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ABSTRACT Medical image processing applications typically demand highly accurate image segmentation.
However, existing segmentation approaches exhibit performance degradation when faced with diverse
medical imaging modalities and varied segmentation target sizes. In this paper, we propose and evaluate
a dilated One-to-Many U-Net deep learning model that addresses these challenges. The proposed model
comprises of four rows of encoder-decoder modules, with each module consisting of three trainable blocks
with different layers. The last three rows of theU-Net are extended versions of the three blocks in the first row,
with the encoder-decoder blocks connected through the skip connections to the previous rows. The outputs
of the last blocks from the last three rows in the decoder are concatenated, and finally, a dilation network
is employed to improve the small target segmentation in different medical images. Two datasets have been
used for the evaluation: the HC18 grand challenge ultrasound dataset for fetal head segmentation and the
Multi-site MRI dataset, including the BIDMC and HK sites, for prostate segmentation in MRI images. The
proposed approach achieved Dice and Jaccard coefficients of 96.54% and 93.93%, respectively, for the HC18
grand challenge dataset, 96.76% and 93.97% for the BIDMC site dataset, and 92.58% and 86.96% for the HK
site dataset. Statistical analyses showed that the proposed model outperformed several other U-Net-based
models.

INDEX TERMS U-Net, medical image segmentation, deep learning, dilation network, neural network.

I. INTRODUCTION
Automated medical image segmentation has been widely
investigated in the image analysis community. Precise and
reliable solutions are yearned to enhance clinical workflow
effectiveness and support decision-making through fast and
automatic extraction of quantitative measurements. A critical
step in diagnosing, treating, and monitoring many diseases
is the semantic segmentation of medical images. Although
the automation of this task has been widely studied in the
past, manual annotations are commonly utilized in clinical
practice [1], which are time-consuming and susceptible to
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inter and intra-observer variability. Therefore, there is a
high interest in accurate and reliable automatic segmentation
approaches that enhance workflow productivity in clinical
scenarios and lighten the workload of radiologists and other
medical experts.

Over the decades, many automated medical image
segmentation techniques have been proposed, principally
concentrated on images of specific modalities. In the early
days, simple rule-based approaches were utilized, but those
methods failed to preserve robustness when tested on a
massive variety of data [2]. Prior methods to medical
image segmentation are usually based on edge detection
and template matching [3]. Furthermore, different adaptive
algorithms were presented, relying on geometric shape priors
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with soft computing tools [4] and fuzzy algorithms [5]. The
disadvantages of these methods lie in using hand-crafted
features to perform the segmentation.

Recent advancements in deep learning [6] have shown
great promise in solving such issues. In this regard, Con-
volutional Neural Networks (CNNs) [7] have been more
successful than other architectures, and have in particu-
lar revolutionized semantic segmentation tasks. Therefore,
in recent years, the CNNs have attracted significant attention
in the medical image segmentation community [8], with
the U-Net architecture providing improved segmentation
performance [9]. A U–Net model is comprised of encoding-
decodingmodules. In the encodingmodule, numerous feature
maps with reduced dimensionality are elicited from the
input data. From those feature maps, the decoding module
produces segmentation maps of the same size as the input by
performing transposed convolutions. While the basic U-Net
model has been shown to detect targets with predefined
shapes or at expected locations, it has limitations in extracting
the necessary complex features when the target object has a
non-standard shape and random location [10]. For this reason,
many extensions of the U-Net architecture have recently been
proposed for specific applications, each with its own pros and
cons. Many of these models exhibit suboptimal performance
when processing a diverse array of image types.

This paper presents a novel U-Net architecture, named
‘‘dilated One-to-Many U-Net model’’, which exhibits
enhanced performance compared to a number of state-of-
the-art U-Net models when applied to challenging image
segmentation problems. First, by proposing the one-to-
many model, we are increasing how much information is
transferred from the encoder to the decoder module. Then,
we take advantage of a sequential multi-stream dilated
network to enable the model to precisely segment the small
targets. Experiments on different datasets show that the
proposed model outperforms many other state-of-the-art
U-Net models in segmenting targets with different sizes and
variable shapes.

The rest of the manuscript is organized as follows:
Section II reviews the relevant literature surrounding
U-Nets. Section III details the proposed U-Net architecture.
Section IV describes the image segmentation datasets and
experiments setup. Section V, reports the performance of the
proposed U-Net architecture. Finally, the manuscript con-
cludes with the summary of our investigations in Section VI.

