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Abstract—Few-shot image classification (FSIC) is a computer
vision task from the few-shot learning (FSL) category in which
the model learns to classify images using only a few training
samples. It has been demonstrated that even neural networks
trained on large scale datasets are vulnerable to adversarial
samples. This vulnerability is magnified in FSIC due to the
low volume of training data. This paper proposes the use of
hypersphere embedding and supervised contrastive learning to
improve the adversarial robustness of representation learning-
based FSIC. Contrastive learning contributes through its ability
to bring together similar samples while pushing away dissimilar
ones. On the other hand, hypersphere embedding has been
successful in the representation learning tasks by restricting the
embeddings to a hypersphere manifold. The proposed approach
was evaluated on both 5-shot and 1-shot learning using two stan-
dard FSL networks and the standard Mini-ImageNet benchmark
dataset. The evaluation shows that supervised contrastive training
provides inherent adversarial robustness to the FSIC model while
hypersphere embedding with cosine distance metrics improves
the accuracy of the FSIC model and, when used in conjunction
with an adversarial defense mechanism, boosts the adversarial
performance.

Index Terms—Few-shot learning, Adversarial defense, Con-
trastive Learning, Hypersphere embedding

I. INTRODUCTION

Neural networks have become the de-facto standard for
many computer vision tasks due to their state-of-the-art per-
formance. Training a deep neural network requires abundant
data [1], but such data are often not readily available, and, at
times, obtaining large labeled data is costly. This gave rise to
Few-Shot Learning (FSL), a sub domain of machine learning
that tries to develop algorithms that are able to learn from
fewer training samples. FSL is predominantly present in the
computer vision domain, specifically in image classification
where Few-Shot Image Classification (FISC) aims to train an
image classifier with only a few training samples.

FSL approaches can be categorized into two main classes:
representation learning approaches and meta-learning ap-
proaches. Representation learning approaches learn a la-
tent representation in embedding hyperspace where different
classes are expected to be separable [2]. On the other hand,
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meta-learning approaches train a meta model with multiple
FSL tasks and then fine tune that meta model to adapt it for
a new FSL task at hand [3]. Both, representation and meta-
learning approaches, use a neural network as the base learner.

Several studies have shown that neural networks are vulner-
able to adversarial samples [4], [5]. Adversarial samples are
carefully crafted input data instances created to fool a model
and cause it to output a wrong prediction; however, these
samples look normal to the human eye due to the imperceptible
nature of the perturbations. Neural networks trained under
FSL settings are more prone to adversarial attacks due to the
reduced number of training samples [6] which makes FSL
models an easy target for adversarial attacks. Hence, it is
essential to investigate and design adversarially robust FSL
models that are robust against adversarial attacks while main-
taining the ability to learn from a few samples. Adversarially
robust FSIC is a very challenging area since it combines two
challenging tasks, namely training a model using less data and
making that model robust to adversarial attacks.

A few studies have been conducted in the domain of
adversarially robust FSIC [6]-[8]. Most of them are based
on the meta-learning [7], [9], except for Dong et al. [8] who
focused on the representation learning class of algorithms.
While these works have made significant progress towards the
adversarial robustness of FSIC models, given the hard nature
of the problem, further advancements are needed to ensure the
adversarial robustness of FSIC models.

The concept of representation learning is not restricted to
FSIC; it can be seen in other domains such as face recog-
nition [9] and person re-identification [10]. For these tasks,
prior works have shown that constraining the representation
embedding space to a hypersphere manifold can improve the
performance [11]-[13]. Furthermore, Pang et al. [14] have
demonstrated that in image classification tasks hypersphere
embeddings (HE) can boost the adversarial robustness when
used together with adversarial training.

Another technique widely used in representation learning
is contrastive learning (CL) [15]. The goal in CL is to learn
a representation of data such that similar samples are close
together in the embedding space, while dissimilar samples are
far apart. More specifically, in supervised CL [16], the goal is
to ensure that the intra-class distance is lower than the inter-

2023 International Conference on Machine Learning and Applications (ICMLA) DOI 10.1109/ICMLA58977.2023.00041

https://ieeexplore.ieee.org/document/10459996

IEEE Copyright https://www.ieee.org/publications/rights/copyright-policy.html



class distance. By training with a target of increasing inter-
class distances, CL is able to create a buffer zone between
class boundaries in the representation space. Intuitively, this
buffer zone could make it more difficult to create adversarial
samples that can crossover to the other side.

