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Abstract—Predicting energy demand peak is a key factor for 

reducing energy demand and electricity bills for commercial 

customers. Features influencing energy demand are many and 

complex, such as occupant behaviours and temperature. Feature 

selection can decrease prediction model complexity without 

sacrificing performance. In this paper, features were selected 

based on their multiple linear regression correlation coefficients. 

This paper discusses the capabilities of M5 model trees in energy 

demand prediction for commercial buildings. M5 model trees are 

similar to regression trees; however they are more suitable for 

continuous prediction problems. The M5 model tree prediction 

was developed based on a selected feature set including sensor 

energy demand readings, day of the week, season, humidity, and 

weather conditions (sunny, rain, etc.). The performance of the 

M5 model tree was evaluated by comparing it to the support 

vector regression (SVR) and artificial neural networks (ANN) 

models. The M5 model tree outperformed the SVR and ANN 

models with a mean absolute error (MAE) of 8.94 compared to 

10.02 and 12.04 for the SVR and ANN models respectively. 

Keywords: M5 model trees; support vector regression; multiple 

linear regression;  artificial neural networks; feature selection; 

predicting energy demand peak. 

I. INTRODUCTION  

One of the common ways to measure energy use in a 
building is to determine total consumption over a certain period 
of time [1]. Energy consumption is the number of kilowatt-
hours consumed in a system. However, the total consumption 
over a long time does not give an accurate description of 
energy usage trends for commercial buildings. For instance, 
typical office buildings consume most of their energy during 
weekday office hours and use relatively little energy at night 
and on weekends. This pattern requires the network to supply 
these buildings with a large amount of energy at certain times 
instead of an average amount constantly. For this reason, the 
rate of energy consumption, defined as demand, is the focus of 
this study. In some countries, such as the United States and 
Canada, monitoring energy demand for commercial buildings 
is beneficial because electricity bills are dependent on the value 
of the highest demand peak [2].  

The predicted energy demand peak for a certain interval 
can be compared to the actual current demand values. If the 
current demand value approaches this predicted peak, the 
energy system can send a warning or alert to the system 
monitors. Thus, energy consumption can be reduced or 
balanced to avoid reaching the peak, hence reducing electricity 
bills. Buildings energy demand is influenced by many different 

features, such as weather conditions, building structures, and 
occupant behaviours [2]. Choosing the proper feature set to 
train the prediction model is a key issue for machine learning 
methods in this area. This study assumes a sensor-based 
approach; it uses historical data captured from sensors and 
meters to predict energy demand peaks. 

The contributions of this paper are first to analyze how 
features such as seasonal change and work load can influence 
the performance of prediction models. Multiple Linear 
Regression algorithm is used to study the impact of these 
features on prediction model and select proper features. 
Features are selected based on their correlation coefficients [3].  

The second contribution is to show how M5 model trees 
can be used to predict energy demand for commercial 
buildings. The M5 model tree is not typically used for energy 
demand peak prediction. Support vector regression (SVR) and 
artificial neural network (ANN) models are commonly used for 
energy demand peak prediction [4]. A comparison of the 
results of the M5 tree and of both the SVR and ANN models 
indicate the suitability of M5 model trees for predicting energy 
demand.  

The rest of the paper is organized as follows: Section II 

reviews related work. Section III introduces the theoretical 

principles of the multiple linear regression model, the SVR 

algorithm, the ANN algorithm, and the M5 model trees. 

Section IV describes the methodology, and Section V discusses 

the experiments and compares the results. Finally, Section VI 

concludes the paper. 

II. RELATED WORK 

Various models for predicting energy demand have been 
proposed in recent years [4]. These models can be divided into 
two categories. The first contains traditional algorithms, 
including time-series analysis, regression, and gray models. 
The second includes soft computing algorithms such as genetic 
algorithms, fuzzy logic, and other machine learning methods. 
This research has focussed on machine learning strategies; 
hence, the second category approaches are reviewed.  

Artificial neural networks (ANNs) have attracted much 
attention in demand prediction [5]. Bashir and El-Hawary 
proposed an adaptive ANN with particle swarm optimization 
(PSO) to adjust network weights; which obtained good 
prediction precision [6]. A Bayesian neural network has been 
used for short-term demand prediction, and resulted in better 
performance than conventional neural networks [7].  



 

Support vector regression (SVR) showed good 
generalization performance that outperformed other non-linear 
forecasting techniques [8]. A locally weighted SVR for short-
term demand forecasting achieved higher accuracy than an 
ANN model [9]. An SVR-based model combined with fuzzy c-
means (FCM) and particle swarm optimization (PSO) was 
proposed to forecast the short-term demand [10]. One of the 
popular models used in demand prediction is an autoregressive 
integrated moving average (ARIMA) model, which is a 
generalization of the autoregressive moving average (ARMA) 
model. ARIMA and seasonal ARIMA (SARIMA) have been 
used to estimate future energy demand [11]. A hybrid 
technique combining Takagi-Sugeno fuzzy inference system 
and fuzzy regression was used to predict short-term energy 
demand variations [12].  A hybrid algorithm combining a 
genetic algorithm and a local search algorithm was developed 
to overcome problems of premature convergence to local 
optima problems [13].  