II. RELATED WORKS
Lately, deep learning-based models with the encoder-decoder
structure have been widely applied in many different
domains due to their capability to achieve accurate perfor-
mance across diverse real-world applications. For example,
Khan et al. [11] employed an encoder-decoder-based struc-
ture for footprints extraction from aerial images where the
encoder module employs a dense convolutional architecture
to extract global multi-scale features, and the decoder

module uses consecutive deconvolution layers to create a
dense segmentation map in the output. In another work,
Khan et al. [12] proposed a pixel-wise classification using
multi-scale extracted features through the combination of the
DenseNet and U-Net models.

Owing to the promising results obtained from the U-Net
structure, this architecture has also been used to analyze
various medical images collected through the ultrasound,
MRI, and CT modalities. In many segmentation tasks, the
U-Net architecture has attracted more attention than other
deep learning-based solutions for medical image segmen-
tation [13], [14], [15], [16], [17], [18], [19]. Furthermore,
many extensions of this architecture have also been proposed
recently [13], [20].

Sevastopolsky et al. [21] applied U-Net to directly segment
the optic disc and optic cup in retinal fundus images for
glaucoma diagnosis. Mubashar et al. [14] used a U-Net-
based network, a multi-scale recurrent, residual model with
dense skip connections for medical image segmentation
in CT images. Zhou et al. [15] introduced the modified
version of the main U-Net [9] architecture called UNet++.
Additionally, the authors enhanced the UNet++ architecture
by reconfiguring the skip connections between the encoder
and decoder modules, enabling the integration of features
extracted at various scales.

Owais et al. [16] used a modified U-Net model to
carry out the medical image segmentation task through-
out the edge devices. The SE-U-Net proposed by Guo
and Matuszewski [19] is a U-Net network augmented by
the dilation kernel to segment the polyp in colonoscopy
images. A modified encoder-decoder with several integrated
sequential depths dilated inception blocks based on deep
learning has also been proposed by Mahmud et al. [22]
to overcome the limitations of traditional approaches by
aggregating features from different receptive areas of dilated
convolutions.

Moradi et al. [23] proposed a Multi-Feature Pyramid
U-Net (MFP U-Net) model for left ventricle segmentation.
They equalized the depth of all feature maps within the
decoder module in order to increase the segmentation
accuracy. Automated concentration on different regions of
interest and/or targets through the use of Attention Gates
(AGs), known as the Attention U-Net model, has been
proposed by Oktay et al. [13]. Generating different scales of
context information with minimal loss is one of the dilated
U-Net advantages presented in [24]. In another work, Chalana
and Kim [25] studied a method for evaluating fetal head
segmentation tasks in ultrasound images. They introduced
a protocol for assessing algorithms for medical image
segmentation tasks using available boundaries extracted
by multiple expert observers. The authors have employed
statistics to find the common points of the boundaries
between the computer-generated and the expert annotated
hand-outlined boundaries.

Heuvel et al. [26] employed a random forest classifier to
extract the Haar-like features from the ultrasound images of
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the fetal skull and investigated Hough transforms for Head
Circumference (HC) extraction. Lu et al. [27] addressed
the challenge of filtering and detecting incomplete curves
of the extracted fetal head border using the direct inverse
randomized Hough transform method. In their study [27], the
borders are highlighted and detected by iteratively applying
the mentioned method to the ultrasound images to extract
the fetal head area. Li et al. [28] localized the fetal head
using a random forest classifier trained with prior knowledge
about the gestational age and depth of the ultrasound scanning
system. Moreover, they have used a phase symmetry fast
ellipse (Elli-Fit) to fit the HC ellipse for head measurement.
In another work, Avalokita et al. [29] represented optimum
pixels of the ultrasound images for fetal head measurement
using the ellipse fitting method throughout the pre-localized
region of interest as the fetal head area.

Sobhaninia et al. [30] employed a multi-task deep CNN
model for HC segmentation and estimation using ultrasound
2D images. Fiorentino et al. [31] proposed an approach
with two CNN models. The first CNN model is based on
transfer learning for head localization and centring, and
the second regression CNN is based on distance fields to
delineate the HC. Amini [32] proposed a deep learning model
using multi-scale ultrasound images to extract fetal head
circumference. They introduced a DeepLinkNet loss function
to weigh the border pixels of the fetal head that can improve
the segmentation performance of the model and reduce the
number of training parameters. Moreover, HC extraction
and measurement using different base approaches have been
studied in [33], [34], and [35].

Prostate segmentation using MRI data has been studied by
Zhang et al. [36]; they proposed a deep-stacked transforma-
tion approach using transfer learning for domain generaliza-
tion in segmentation tasks. Liu et al. [37] improved model
generalization through prostate MRI segmentation using
the shape-aware meta-learning strategy. Ashkani et al. [38]
proposed a U-Net-based model along with the attention gates
and residual blocks for the segmentation of clinical targets
in ultrasound and MRI data. They offered a segmentation
architecture that comprises two consecutive U-Net models.
In each model, they employed residual blocks between
the encoder-decoder modules and multi-scale attention
gates to produce richer contextual information within the
skip connections that help the networks segment various
targets.