Therefore, given the success of HE and CL in other repre-
sentation learning tasks, this paper proposes HE latent space
mapping and supervised CL for representation learning-based
FSIC, with the aim of improving the adversarial robustness of
the FSIC models. This study answers the following questions:
Does CL or HE provide adversarial robustness to FSIC without
requiring an explicit adversarial defense mechanism? Does CL
or HE boost the performance of adversarial defense techniques
in FSIC? Can the use of HE improve the (natural) accuracy of
the representation learning FSIC techniques? The main con-
tributions are i) integrating CL and HE into FSIC ii) showing
that CL increases the FSIC accuracy and provides adversarial
robustness, and iii) demonstrating that HE improves FSIC
when used with adversarial training.

This paper is organized as follows: Section II provides
background information, Section III reviews related works,
Section IV presents the proposed techniques, and Section V
discusses results. Finally, Section VI concludes the paper.

II. BACKGROUND

This section presents an overview of a few-shot learning,
adversarial sample generation, and adversarial training.

A. Few-Shot Learning

Few-shot image classification (FSIC) is a task of training an
image classifier using only a few training samples per class,
typically 1,5 or 10. The data for the FSL model consists of two
disjoint datasets Dy q4n, and Dyes; containing non-overlapping
sets of classes with Ky, and Ky, classes respectively. The
model is trained by simulating multiple few-shot tasks. First,
from Dy,q;n, dataset, k classes are sampled, and then from each
of these k classes, n sample (support) images are randomly
selected to train the model and ¢ query images to calculate
the loss. One round of training and calculating the loss is
considered one training episode of a k-way n-shot classification
task. The model is trained on multiple such episodes, each
time randomly sampling k£ new classes and n samples for each
class. During the evaluation, k classes are sampled from D¢,
and n support images are sampled for each of these classes
— These data are used to “fine-tune” the model. Next, the
accuracy of this model is calculated using ¢ query images
belonging to the selected k classes. The fine-tuning together
with accuracy calculation is known as a test episode. The final
reported accuracy is the accuracy over multiple test episodes.

As already mentioned, meta-learning and representation
learning are the main categories of FSL approaches. Meta-
learning approaches train a meta model with multiple few-
shot learning tasks and then adapt that meta model for the
new FSL task: Model-Agnostic Meta-Learning (MAML) [3]
is a widely adapted approach from this category. In contrast,
representation learning approaches learn a latent embedding

space in which embeddings of a class are expected to be
clustered together: the prototypical network [2] is a well
known approach from this category.

The prototypical network passes each of the images through
a neural network and generates a latent representation of the
particular image. Resulting latent representations of n support
images are used to generate the prototype for each class by
taking the mean of the image representations. Additionally, ¢
query images are also embedded in the latent representation
space. The network trains over many episodes and multiple
epochs with the objective of minimizing the distance between
the prototype and the queries of a particular class. During the
evaluation, the n support images from each of the k classes
from D, dataset are used to generate the prototypes and the
q query images are used to test the classification accuracy. As
the goal of our study is to improve the adversarial robustness
of representation learning-based FSL models, the experiments
are conducted using prototypical networks [2].

B. Adversarial Samples and Adversarial Training

Adversarial samples are created by adding small noise,
non-perceptible to a human, to the original image with the
objective of making a trained neural network misclassify a
given input image. Hence, to the human eye, the image still
appears the same. Szegedy et al. [4] were the first to report
the vulnerability of the neural networks to such attacks. Since
then many adversarial sample generation techniques have been
proposed such as Fast Gradient Sign Method (FGSM) [5] and
Projected Gradient Descent (PGD) attack [17].

Adversarial samples are commonly used to evaluate the
adversarial robustness of a model: in our study samples were
generated with PGD attack [17]. PGD was selected as it is a
strong multi-step whitebox attack that has been used for evalu-
ation in previous works [6], [8]. In PGD, adversarial examples
Tady are generated by iteratively altering the legitimate sample
x; starting with a uniform random perturbation on [.,-norm
hypersphere S around the legitimate sample. In each iteration,
the adversarial samples are altered with an « step size based
on the gradients V of loss function £y between target output
y and the network output generated from current adversarial
sample ', , while restricting the perturbations to a maximum
allowed e perturbation in the [,.-norm bound. One timestep
of the iterative PGD alteration is expressed as follows:

ahih = s (2ha, + - sign(Vae, Lo(ha,w)) ()

Adversarial samples can be repurposed to make a model robust
through adversarial training which is one of the basic and
intuitive defense mechanisms against adversarial attacks [5].
In adversarial training, adversarial samples with correct labels
are available during training to ensure that the model learns
to classify the adversarial samples by learning adversarially
robust features. However, the main drawback of such training
is that it only defends the network against a particular type
of adversarial attack that was used in training, leaving the
network vulnerable to other types of adversarial attacks. Ad-
versarial training can be viewed as a min-max problem [17]:
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Here, D is the data distribution with pairs of input samples
x and labels y. The perturbation § is added to the legitimate
sample x, and it is constrained in an [,-norm hypersphere of
radius e. The neural network parameters are 6 while £ is the
loss. First, the adversarial samples are chosen by maximizing
the loss, and then the loss is minimized with respect to the
generated adversarial samples and correct labels .

