Figure 6 respectively. It can be 

observed from the box plots shown in Figure 5 that there is a positive correlation 

between TMX and PPT during the winter months while the correlation is negative 

during the summer months. The K-NN model adequately reproduced the historical 

correlation structure as shown by the box plots. It can be seen from Figure 6 that 

the mean values of autocorrelation coefficients for different months of historical 

record are close to 0 which implies a very weak lag-1 autocorrelation of PPT, and 

the model adequately captured this characteristic of the observed data. 

 

Figure 7 Box plots of total number of wet days 

Figure 7 shows the box plots of total number of days with precipitation events for 

London.  This statistics is important for sequences that are generated with the 

intention of use in the crop production and flood management models. It can be 

seen that the model reproduced the historical statistics very well. There was a slight 

overestimation for the months of April and September, and underestimation for 

June, however. 
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Figure 8 Comparison of observed versus synthetic interstation correlations for mean 

monthly TMX between all station pairs for four representative months 

Figure 8 shows scatter plots of interstation correlation coefficients for mean monthly 

TMX values in the simulated and the observed data. For q stations, there are 

2/)1( −qq  pairwise correlations resulting in 36 such correlation coefficients for each 

month. The scatter plots have been shown for four representative months. The 

observed correlation coefficients are plotted on the horizontal scale while the 

simulated values are plotted on the vertical scale. It can be seen from Figure 8 that 

there are strong interstation correlations between TMX values, mostly in the range 

of 0.9 to 1.0. Almost all data points lie in the close vicinity of the o45 sloping solid 

line shown in the box plots. Clearly, the performance of K-NN model in reproducing 

the historical interstation correlation structure is very good. 
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Figure 9 Comparison of observed versus synthetic correlations for monthly total PPT 

between all station pairs for four representative months 

The scatter plots of interstation correlations of total monthly PPT between the 

observed and the simulated data are shown in Figure 9. Although the correlations 

are not as strong as observed in the case of TMAX, the model reproduced the 

historical structure very well. The performance of the K-NN with regard to the 

reproduction of interstation correlations is extremely good, both for the TMX and 

PPT. It is a well known problem that parametric techniques are often unable to 

reproduce the correlation structures adequately but the manner in which the K-NN 

algorithm works makes it possible for it to reproduce extremely well both the 

temporal and spatial correlation structure. 

 

1.6.2 Case 2:  Increasing Average Temperature Scenario 

To assess the performance of water resource systems under a gradual warming 

trend over a certain period of time, a new data set comprising of years with 

increased average temperatures is required. Such a data set can be obtained by 

resampling strategically from a ranked list generated on the basis of the deviations 

of mean annual average temperature from the long term historical mean. Since an 

increasing average temperature scenario is required, the average temperature 

(TAV) for each station was calculated as a weighted average of TMX and TMIN 
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(TAV= TMX*0.6+TMN*0.4). The mean annual temperature for year i, iTAV  was 

computed for each year of the historical record. The overall long term mean of TAV 

was computed as follows.  

∑
=

=
N

i
iTAV

N
T

1

1
 

To compute the deviation for each year, the overall long term mean, T  is 

subtracted from the mean yearly value, iTAV for that particular year. On the basis 

of deviations, a ranked list of years is generated with the first rank corresponding to 

the year with the lowest deviation and the last rank corresponding to the year with 

the highest deviation. Using the integer function described earlier, index values are 

generated which directly corresponds to certain years in the ranked list. Biasing of 

certain years over others can be carried out by choosing appropriate values of the 

shape parameter l
iS . With a value of shape parameter of 3, an increase in the 

overall mean historical TMX of approximately o1 C was obtained. Once the new data 

set with increased values of TAV is obtained, K-NN model is executed to generate 

800 years of synthetic data. The results of simulation for London are presented 

through the box plots shown in Figure 10. 

  

(a)      (b) 
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  (c)      (d) 

Figure 10 Box plots for increasing TAV scenario: (a) monthly TMX, (b) total monthly 

PPT (c) correlation between TMX and PPT, and (d) autocorrelation of PPT 

 

The box plots in Figure 10 (a) clearly show that the model did produce increases in 

TMX over the historical values for all the months. The historical data here 

represents the actual observed data and not the data series obtained by using the 

index function. Increases in TMN were also seen thereby indicating that the increase 

in TAV has been achieved. This implies that with strategic resampling, the model is 

capable of producing alternative climate change scenarios with desired attributes. 

The effect of increasing TAV on total monthly precipitation is shown in Figure 10(b). 

It appears that there has been a decrease in precipitation for most of the months 

except for January, October and December when the precipitation remained nearly 

the same as the historical. Correlation between TMX and PPT is shown in Figure 

10(c). As expected, the correlation structure of historical values is preserved in the 

simulations. The correlation between TMX and PPT for winter months is positive and 

this trend has been well captured by the simulation model as shown in Figure 10 

(c). Box plots of autocorrelation coefficients for the scenario are presented in Figure 

10(d). There is a weak autocorrelation for precipitation and the model reflected this 

trend.  

1.6.3 Case 3:  Increasing Precipitation Scenario 

The next simulation was carried out to generate a scenario with increased 

precipitation over different months in a year. Resampling procedure similar to the 
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one outlined in the previous section is followed. The deviations are, however, 

computed for the precipitation rather than for the average temperature. Once the 

ranked list of years is generated, strategic resampling is carried out to bias wetter 

years over dry years to generate an increased precipitation scenario. A value of iS  

of 2 resulted in an increase of mean annual precipitation to 1033 mm while a value 

of 3 increased the mean annual precipitation to 1088 mm. The historical value of 

mean annual PPT is 980 mm. A new data set comprising of years with increased 

annual precipitation is obtained and used as the driving data set for the K-NN 

model. 