Table 1 summarizes the discussed U-Net-based models.
The existing U-Net-based architectures are limited in their
ability to segment challenging targets such as small-size
targets and those with shape variability across different
types of medical images [10]. This causes inconsistencies
in segmentation accuracy when different target sizes with
various shapes are involved in the different medical images.
This inconsistency hampers precise segmentation efforts in
medical imaging, highlighting the need for a stable, accurate
model to improve segmentation performance in real-world
applications.

In our research, we improved the segmentation of medical
targets when it comes to generalized segmentation across
different imaging modalities and with different target sizes.
We have proposed a different U-Net-based segmentation
architecture that is able to maintain performance consistency
when faced with different image types and target sizes by
exploiting multi-level extended features from previous layers
in both encoder and decoder modules.

III. THE PROPOSED MODEL
This paper introduces a novel approach through dilated
multi-level feature modeling to enhance segmentation sta-
bility for small targets and variable shapes within various
medical imaging systems. The proposed architecture, build-
ing upon the innovative U-Net-based model, facilitates the
transfer of a broad spectrum of information levels to the
output. It utilizes features from diverse levels to focus on
different target shapes and sizes, thereby achieving more
accurate predictions.

The proposed model is comprised of two sequentially
connected networks, including a One-to-Many network and
a dilation network. We named the first part of our model
one-to-many because each block in both the encoder and
decoder in the first row is extended to many other blocks
through the next rows. In other words, one-to-many refers
to a multi-level U-Net architecture that is extended from
previous layers in both encoder and decoder modules. This
helps the network to perceive the extracted features well
by transferring more detailed encoded information toward
the decoder module through the many skip connections.
Furthermore, transferring more information from the encoder
module to the decoder module improves the robustness of the
segmentation task, which is the philosophy of the proposed
architecture. Next, a multi-stream dilated network has been
added for segmenting small targets within the input data.
In the proposed multi-stream network, each stream running
parallelly using a distinct dilation rate provides different
features and enables the network to concentrate on small
targets.

Fig. 1 illustrates the proposed dilated One-to-Many model.
Encoder and decoder modules are comprised of several
blocks and connected through the bottleneck layer. The
encoder blocks, the bottleneck layer and the decoder blocks
are described as follows:
The Encoder Blocks: In the proposed model (Fig. 1),

there are four rows in the encoder module, and each row
consists of three encoder blocks. Hyperparameters (e.g.,
filter size, number of filters) for all blocks are determined
empirically through the grid search strategy. The last three
rows are an extended version of the three blocks from the
first row: the connections to extended rows are depicted
with the dotted orange line in Fig. 1. Each block in the
encodermodule, as seen in Fig. 1, is comprised of consecutive
2D-convolution, a Rectified Linear Unit (ReLU) [38] as an
activation layer, and a batch normalization [35] layer that
improves convergence [32]. We have used a convolutional
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TABLE 1. Summarized and clarified the most similar works and their contributions.

FIGURE 1. Overview of the proposed dilated One-to-Many U-Net based model.

kernel of 7 × 7, which is swept by 2 × 2 strides, and
initialized these convolutional layers randomly by a normal
distribution with a standard deviation of 0.02. The image
is padded, and in order to extract various feature maps
in different blocks, 20, 40, and 80 convolutional filters
were used for layers in the first encoder row, 40, 80, and
160 filters in the second row, 80, 160, and 320 filters in
the third row, and finally, 160, 320, and 640 filters for
the three layers in the fourth row of the encoder module,
respectively.
Bottleneck Layer: This is a 2D convolutional layer with

640 convolutional filters and a 7 × 7 kernel, which sweeps
with 2 × 2 strides. This convolutional layer is initialized with

a standard deviation of 0.02 and a ReLU layer was used as an
activation function after this layer.
The Decoder Blocks: In the proposed architecture, each

block of the decoder module is comprised of 2D transposed
convolution layers that are initialized randomly using a
normal distribution with a standard deviation of 0.02. A 7 ×

7 kernel with 2× 2 strides swept over the inputs in all decoder
layers. The number of filters in the decoder blocks is the
reverse of that in the encoder blocks. Thus, there are 640, 320,
and 160 filters in the first row of the decoder module, 320,
160, and 80 filters in the second row, 160, 80, and 40 filters
in the third row, and finally, 80, 40, and 20 filters for the three
layers in the fourth row of the decoder module, respectively.
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A ReLU activation function followed each deconvolution
layer. A dropout layer with a probability of 50% has been
employed after each activation function to avoid overfitting
during the training. Finally, the batch normalization layer
is added after concatenating the output of the dropout layer
with the appropriate skip connection feature maps from the
encoder in order to improve convergence.