III. RELATED WORK

This section reviews recent works in adversarially robust
FSL, contrastive learning, and hypersphere embedding.
Adversarially Robust FSL. Adversarially robust FSL tries
to correctly classify both legitimate and adversarial samples
in a few-shot learning scenario. ADversarial Meta-Learner
(ADML) [7], a MAML variant specifically designed for
robustness, was the first work to introduce the concept of
adversarially robust FSL. ADML integrated meta-learning and
adversarial training; specifically, Fast Gradient Sign Method
(FGSM) was employed for adversarial sample generation and
adversarial training. Wang et al. [18] proposed an approach
for improving adversarial robustness using unlabelled (semi-
supervised) adversarial sample generation at the meta-update
level and showed that this technique offers fast and effective
robustness adaptation for MAML-based models. They also
showed that introducing an auxiliary CL task can boost ad-
versarial performance. Another recent technique for MAML-
based models is ITS-MAML [19]: ITS-MAML showed that
introducing adversarial loss into the MAML framework re-
duces the intrinsic dimension of features, which results in the
drop of clean accuracy. They proposed the increase of n in
n-shot to mitigate this drop; however, that moves the solution
away from a typical fixed-shot FSL.

While approaches discussed so far build on the meta-
learning paradigm, Goldblum et al. [6] considered both meta-
learning-based FSL, and representation learning-based FSL.
First, through extensive experiments using multiple attacks,
they showed that naturally trained FSL models collapse under
adversarial attacks. Then, they proposed to do adversarial
learning by introducing adversarial samples in the querying
stage of meta-learning. The work of Dong et al. [8] is the
first work that explicitly tries to make representation learning-
based FSL robust to adversarial attacks. They proposed an
approach that learns an adversarially robust representation by
using an auxiliary adversarial aware classification module, a
feature purification module, and adversarial (instance-wise) re-
weighted training.

Contrastive Learning (CL). CL helps the model to differenti-
ate between classes by contrasting representations of samples
in a latent space. Even in a self-supervised setting, a CL-
based method [15] outperformed supervised image classifiers
by a great margin with the use of a framework for CL of
visual representations (SimCLR). Li et al. [20] bridged CL
with clustering by introducing a new loss that encourages

representations to be closer to their assigned prototypes. Also,
recent works [21], [22] proposed CL-based frameworks to
improve the performance of FSIC. However, these works have
not evaluated the robustness against adversarial attacks. Jiang
et al. [23] presented three variants of adversarial CL frame-
works by learning representations that are consistent under
adversarial perturbations. However, they have not evaluated
the applicability of their framework for the FSL paradigm.
The exploration of CL techniques for improving adversarial
robustness in FSL problems has been very limited and further
investigation is needed due to the potential of CL to increase
distance between classes.
Hypersphere Embedding (HE).The concept of restricting the
representation of an image to a hypersphere manifold can be
seen in a few works which try to learn a feature representation
of an image such that representations belonging to the same
class are clustered together. SphereFace [11] embeds a facial
feature representation on a hypersphere and uses angular
softmax to achieve better performance than existing works
in face recognition. Arcface [12] improved the SphereFace
approach by introducing additive angular margin to the HE
which increased intra-class compactness. HyperSphere Mani-
fold Embedding (HSME) [10] and SphereRelD [13] proposed
two approaches for the person re-identification task which
entails learning a discriminatory feature vector given an image
of a person. Both approaches [10], [13] include the concept
of transforming the representations to ensure that the feature
representation lies on a hypersphere manifold. The work of
Pang et al. [14] is especially relevant in our context as they
have shown that using HE together with adversarial training
can boost the performance of adversarial training in regular
image classification tasks; however, they did not consider FSL.
While adversarially robust FSL studies dominantly focus
on the meta-learning category, we consider representation
learning-based FSL. Although CL improved the performance
of FSIC [21], [22] and demonstrated increased robustness
against attacks with large training datasets [23], these studies
did not examine CL’s ability to increase robustness against at-
tacks in FSIC. Moreover, we further add HE as it demonstrated
success in other representation learning tasks.