  

(a)      (b) 

  

   (c)     (d)   

Figure 11 Box plots of statistics for increasing precipitation scenario: (a) Monthly 

TMX, (b) Total Monthly PPT (c) Correlation between TMX and PPT, and 

(d) Autocorrelation of PPT 
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Figure 11 shows the box plots for K-NN simulations as well as historical values for 

the increasing precipitation scenario for 3=iS . It can be seen from Figure 11(a) that 

model produced some increase in TMX values for the month of January and 

February. As seen earlier (Figure 5) historically there is a positive correlation 

between TMX and PPT during the winter months (November, December, January 

and February). Owing to this positive correlation, increase in precipitation in January 

and February is accompanied by an increase in TMX values. There appears to be a 

slight increase in PPT for November and December but the corresponding increase 

in TMX is insignificant for these months. The maximum increase in PPT is obtained 

for September (nearly 40 mm) but similar increase in TMX is not visible, which 

might be due to the lack of correlation (Figure 11c) between historical values of 

TMX and PPT for September. Figure 11 (d) provides box plots of autocorrelation 

which clearly indicate that the historical values are adequately reproduced by the 

model. It may be recalled that the correlation structure was adequately preserved 

for the scenario of increasing TAV as well. 

It is interesting to note that the correlation structure is mostly preserved irrespective 

of the climate scenario considered. This is realistically consistent with the observed 

climate relationships, but may be viewed as an arguable drawback of the K-NN 

algorithm (Yates et al., 2003). For example, if a scenario of increasing TAV is 

considered, above average minimum temperatures may be accompanied either by 

an increase or a decrease in precipitation, which will then be a characteristic of an 

“increasing average temperature scenario”. It appears that it is not possible to 

perform true partial derivative experiments that generate climate scenarios with say, 

higher average temperatures but hold the other variables constant. Recall that with 

the K-NN algorithm, a block of values rather a single value of the variable is 

resampled. Hence, it would be difficult to produce scenarios with correlation 

structure that is significantly different to the one observed in historical record. 

1.6.4 Case 4:  Extreme Precipitation Events Simulation 

This section describes the simulation carried out to assess the performance of the 

model in reproducing the persistence character of the observed data. The output 

from weather generator developed here will be used as an input to hydrological 

models. The intent is to assess the vulnerability of the basin to floods and droughts 
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on the basis of outputs obtained from hydrological models. Particular attention is 

therefore given to the simulation of extreme precipitation events that are 

responsible for floods and droughts in the basin. Prolonged precipitation events 

during winter season combined with heavy rainfall during summer are the most 

probable cause of flooding in the basin. The ability of the model to simulate the 

occurrence of extreme events, both high precipitation and low precipitation, was 

therefore investigated. 

Figure 12 shows the box plots of total precipitation that occurred during the most 

extreme precipitation event in each year of the historical and the simulated record. 

It can be seen from the box plots that the median of the simulated data matches 

very closely the median of the historical data. The interannual variability in the 

simulated data is quite prominent with a highest total precipitation of about 240 mm 

compared to a corresponding value of around 200 mm in the historical record. 

Figure 13 shows the total number of days with zero precipitation during extreme 

event in each year of the historical and the simulated record. Again, the median of 

the simulated data matches well with the observed data although the simulation 

produced a slightly higher number of days with zero precipitation. However, the 

variety in the simulated sequences is quite evident. This clearly indicates that the 

model is capable of producing extreme events other than those observed in the 

historical record while preserving the historical mean. The reproduction of 

unprecedented extreme events by the model is crucial for the intended application 

in rainfall-runoff models. The results of analysis of extreme events further indicate 

that the tendency of wet and dry days to exhibit persistence is adequately 

represented by the model. 
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Figure 12 Box plots of total precipitation during extreme events in each year of the 

historical and simulated data 

 

 

Figure 13 Box plots of zero precipitation days during extreme events in each year of 

the historical and simulated data 

 

1.7 Summary and Conclusions 

The development and application of a generic K-NN algorithm based weather 

generator in simulating potential climate change scenarios for the Upper Thames 
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River Basin in Ontario has been presented. The observed data set for different 

meteorological stations in the basin has been completed by estimating the missing 

values of the variables. In case of an incomplete data set, application of the K-NN 

algorithm can be quite problematic. Since development of weather generator is a 

part of a larger study to develop better flood and drought management practices in 

the basin under potential climate change scenarios, the completed data can now be 

used for other applications in the basin. The output from the weather generator 

developed here can be directly used as inputs to hydrological models. 

Application of the weather generator to the data from Upper Thames River basin 

has clearly demonstrated the practicality of the approach in generating potential 

climate change scenarios for the basin. A major advantage of the approach is that 

non Gaussian features in the probability distribution of the variables are retained. As 

such, no prior assumptions regarding the probability distribution of the variables is 

required in the algorithm. Comparison of observed and synthetic clearly indicated 

that the model performance was very good with regards to reproduction to various 

statistics of interest to a hydrologist. Important properties of precipitation spell 

structure and amounts were preserved. Spatial and temporal dependencies were 

also well preserved which is the most distinguishing feature of the model presented 

here as most parametric techniques are unable to reproduce the correlation 

properties of the observed data series. The ability of the model to reproduce the 

correlation structure is particularly important for erosion, crop production and 

rainfall runoff models where the output of these models is greatly impacted by the 

right combination of meteorological variables. 

Although the K-NN algorithm was designed to model daily statistics, the monthly 

statistics also appear to be reproduced adequately for the application presented 

here. Adequate reproduction of monthly statistics can be viewed as a challenging 

test of the statistical properties of the daily weather generator described here. A 

distinct practical advantage of the model developed here is that it is fairly generic 

and hence easily transportable to any other basin with very few modifications. 
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