The decoder module adopts a similar extension strategy
as the previously described encoder, utilizing reverse skip
connections that extend from the lower to the upper rows.
The output of the One-to-Many model is obtained by
concatenating the last blocks in the last three rows of the
decoder module, where the features are processed using the
up-sampling block. This up-sampling block is comprised of
a 2D transposed convolutional layer and a ReLU activation
function. Each 2D transposed convolutional layer includes
20 convolutional filters that are initialized randomly using
a normal distribution with a standard deviation of 0.02.
A 7 × 7 kernel with a 2 × 2 stride swept over the inputs in all
decoder layers. In the decoder module, as seen in Fig. 1, the
up-sampling ratio is 3, 2, and 1 for the second, third, and last
rows, respectively.

Up-sampling was accomplished through consecutive 2D
transposed convolutional layers, the number of which
depended on the up-sampling ratio. In other words, for an
up-sampling with a ratio of 3, there are three consecutive 2D
transposed convolutional layers and so on. Then, the outputs
of these blocks were concatenated to extract feature maps
from all levels of the expansion module to be included in the
segmentation process in the output.

Fig. 2 represents the proposed dilation network which has
been applied to the output of the One-to-Many network to
render the proposedmodel more robust in the face of different
sizes of segmentation targets in medical images. In this step,
we take advantage of dilated convolutions for segmenting
small segmentation targets [40] of the input data. Different
dilation rates are used throughout the multi-stream dilation
network architecture and concatenated. Thus, the output is
composed of features with different dilation ratios.

Specifically, the proposed dilation network is a multi-
stream model where the input has been applied to four
different dilation blocks. Each block comprises of a 2D
convolutional layer containing a dilated 7 × 7 kernel. After
each dilated convolutional layer, the ReLU activation layer
and the batch normalization layer have been employed.
The dilation rate equals to 2, 4, 6, and 8 in the four
blocks, respectively. Finally, the outputs of the four streams
are concatenated. The number of filters through the four
paralleled dilated layers are 20, 40, 80, and 160.

Finally, we applied a 2D transposed convolutional layer
with a 7 × 7 kernel size which were swept by 1 × 1 strides
in the output layer. A sigmoid function followed this layer to
generate the mask of corresponding inputs. The loss function
we have used to train the model is the Dice loss function. Dice
loss is particularly effective for medical image segmentation

FIGURE 2. The proposed dilation network architecture.

due to its ability to handle class imbalance, be robust to
variation, and facilitate convergence in imbalanced datasets.
The Adam optimizer with a learning rate equal to 0.0001 is
used to train the complete model.

It is pertinent to note that due to deep learning-based
structure, hyper-parameters must be tuned to achieve high
accuracy. Specifically, the grid search strategy is employed
and the hyper-parameters are empirically determined through
many experiments using the grid search strategy.

IV. EXPERIMENTS
A. DATASETS
We conducted experiments on two datasets with differ-
ent image types, including the HC18 Grand challenge
dataset [26] and the Multi-site MRI dataset [41]. A few
sample images, as well as their corresponding masks, are
shown in Fig. 3.
HC18-Grand Challenge Dataset: This public dataset com-

prises 1334 two-dimensional ultrasound images to measure
the fetal HC parameter. In this dataset, there are 999 images
manually annotated by an expert and 335 unannotated
images. The resolution of all ultrasound images is 800 by
540 pixels, with a pixel size ranging from 0.052 to 0.326 mm.
Multi-Site MRI Dataset: The T2-weighted MRI dataset

was collected for prostate identification purposes. This
dataset is comprised of two public sources - sites E
and F. The detailed information of each source E and F
containing the number of samples, resolution of images,
and imaging protocols is summarized in Table 2. These
sites are more commonly used than others as MRI data
for prostate segmentation in research communities [37],
[38]. Thus, we evaluated the datasets from both the sites
E and F to compare our approach with state-of-the-art
approaches.
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TABLE 2. Summary information for the two selected sites in the multi-site MRI dataset.

FIGURE 3. Samples from the HC18 Grand challenge, and Multi-site MRI
datasets with the corresponding annotations of the target structures. (a):
HC18, (b): Site E or BIDMC, (c): Site F or HK.

B. PRE-PROCESSING
The proposed model was independently trained using the
datasets mentioned earlier. In total, in our experiments,
we have used all 999 labeled samples from the HC18 Grand
challenge dataset, 1215 samples for site E, and 605 samples
for site F in the multi-site MRI dataset. From these datasets,
20% of data was randomly selected to evaluate the model in
the test phase and the remaining 80% of each dataset was used
to train the model independently.