IV. METHODOLOGY

This section presents the proposed approaches, CL and HE
for FSL adversarial robustness

A. Contrastive Learning for Adversarial Robustness

SimCLR [15] contrasts the representations of samples in a
latent space, by contrasting a single positive (an augmented
view of an image) against a set of negatives consisting of
the entire remainder of the batch. The SimCLR approach was
later extended to the fully-supervised setting [16] by lever-
aging the additional label information resulting in improved
accuracy. Supervised CL (SupCL) [16] uses multiple positives
to contrast in addition to multiple negatives unlike SimCLR
[15]. Moreover, the label information makes sure that positive
samples are not considered as negatives, which could happen



in SimCLR. The idea behind SupCL is to pull together samples
belonging to the same class and to push apart clusters of
samples from different classes. This property of increasing
inter-class distance to a value greater than intra-class distance
is leveraged in our work for FSIC and we examine if it could
also improve adversarial robustness. Since FSIC is treated as
a supervised learning problem, SupCL is better suited for our
study than SimCLR.

In original SupCL [16], given an input batch of images,
authors create two copies of batches by augmenting the
samples, and both copies are forward propagated through the
encoder network which generates 2048 dimensional embed-
ding for each sample. These embeddings are further passed
through a projection network which creates a 128-dimensional
representation and the supervised loss is computed on these
representations.

In our method, an encoder model Enc(.) is used to generate
a latent representation for the input sample x as r = Enc(z) €
RP=, where Dg is the dimension of the embedding. The
encoder is followed by a projection network Proj(.) as in
SupCL [16], with two linear layers and ReLU non-linearity
followed by an 5 normalization which ensures that the vector
z = Proj(r) € RP?, where Dp is the dimension of the pro-
jection head output, lies on the surface of a unit hypersphere.
Similar to SupCL [16], this projection network is employed
only during the training and discarded during inference. Thus,
there are no architectural changes to the Enc(.).

In a k-way n-shot FSIC episode, the support set is used to
create class prototypes, and the embeddings generated from the
query set are used to calculate the loss. In contrast to SupCL
[16], we do not use an augmentation module; instead, a batch
which consists of the embeddings generated from the query set
is passed through Proj(.) together with k class prototypes, to
calculate the SupConLoss. We use projected class prototypes
as anchors, projected query embeddings generated from the
same class as positives, and projected query embeddings gen-
erated from different classes as negatives. The intuition behind
this is to learn an embedding model which can gather query
samples around their corresponding class prototypes while
pushing away the prototypes which do not belong to the same
class as shown in Figure 1, creating a buffer zone between
class boundaries. Thus, SupConLoss can be reformulated as:
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For a k-way n-shot problem, ¢, referred to as an anchor, is
selected from the set of k class prototypes, @ is the query set,
and P = {p € Q : y, = y;}, where |P| = k is the set of
positives in the query set @ which has the same class label
as anchor ¢. The projection of embedding generated from i-th
sample is z;, symbol - denotes the inner (dot) product, and 7
is a positive scalar temperature parameter.

Inspired by the work of Yang et al. [22], instead of
backpropagating the pure Cross Entropy Loss (CEL) as in
prototypical network [2] to train the embedding model, we

Pull together
Push apart

tt

Dog class prototype
Bird class prototype
A Sloth class prototype

Dog image query embedding
Bird image query embedding
A\ Sloth image query embedding

Fig. 1. Pulling together embedding representations of the same class and
pushing apart representations of different classes.

backpropagate a weighted sum of CEL and the SupConLoss,
to add contrastive power to the classifier. The total loss is:

Etotal — qL5uP + 6£cel (4)

Here a, 3 are weights to prioritize one loss over the other.

B. Hypersphere Embedding Latent Space

When proposing the prototypical networks, Snell et al. [2]
evaluated cosine distance and Euclidean distance in the latent
space as the distance metrics. They empirically showed that
the Euclidean distance performed better, but it is important
to note that the latent space in the original prototypical
networks is unconstrained space as shown in Figure 2 (Left).
Although Euclidean distance can better separate classes in
an unconstrained latent space, studies in the face recognition
domain [11], [12] demonstrated that cosine distance, when
used with a latent HE space can outperform Euclidean dis-
tance in an unconstrained space. Hence, we combine HE and
prototypical networks with cosine distance as the distance
metric to examine if such architecture can improve adversarial
performance in adversarial training. Moreover, this study ex-
amines if restricting the embeddings to a hypersphere manifold
and using cosine distance improves the natural accuracy of
prototypical networks.