All data were resized to 256 by 256 pixels resolution. Data
augmentation was performed on the Multi-site MRI dataset
using rotation with two angles (15 and 30 degrees), and
horizontal flip of rotated images to generate five images from
each sample. The entire set of input images was converted to
grayscale and normalized by their standard deviation before
the model training. The normalization was carried out as
shown in Eq. 1 where xi and zi are the sample and normalized
sample respectively and sigma is the standard deviation
of x.

zi =
xi − mean(x)

σ
(1)

C. EVALUATION METRICS
First, to compare the estimated volumes of the target
structures, we used the Dice Similarity Coefficient (DSC).
Further, we evaluated the segmentation performance by
comparing the ground truth contours with the predicted ones
using the Jaccard Similarity Coefficient (JSC) and Hausdorff

FIGURE 4. Some samples of prostate datasets that R2U-Net and U-Net
models could not predicted the output mask to calculating the mean of
HD. Green dotted contours represent the ground truth mask.

Distance (HD). The DSC indices were calculated using Eq. 2,
where B indicates ground truth contours and A represents
the model’s predicted contours. Finally, JSCs were calculated
using equation Eq. 3.

DSC =
2 |A ∩ B|

|A| + |B|
(2)

JSC =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
(3)

In order to measure the maximum distance of the predicted
contour to the nearest point in the reference contours, we have
calculated HD (see Eq. 4), where A and B denote the two
contours, and d(a, b) indicates Euclidean distance.

HD = max
((

max
a∈A

(
min
b∈B

d (a, b)
))

,(
max
b∈B

(
min
a∈A

d (a, b)
)))

(4)

We further computed an expanded set of metrics, including
the Intersection over Union (IoU), Precision, Recall, and F1
Score, for a more comprehensive quantitative evaluation of
the model performance. These metrics are defined within
equations Eqs. 5–8. The IoU metric is defined by the number
of common ground truth pixels and predicted output masks
divided by the whole pixels across both ground truth and
predicted masks. Precision is described using the proportion
of positive detections (true positive and false positive per
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TABLE 3. The maximum (i.e. highest) Dice and Jaccard coefficients across all 150 epochs for different U-Net models and different datasets. Bolded values
indicate the best model under each column.

TABLE 4. Experiment results on HC18 dataset using the proposed and other U-Net based models.

TABLE 5. Experiment results on BIDMC dataset using the proposed and other U-Net based models.

TABLE 6. Experiment results on HK dataset using the proposed and other U-Net based models.

TABLE 7. Comparison of the proposed model with the results of the
state-of-the-art models reported in literature in terms of the Dice
coefficient.

common pixel) relative to the ground truth mask. This
metric determines the number of matching ground truth
annotations per common pixel through the predicted object
in a given image. Recall metric describes the completeness
of the positive ground truth mask and determines the

number of positive predictions of the objects annotated
in the ground truth mask. Lastly, the F1 Score metric is
defined as a harmonic mean of the precision and recall
metrics.

IoU =
Target ∩ Prediction
Target ∪ Prediction

(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 Score =
2 TP

(2 TP+ FP+ FN )
(8)

where TP,FP, and FN are true positives, false positives, and
false negatives respectively.

V. RESULTS AND THEIR ANALYSES
A. DESCRIPTIVE RESULTS
In this section, we compare the results of the proposed archi-
tecture with the state-of-the-art U-Net-based architectures

VOLUME 12, 2024 197265



V. A. Chenarlogh et al.: Performance Analysis of Dilated One-to-Many U-Net Model

FIGURE 5. (a) Profile of the Dice coefficient variation during the training and validation processes with the HC18 dataset
using the proposed model. (b) rofile of the Dice loss variation during the training and validation processes with the HC18
dataset using the proposed model.

FIGURE 6. Comparison between AttentionU-Net, DilatedU-Net, MFP U-Net, R2U-Net, U-Net, and the proposed model with Dice
coefficient using HC18 Grand challenge, BIDMC, and HK datasets. The error bars represent the 95% confidence interval. The ‘‘∗’’
symbols on the bridge indicate the level of significance measured by p-value where one ‘‘∗’’ indicates significant difference with
p < 0.05 and two ‘‘∗∗’’ indicates a highly significant difference with p < 0.001. The insignificant conditions are not depicted on
the bridge.

on the HC18 Grand challenge and multi-site MRI datasets.
Specifically, we compared the proposed model with five
cutting-edge deep-learning algorithms in medical image
segmentation tasks:

1) U-Net [9]
2) Dilated U-Net [24]
3) Attention U-Net [13]
4) R2U-Net [20]
5) MFP-U-Net [23]

The experiments were performed with 150 epochs on
a system with 16 GB RAM, a GPU-based graphic card
with 2176 CUDA cores (GeForce RTX 2060-A8G), and
the Intel Xeon CPU. The Tensorflow backend Keras was
employed to implement the deep learning models.

The highest Dice and Jaccard coefficients across all epochs
from each of the six algorithms with different datasets
are shown in Table 3. From this table, we can see that
the proposed approach overall performs better than other
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FIGURE 7. Comparison between AttentionU-Net, DilatedU-Net, MFP U-Net, R2U-Net, U-Net, and the proposed model with
Jaccard coefficient using HC18 Grand challenge, BIDMC, and HK datasets. The error bars represent the 95% confidence interval.
The ‘‘∗’’ symbols on the bridge indicate the level of significance measured by p-value where one ‘‘∗’’ indicates significant
difference with p < 0.05 and two ‘‘∗∗’’ indicate a highly significant difference with p < 0.001. The insignificant conditions were
not depicted on the bridge.

state-of-the-art techniques considered in this paper. The
proposed model has the highest value of the Dice and Jaccard
coefficients for the BIDMC datasets. For the HK dataset,
the U-Net and Dilated U-Net achieved slightly better values.
The lower Dice and Jaccard coefficients associated with the
proposed model for the HK dataset are plausibly due to the
lower number of training samples in the HK dataset (484
samples) as well as the low contrast found in the HK dataset
images. Nevertheless, across the three datasets, the proposed
approach performs better overall.

On the HC18 dataset, all models showed competitive
results with the proposed model achieving 96.54% and
93.93% in terms of the Dice and Jaccard coefficients,
respectively. Furthermore, to demonstrate the efficacy of
the proposed architecture, an evaluation was conducted on
the multi-site MRI dataset, encompassing sites E and F,
relative to other U-Net-based architectures. It is important
to acknowledge that the inherent low contrast of structures
within this dataset may contribute to the increased difficulty
in accurately identifying the prostate.

Experiments on BIDMC resulted in 96.76% and 93.97%
for Dice and Jaccard coefficients, respectively, using the
proposed model. Results indicated that the performance
remarkably decreased using the Attention U-Net, R2U-Net,
and U-Net. Thus, these models have instability in the face of
more challenging datasets.

Our approach achieved 92.58% for Dice and 86.96% for
Jaccard coefficients using the HK dataset, where the R2U-
Net model resulted in the lowest performance of 81.95%
and 74.79% in terms of Dice and Jaccard coefficients,
respectively. It can also be noted fromTable 3, that the Jaccard
coefficient reported by the proposed model was better than
the average across all other models by 0.94%, 18.33% and
2.32% in the HC18, BIDMC, and HK datasets, respectively.
In a similar manner, focusing on the Dice coefficient results,
the proposed model was better than the average across all
other models by 1.05%, 31.14% and 1.88% in the HC18,
BIDMC, and HK datasets, respectively.

It is worth noting that the last column of Table 3 indicates
the number of training parameters for each model. While
the state-of-the-art U-Net models achieve great accuracy in
many scenarios, as already discussed, these architectures
struggle with segmenting challenging medical datasets across
different modalities with variability in the shape and size
of the region of interest in different types of medical
images. In comparison, the proposed model is of higher
complexity, but results in higher stability when faced with
such challenging targets.

To further examine the behaviour of our model, we calcu-
lated the HD parameter, IoU, precision, Recall, and F1 Score
for all the test sets. Tables 4–6 summarize the results of these
metrics. Lower values of HD (reported in millimetres (mm))
indicate that the two contours match closely. The proposed
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FIGURE 8. The boxplots of Dice metric indicate the absolute error values of the Attention U-Net, Dilated U-Net, MFP U-Net, the proposed model, R2U-Net,
and U-Net for each dataset, HC18 Grand challenge, BIDMC, and HK.

model achieved 6.08 mm, 4.24 mm, and 5.51 mm as HD
values with the HC18, BIDMC, and HK test sets, which were
better than those reported by most of the other U-Net-based
models. In these tables, the dash ‘‘-’’ means that models did
not produce a predicted mask in the output for some samples,
and thus the HD could not be computed for those models. For
example, Fig. 4 demonstrates some example images where
these models could not predict the output mask; these images
only depict the ground truth using a green contour.

Also, in Table 7, we compare the proposed model with the
additional state-of-the-art approaches using the results they
reported for the same datasets. From the results in Table 7,
we concluded that the proposed method achieved better
results overall than the other approaches. On the BIDMC and
HK datasets, our approach demonstrated better performance
in terms of the Dice accuracy than the other considered
state-of-the-art methods, with an improvement over the next
best performing model of approximately 6% and 2% for the
BIDMC and HK datasets, respectively.