Restricting the embeddings to a hypersphere latent space
shown in Figure 2 (Right) is achieved by following Sphereface
[11] and Arcface [12]. First, the bias of the last layer bl is set
to 0 to ensure that the embeddings are distributed around the
origin. Then, the transformation of the last layer is modified

\‘Z:\/ i 7\\<l/j
/ LN
A
// [i pR
/// A\‘Ae/*A \\\
A/ \A

Fig. 2. Left: Image embeddings in a 2D unconstrained latent space. Right:
Image embeddings in a 2D hypersphere (circle) latent space.



such that it depends on the angles between weights and the
input features. Let the output of the penultimate layer be zf -1
for i-th sample, ziL_l € R? where d is the dimension of
the embedding. Let the weight matrix of the last layer be
W where W} is the j-th column of the weight matrix

(W]-L € R%). The vector multiplication operation of the last

linear layer WjLT -z~ " is modified as ||[WE |||z}~ "|| cos 0},

where 6 is the angle between WjL and zlL ~1. The individual
columns of the last layer weight matrix and the input features
to that layer are restricted to a magnitude of 1 through [y
normalization. The normalization makes ||WJLH = 1 and
|zE|| = 1; hence, this ensures that the predictions only depend
on the angle between the feature and the weight. Thus, the
learned embedding features are distributed on a hypersphere
manifold with a radius of one. The loss of the HE approach

1S:
£C0s 0y,

Lup = —log—x
j=1

o8 Gyj (5)

However, the above mentioned steps cannot be directly
applied to prototypical networks because the conventional net-
work architecture in prototypical networks (Conv4-64) is fully
convolutional and the output is a flattened feature representa-
tion of the last convolution block. Hence, the weight matrix
normalization cannot be done at the last layer. To address this
issue, we keep the embedding network as it is, treat its output
as z~1, and introduce a fully connected layer with weight
matrix W%, This newly introduced fully connected layer is
treated as the last layer of the new configuration and we
proceed with the previously mentioned steps.

While the vanilla HE approach ensures that the embeddings
lie on a hypersphere manifold, it does not guarantee intra-class
compactness. To ensure intra-class compactness, we follow
Arcface [12] and introduce an additive angular margin. As
shown in Equation 6, the penalty is applied to the correct class,
hence the network is forced to learn a representation that holds
embeddings belonging to each class within the bound of m,
thus ensuring intra-class compactness during training.

eCos (04, +m)

ecos (0y,+m) + Zj‘v—l-j7£i £°08 Gyj

Larc - —109 (6)

Both Lyg and L, limit the radius of the hypersphere
to one which can result in computation limitations when
calculating derivatives due to the finite numerical precision of
discrete computing platforms. Hence, to circumvent this, we
multiply the output logits of the last layer by a scale factor
s before applying Softmax as done by Deng et al. [12]. The
scaled version of the loss function becomes:

s cos (Gyi +m)

cos (0, +m) N s cos 0,
se v + Zj:l;j;éi e /
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The additive angular margin helps achieve intra-class com-
pactness. In an attempt to further improve the model, the
third variant Lj;y,—qrc is introduced where the margin m is
linearly increased from O to an upper bound M during the
training process. This ensures that the compactness constraint

is enforced gradually, making it easier for the network to learn.
In experiments, the modified prototypical network (protonet)
is trained with the three losses Lyg, Lares Liin—are» and
their scaled variants to investigate if these losses improve the
performance of prototypical networks.

As we are interested in determining if HE can boost the per-
formance of the adversarial defense, adversarial training was
employed. Adversarial samples were generated using PGD
attack [17] and then used as training query samples similar
to the strategy presented by Goldblum et al. [6]. Specifically,
two strategics were considered: In the first adversarial training
strategy, only adversarial samples are used as queries to train
the network while in the second strategy, adversarial samples
together with legitimate samples are used as queries to train
the network. In the first strategy, complete priority is given to
adversarial performance and corresponding loss L,4,. While
this is expected to improve the adversarial accuracy of the
model, it will also reduce the clean accuracy (accuracy when
evaluated using legitimate samples) as shown by previous
works [6], [8]. In the second strategy, joint 10ss Ljoint—adv
can achieve a trade off between clean accuracy and adversarial
accuracy by varying the weight parameter A. The two losses
for a single episode are formulated as:

ef@(zJF‘g)y

Logy = —log—e———— 8
’ Ong‘v:l efo(z+0)y (8a)
e.fﬁ(w)y
Ljoint—adv = —lOgN— +A- Ladw (Sb)
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where x and y are the training samples and corresponding
labels respectively. The transformation function of the neural
network parameterized by 6 is given by fy and the adversarial
perturbation added to the training samples is given by 0.

V. EVALUATION

This section introduces the dataset and the experimental
setup followed by the corresponding results and discussion.