Fig. 5 illustrates the learning curves for the proposedmodel
using the HC18 dataset: specifically, Fig. 5(a) and Fig. 5(b)
display the variations in the Dice coefficient and Dice loss
across epochs for the training and validation sets. It can be
observed that the network converges around the 29th epoch

with the Dice coefficient reaching 99% on the training set and
96.54% on the validation set. Similar learning curve patterns
were observed for the MRI dataset as well.

B. STATISTICAL ANALYSES AND VISUALIZATION
The statistical significance of the differences in the Dice and
Jaccard coefficients obtained from each dataset was analyzed
as well. First, to investigate the normality of the data, the
Kolmogorov-Smirnov test was conducted, and the results
showed that the data were not normally distributed. There-
fore, a Kruskal-Wallis test with the Bonferroni correction was
employed to perform the between-group comparisons for the
non-normally distributed data. The IBM Statistical Package
Social Sciences (SPSS Version 27) software was utilized to
execute this analysis, where the confidence interval value was
set to 95%, and an 80% power was assumed.

Figs. 6 and 7 show the evaluation results in terms of
the Dice and Jaccard coefficients for the test sets using
the algorithms mentioned earlier across the three considered
datasets, along with the statistical significance. In these
figures, bar graphs illustrate the mean of the Dice and
Jaccard coefficients across all epochs. Note that the error
bars shown for the results indicate each algorithm’s standard
deviation (SD) of the experimental data. The Dice and
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FIGURE 9. The boxplots of the Jaccard metric indicate the absolute error values of the Attention U-Net, Dilated U-Net, MFP U-Net, the proposed model,
R2U-Net, and U-Net for each dataset, such as HC18 Grand challenge, BIDMC, and HK.

Jaccard coefficients from the six models were statistically
compared, and the analysis results are shown in Figs. 6
and 7. In these figures, ‘‘*’’ indicates a significant difference
with p < 0.05 and ‘‘**’’ indicates a highly significant
difference with p < 0.001. It is worth mentioning that the
insignificant statistical comparisons are not shown in these
figures.

The results of the multi-experiment analysis from Fig. 6
show that the proposed model using the Dice coefficients
regardless of the datasets is highly significantly different (p <

0.001) except for the HC18 dataset. For the HK dataset, our
approach resulted in a significant performance improvement
relative to the R2U-Net model.

For the Jaccard coefficients (Fig.7), the multivariate
analysis of variance of the proposed model is highly
significantly different (p < 0.001) from the others with
the BIDMC dataset and highly significantly different from
the R2U-Net algorithm in the HK dataset. The proposed
algorithm is not significant for the HC18 dataset compared
to the other models. Results have demonstrated that R2U-
Net has the worst performance in all sets. Still, the
most significant conclusion from these results is about the
consistent performance of our model when faced with dataset
variations. Moreover, results demonstrated that the proposed

model is less sensitive to the outliers, indicating higher
stability and reliability in its predictions.

The results are also shown in the boxplots for further visu-
alization: Figs. 8 and 9 compare the six different architectures
using the Dice and Jaccard coefficients, respectively. The
upper, middle, and lower subplots of Figs. 8 and 9 correspond
to the HC18, BIDMC, and HK datasets. The outliers are
red plus signs while the red line shows the median of Dice
and Jaccard coefficients. For our model, all plus signs are
densely situated near the median line which indicates better
performance than other models. Moreover, with a smaller
number of plus signs and sparse dispersal of plus signs
close to the median line, the proposed model demonstrates
better segmentation accuracy than all other models across the
HC18, BIDMC, and HK datasets.

Fig. 10 shows a visual comparison between our model
and others on a few examples from the HC18 dataset. In the
figure, green and red dotted contours illustrate ground truth
and predicted mask, respectively. The visual analysis shows
that the proposed model is robust with challenging data
(small targets). Rows 6 and 7 in Fig. 10 show small HC
targets challenging for segmentation; in such conditions, the
proposed model resulted in good performance compared to
other models. From this figure, in rows six and seven, it can
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FIGURE 10. Examples of results from the HC18 dataset obtained with the
proposed model in comparison with other state-of-the-art U-Net-based models.
The green and red lines show the ground truth and predicted outputs. (From right
to left: first column: Attention U-Net, second column: Dilated U-Net, third column:
MFP U-Net, fourth column: Proposed Model, fifth column: R2U-Net, and sixth
column: U-Net).

FIGURE 11. Examples of results from the BIDMC dataset obtained with the
proposed model in comparison with other state-of-the-arts U-Net-based models.
The green and red lines show the ground truth and predicted outputs. (First row:
Attention U-Net, second row: Dilated U-Net, third row: MFP U-Net, fourth row:
Proposed Model, fifth row: R2U-Net, and sixth row: U-Net).
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FIGURE 12. Examples of results from the HK dataset obtained with the proposed
model in comparison with other state-of-the-art U-Net based models. The green and
red lines show the ground truth and predicted outputs. (First row: Attention U-Net,
second row: Dilated U-Net, third row: MFP U-Net, fourth row: Proposed Model, fifth
row: R2U-Net, and sixth row: U-Net).

be observed that the Attention U-Net, Dilated U-Net, MFP
U-Net, R2U-Net, and U-Net may not accurately identify
the small clinical targets. At the same time, the proposed
model performed much better in such challenging target
segmentation. Moreover, the proposed model demonstrated
better performance with images where the target region is flat
and similar to other image surfaces as seen in the fourth row.

Figs. 11 and 12 depict the segmentation results obtained
from different models on BIDMC and HK datasets, respec-
tively. The overall observation was that the proposed model
performed better for challenging images with flat and small
prostates, such as those in the fourth, fifth and sixth columns
in Fig 11. From this figure, we also observed that the R2U-Net
and U-Net models have the worst performance in challenging
(small and low contrast) target segmentation. From the
visual analysis of results on the HK samples in Fig. 12,
we concluded that this dataset, due to better resolution,
is less challenging than the BIDMC dataset for prostate
segmentation purposes. Thus, most of the models performed
well in the target identification through this dataset, except
the R2U-Net model, which has a problem segmenting the
targets accurately. For example, in the fifth row, we can
observe green contours as the ground truth masks in the first
and fourth columns without any predicted contours (red line)
in the fourth column corresponding to the R2U-Net model.

Given that the accuracy on test samples does not reach
100%, there are instances where the proposed method fails
to predict outcomes precisely. Notably, the incidence of such
inaccuracies is higher within the HK and BIDMC datasets
compared to the HC18 dataset. Fig. 13 illustrates cases where
the proposed model encountered difficulties in accurately
identifying the target. This is particularly evident in some
samples where critical details at the edges of the region
of interest are overlooked, compounded by a significant
resemblance between the target region and surrounding areas
in the image.

In conclusion, the proposed model demonstrates enhanced
segmentation precision consistently across diverse datasets.
It is important to address the complexity of our model
in comparison with others. The distinctive features of our
model, namely, the encoder-decoder skip connections, the
implementation of multi-level feature transitions, and the
incorporation of a multi-stream dilated network, are key
contributors to the observed improvements in performance.

In the level-to-level transition procedure, different levels of
information are extracted through layers. Features extracted
from the first layer are transmitted to the next lower
layer to extract different features, and so on. Thus, from
the information entered into the first blocks in the first
layer, multi-level information is extracted through the layer
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FIGURE 13. Some failure cases of the accurate prediction using the proposed model.

hierarchy. However, this led to a significant increase in
the feature dimensionality and hence the complexity of
our model. Nevertheless, as demonstrated, this increased
complexity was necessary to achieve robust and consistent
performance across varied datasets and segmentation target
sizes.

VI. CONCLUSION
This study proposed a novel U-Net-based model named
the One-to-Many U-Net model for segmenting different
clinical targets in various medical images such as fetal head
segmentation for head circumference measurements purpose
in ultrasound imaging systems and prostate segmentation in
MRI images. The proposed model comprises the multi-level
feature extraction strategy that extends from the previous
blocks in both encoder and decoder modules and provides
multiple connections between encoder and decoder blocks
that cause the improvement of segmentation tasks for
different target sizes and increased performance consistency
through the various imaging systems. This model contains
four rows of encoder-decoder modules with three feature
extraction blocks in each row. After concatenating the outputs
of the decoder modules, a multi-stream dilation network
is applied to the output of the One-to-Many network to
accurately identify the small segmentation targets.

To evaluate the proposed approach, two different types
of medical images were used: fetal head segmentation from
ultrasound images and prostate segmentation from the MRI

imaging system. The quantitative and statistical analysis
showed the superior performance of the proposed model
compared to most of the state-of-the-art U-Net-based models
as well as several other approaches from the literature.
Moreover, the proposed architecture demonstrated significant
improvement in accuracy and stability in performance
for prostate segmentation compared to other U-Net-based
models. It achieved 96.54%, 96.76%, and 92.58% in Dice
coefficients for the HC18, BIDMC, and HK datasets. In addi-
tion, the proposed model resulted in Jaccard coefficients of
93.93%, 93.97%, and 86.96% for the HC18, BIDMC, and
HK datasets, respectively. In the visual analysis, we observed
that the proposed model has good performance when facing
challenging data (small targets), in contrast to other models
which did not perform well with such data.
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