A. Dataset and Experiment Setup

Dataset. The presented techniques were evaluated on the
widely-used Mini-ImageNet few-shot benchmark dataset [24]
which consists of 100 classes, each one with 600 RGB images
of size 84 x 84. From those classes, 80 random classes are
assigned to Dy,.qin and the remaining 20 to Diest.
Neural Networks. The evaluation was carried out on the two
standard FSL evaluation networks: Conv4-64 and Resnet 12.
Conv4-64 network is a CNN network with four convolutional
blocks. Each convolutional block has a 2D convolutional layer
(with 64 output channels, kernel size 3, padding of 1, stride of
1), a batch normalization layer, ReLU activation, and a 2 x 2
max-pooling layer. As described in Section IV-B, we append
a fully connected (FC) layer, with the same output and input
dimensions, to the end of this network for HE evaluations.
The second network architecture, Resnet 12, is the 12 layer
Resnet variant [25]. It has four Resnet blocks. Each Resnet
block has three 3 x 3 convolution layers with varying number



of output channels (64, 160, 320, 640) in each block. Skip
connections are present between start and end of a block.
We introduced an additional FC layer similar to the one
added to Conv4-64 for HE evaluations. This additional FC
layer gives the HE model the advantage of having more
trainable parameters; hence, to ensure a fair comparison, for
experiments without HE, additional architecture is considered:
base architecture + FC layer (without HE constraints).
FSL Setup. All architectures were evaluated under both
5-way 5-shot and 5-way 1-shot settings. The training and
testing settings were the same as in the original prototypical
networks [2]. For the 5-way 5-shot training, a support set
of 20-way (Kkirqin = 20) episodes for 5-shot (nrqin = 5)
classification tasks and a query set with each class consisting
of 15 query images (q¢rqin = 15) were used. For testing, a 5-
way (kest = D), 5-shot (n..s¢ = 5) setting with a single query
sample (giest = 1) was employed. Similarly for the 5-way 1-
shot training, a support set of 20-way (kirqin = 20) episodes
for 1-shot (nyrqin, = 1) classification tasks and a query set
with each class consisting of 15 query images (rqin = 15)
were used. For testing, a 5-way (k¢est = 5), 1-shot (n4es¢ = 1)
setting with a single query sample (q;.s: = 1) was employed.
For both setups, each training epoch consisted of 100 train
episodes, and in the evaluation, the network was tested on
2000 test episodes and the average accuracy is reported.
Other Implementation Details. For adversarial training, the
PGD parameters were ¢ = 8/255, o = 2, and steps = 7,
and for adversarial attack e = 8/255, o = 2, and steps = 20
which are the same as in the previous works [6], [8]. For
CL, the temperature parameter was 7 = 0.07 and weights of
Equation 4 were a = 1 and 5 = 1. The additive angular
margin was m = 0.5rad and for scaling the the hypersphere
radius was s = 64 as in the study of Deng et al. [12]. In joint
adversarial training, the scaling coefficient A was A = 0.5.
While A is a hyperparameter to obtain a trade-off between
clean and adversarial accuracy, experiments evaluate only one
value to show that the results lie between natural training and
adversarial training cases. In all experiments, the networks
were trained for 80 epochs, with a learning rate of 0.001 and
Adam optimizer [26].
All the networks and the FSL setups were evaluated under
three settings:
1) Natural training — training using legitimate samples in a
traditional way.
2) Adversarial training — training using PGD adversarial
samples as queries as shown in Equation 8a.
3) Joint adversarial training — training using both legitimate
and PGD adversarial samples as queries as shown in

Equation 8b.
The accuracy on legitimate test images is referred to as

clean accuracy and the accuracy under PGD attack as adver-
sarial accuracy.

B. Results

Tables I and II show results for Conv4-64 and Resnet 12
respectively. All the results are presented as percentages (%).

1) Contrastive learning results: The first two rows of Table
I compare the supervised CL (Protonet+CL) to a vanilla proto-
typical network for Conv4-64 architecture (Protonet). Protonet
achieved a clean accuracy of 63.10% I: however, under PGD
attack, vanilla protonet completely breaks down and achieves
0% adversarial accuracy. Adding CL increases clean accuracy
to 64.05% which is about 1% increase. More importantly,
the adversarial accuracy improves from 0% to 5.19% without
any explicit adversarial defense mechanism. When adversar-
ial training is introduced, both the vanilla protonet and the
protonet with CL improve in terms of adversarial accuracy
but this comes with a drop in clean accuracy. Furthermore, it
can be observed that the results of joint adversarial training
lie in between natural training and adversarial training results.
Varying the A parameter in Equation 8b can control the trade
off between clean and adversarial accuracy.

Similar trends can be observed for a 5-way 1-shot setting as
well. Vanilla protonet does not offer a significant adversarial
accuracy (0.08%) but introducing CL increases adversarial
accuracy to 25.12% while also marginally improving clean
accuracy. Unlike the 5-way 5-shot setting, in the 5-way 1-shot
setting, protonet with CL and adversarial training outperforms
vanilla protonet with adversarial training in terms of both
clean and adversarial accuracy. However, protonet with CL
and adversarial training does not outperform naturally trained
protonet with CL in either metric. Further, as expected, the
results of joint adversarial training lie in between natural
training and adversarial training results as in the 5-way 1-shot
setting.

Similar observations can be made from Resnet 12 results
presented in Table II. Under both 5-way 5-shot and 5-way
1-shot settings, the introduction of CL in the natural training
setting improved the natural accuracy from 61.90% to 66.88%
and from 34.85% to 48.12% respectively, and significantly
improved the adversarial accuracy from 0.00% to 48.69%
and from 2.15% to 37.94% respectively. Further, combining
CL with adversarial training does not provide any additional
benefit over natural training with CL.

2) Hypersphere embedding results: The second part of
Table I examines the performance of HE with Conv4-64. As
mentioned in Subsection V-A, this method is compared to a
prototypical network with a fully connected layer at the end
for a fair comparison. Examining 5-way 5-shot results, the
protonet with FC layer and Euclidean distance (ProtoNet+FC
in the table) achieves a clean accuracy of 64.3%, but as in the
case of vanilla protonet, it completely fails under PGD attack.
Introducing HE achieved a clean accuracy of 59.48% which
does not outperform the protonet with FC layer and Euclidean
distance on its own. Adding angular margin (Protonet+Arc)
resulted in a minimal change while with additive angular
margin and scaling (Protonet+Arc+Scale), protonet achieved

The original paper reported 68.20% 5-shot accuracy. Our reproduction
achieved 63.10% which could be due to the hardware platform, library
versions, or the fact that we did not do model selection using a validation set.
In this work, we compare our proposed approaches (trained under the same
conditions) against our reproduction.



TABLE 1
COMPARISON OF THE PROPOSED APPROACHES WITH BASELINES — NETWORK ARCHITECTURE: CONV4-64

| 5-way 5-shot | 5-way 1-shot
Method Distance Natural Adversarial Joint adv. Natural Adversarial Joint adv.
Training Trainng Training Training Trainng Training
Clean Adv. Clean Adv. Clean Adv. Clean Adv. Clean Adv. Clean Adv.
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.
Protonet Euclid. 63.10 0.00 37.85 22.16 50.78 15.24 41.98 0.08 26.11 15.79 30.80 13.52
Protonet + CL Euclid. 64.05 5.19 41.46 25.52 51.16 16.92 42.72 25.12 29.18 17.91 28.99 11.61
Protonet + FC Euclid. 64.30 0.00 43.51 27.09 51.68 13.88 42.80 0.03 28.70 17.21 32.43 14.98
Protonet + HE Cosine 59.48 0.00 49.96 29.53 55.10 16.90 41.86 0.01 33.57 21.48 40.50 10.88
Protonet + Arc Cosine 59.62 0.00 49.93 29.89 54.70 15.97 42.65 0.02 34.25 21.26 39.44 10.46
Protonet + Arc + Scale Cosine 69.23 0.00 49.83 29.16 56.71 15.30 46.46 0.04 32.65 21.86 40.26 12.67
Protonet + Lin Arc Cosine 59.33 0.00 49.69 29.65 54.47 16.31 42.45 0.01 33.25 20.89 39.97 11.89
Protonet + Lin Arc + Scale  Cosine 69.68 0.00 51.11 29.90 57.46 14.56 46.24 0.02 33.02 21.79 40.48 12.69
Legend: CL — contrastive Learning; FC — fully connected layer; HE — Hypersphere embedding; Arc — additive angular margin;
Scale — logits scaled after adding the margin; Lin Arc — linearly scheduled additive angular margin;
TABLE I
COMPARISON OF THE PROPOSED APPROACHES WITH BASELINES — NETWORK ARCHITECTURE: RESNET 12
| 5-way S-shot | 5-way 1-shot
Method Distance Natural Adversarial Joint adv. Natural Adversarial Joint adv.
Training Trainng Training Training Trainng Training
Clean Adv. Clean Adv. Clean Adv. Clean Adv. Clean Adv. Clean Adv.
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.
Protonet Euclid. 61.90 0.00 37.97 17.15 52.95 10.15 34.85 2.15 26.29 10.89 31.19 6.70
Protonet + CL Euclid. 66.88 48.69 41.98 14.14 56.46 7.12 48.12 37.94 31.49 7.21 34.99 5.37
Protonet + FC Euclid. 48.27 0.02 41.93 1.08 42.51 0.15 29.53 0.77 28.92 0.08 23.95 0.09
Protonet + HE Cosine 54.21 0.00 51.69 26.96 54.61 13.32 45.12 0.00 34.62 21.22 41.54 9.85
Protonet + Arc Cosine 55.00 0.00 51.15 26.25 54.92 13.79 45.90 0.00 34.47 20.05 39.43 11.83
Protonet + Arc + Scale Cosine 65.27 0.00 53.30 31.62 57.97 10.54 52.25 0.00 36.98 22.53 43.79 12.44
Protonet + Lin Arc Cosine 55.10 0.00 52.34 26.29 55.69 12.66 46.25 0.00 34.87 21.18 41.90 10.90
Protonet + Lin Arc + Scale  Cosine 65.46 0.00 54.08 31.89 54.45 6.28 51.81 0.00 37.20 22.89 45.40 12.14

69.23% clean accuracy and outperformed other variants in
terms of clean accuracy. Replacing additive angular margin
with linearly scheduled additive margin (Lin) achieved very
similar results.

None of the HE variants provided any inherent adversarial
robustness like CL did; however, our quest was to also examine
if HE can boost other adversarial defense mechanisms. As
expected, when used together with adversarial training, the
Protonet+HE model achieved a clean accuracy of 49.96% and
adversarial accuracy of 29.53% compared to 43.51% clean
accuracy and 27.09% adversarial accuracy of the non HE
variant. This is ~ 6.5% and ~ 2.5% improvement in terms
of clean and adversarial accuracies respectively. These results
show that HE does boost the adversarial training performance
under the FSL setting.

Looking at the 5-way 1-shot results in Table I, similar
performance gains can be observed. While protonet with HE
does not outperform protonet with FC layer in natural training,
it boosts both clean and adversarial accuracies by ~ 5%
and ~ 4% under adversarial training. When additive angular
margin and scaling are introduced to the HE variant, the model
outperforms the FC counterpart.

The second part of Table II shows the performance of HE
with Resnet 12. The main difference in comparison to Table I

is that introducing an additional FC layer results in a signifi-
cant drop in naturally trained clean accuracy compared to the
vanilla protonet. This drop is observable in both 5-shot and 1-
shot settings. However, with HE constraints, additive angular
margin, and scaling, the model improves and outperforms
the vanilla protonet variant by achieving 65.27% and 52.25%
for 5-shot and 1-shot respectively. Similar to the Conv4-64
network, introducing HE constraints significantly boosts both
clean and adversarial accuracies under adversarial training in
Resnet 12 as well.

A common observation from both tables I and II is that
linearly scheduling the additive angular margin (Lin Arc) does
not offer any clear advantage over the rigid additive angular
margin (Arc). Another common observation is that joint adver-
sarial training in most of the tested scenarios achieves results
that lie in between natural training and adversarial training
results just like in the CL setting.

C. Discussion

The goal of this study is to examine CL and HE abilities
to inherently provide adversarial robustness or to boost adver-
sarial performance when used in conjunction with a defense
mechanism. The proposed techniques were examined using
protonet [2] with two different neural network architectures
and under two FSL settings.



The first key takeaway from the CL results is that CL im-
proves the clean accuracy of the prototypical networks and also
provides inherent adversarial robustness to the prototypical
networks. The reason for this is the CL algorithm’s ability
to increase the distance between an anchor and a negative
further than the distance between the anchor and the positive.
Through this step, the algorithm is essentially increasing inter-
class distances, which is making it difficult for the PGD attack
to fool the network. The next takeaway is that combining
adversarial training with CL does not outperform natural
training with CL. Also, we showed that joint adversarial
training can be used when a trade off has to be achieved
between clean and adversarial accuracy.

The main takeaway from HE results is that HE does not
provide inherent adversarial robustness as CL does. However,
introducing HE constraints improves both clean and adver-
sarial accuracies when used with a defense mechanism such
as adversarial training. Next, introducing HE constraints and
additive angular margin with scaling improves the performance
of vanilla protonet, and finally, joint adversarial training can
be used when a trade off needs to be achieved between clean
and adversarial accuracy.

The research direction of our work is orthogonal to the
works discussed in Section III; hence, we believe, that our
techniques can be combined with other defense mechanisms
(that can be applied in a representation learning context). Fur-
ther investigation is needed to explore the presented techniques
with other defense mechanisms.

VI. CONCLUSION

Ensuring adversarial robustness in FSL is a critical but
challenging problem due to the small number of training
samples. This paper improves the adversarial performance of
representation learning-based FSL by incorporating CL and
HE with protonet, driven by the success of those approaches in
related representation learning tasks. Supervised CL increases
inter-class distance more than the intra-class spread, while HE
with additive angular margin ensures intra-class compactness.
The evaluation answers the research questions stated in Section
I. Experiments showed that CL provides inherent adversarial
robustness to the examined FSL models, while HE does not.
However, the evaluation also demonstrated that HE, when
used in conjunction with an adversarial defense mechanism,
boosts the performance of the defense mechanism. Finally,
we showed that HE with cosine distance improves the natural
accuracy of the considered representation learning-based FSL
technique, the protonet.

Future work will examine combining advanced defense
mechanisms with the presented techniques to boost adversarial
robustness. Moreover, CL and HE will be examined on other
datasets and with other adversarial attacks.
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