Each of these soft computing algorithms has its advantages, 
but also has certain weaknesses. ANNs are powerful, but suffer 
from opacity problems because it has a large number of 
parameters to be tuned and suffer from the danger of over-
fitting [5]. The generalization ability of SVRs depends strongly 
on adequate setting of parameters; such as the penalty 
coefficient, the kernel parameters, and the width of the loss 
function [9].  

This study proposes a novel demand prediction approach 
with feature selection using multiple linear regression and M5 
model trees. The goal of this study is to closely inspect the 
effect of humidity, seasonal change, weather conditions, and 
workload on demand prediction. An M5 model tree is proposed 
for demand peak prediction, a model which is specific for non-
linear continuous problems. 

III. REGRESSION MODELS 

A. Multiple linear regression models 

A regression model is a mathematical model of the 
relationship between the target variable and the input variables 
in a given design space [14]. Multiple linear regression models 
are widely used to provide estimates of parameter impact as 
well as predictions of the response variable at arbitrary points 
[15]. Often, the regression variables interact, i.e., the effect of a 
change in xi  on y depends on the value of xj . In such cases, the 

model is expressed as: 

  𝑦 = α + ∑ 𝛽𝑖
𝑚
𝑖=1 𝑥𝑖 + ∑ ∑ 𝛽𝑖,𝑗

𝑚
𝑗=𝑖+1 𝑥𝑖 𝑥𝑗 

𝑚
𝑖=1 +  ɛ, (1) 

where α is the intercept of the response surface with the y-axis 
and the {βi |1≤i≤m} are known as the effects or coefficients. ɛ 
is the error due to lack of fit. Correlation coefficient 𝑅 is the 
partial derivative of the target dependent variable 𝑦  with 
respect to the various independent input variables 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  

and is calculated by: 

 𝑅𝑦,𝑥𝑖𝑥𝑗
= √

𝑟2𝑦𝑥𝑖+𝑟2𝑦𝑥𝑗−2𝑟𝑦𝑥𝑖𝑟𝑦𝑥𝑗𝑟𝑥𝑖𝑥𝑗

1−𝑟2𝑥𝑖𝑥𝑗
 

where  𝑦  is the prediction variable and 𝑥𝑖 , 𝑥𝑗 are the input 

features.  𝑟𝑦𝑥𝑖  is the correlation coefficient between 𝑦 and 𝑥𝑖  , 
𝑟𝑦𝑥𝑗  is the coefficient between 𝑦 and  𝑥𝑗 , and  𝑟𝑥𝑖𝑥𝑗  is the 

coefficient between 𝑥𝑖 and 𝑥𝑗 . 𝑟xy is defined by: 

 Covx, y) = ∑
(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√∑(𝑥𝑖−�̅�)
2 ∑(𝑦𝑖−�̅�)

2

𝑛
𝑖=1    

where �̅� is the mean of x and �̅� is the mean of y [15]. 

 Correlation coefficient is an important indicator of the 
impact of each feature on the regression curve and the 
prediction error. The sign and the absolute value of the 
correlation coefficient describe the direction and the magnitude 
of the relationship between two variables. The greater the 
absolute value of a correlation coefficient, the stronger is the 
relationship between the input and target variables [14]. 

B. Support vector regression (SVR) 

The basic idea of support vector regression (SVR) is to find 
a regression model function representing the relationship 
between the input parameters and the target [16]. SVR is firmly 
grounded in the framework of statistical learning theory, 
known as the Vapnik and Chervonenkis (VC) theory [17]. 
Suppose that we are given training data {(x1, y1)…, (xn, yn)} ∈ 
X × Ɍ, where X denotes the space of the input set (e.g., X 

= Ɍd). These might be, for instance, sensor and meter readings. 
In SVR, the goal is to find a function that has at most ε 
deviation from the actually obtained targets y for all the 
training data and at the same time is as linear as possible. In 
many cases, the optimization problem is non-linear. Therefore, 
slack variables ξ are introduced to provide a soft margin loss 
function which can be defined as: 

 minimize
1

2
||w||2 + 𝑐 ∑ ξ𝑖

ɛ
𝑖=1 + ξ𝑖

∗  

 subjectto{

𝑦𝑖−< 𝑤, 𝑥𝑖 > −b  ≤  ɛ
< 𝑤, 𝑥𝑖 > +b − 𝑦𝑖  ≤  ɛ

ξ𝑖 , ξ𝑖
∗

 

where w is the coefficients and <w, x> denotes the dot product 
in X, b is a constant, ɛ is the precision and the constant c >0 
determines the trade-off between the linearity and the extent up 
to which deviations larger than ε are tolerated.  

C. Artificial neural networks (ANN) 

Artificial neural networks (ANN) are related to biological 
neural networks. They consist of neurons which execute 
functions cooperatively and in parallel [18]. Artificial neural 
networks (ANN) consist of an input layer, hidden layer(s), and 
an output layer. The input layer has one neuron corresponding 
to each input parameter. The number of hidden layers depends 
on the problem to be solved. The result of an ANN depends on 
the number of neurons in the hidden layer. Optimizing the 
number of hidden-layer neurons leads to a result closer to the 
optimum. Hidden-layer neurons can be selected using 
optimization techniques or trial-and-error methods. The output 
layer has one neuron for each output. Three types of networks 
are commonly used in ANN applications: feedforward 



 

networks, competitive networks, and recurrent associative 
memory networks. The backpropagation (BP) algorithm is one 
of the dominant ANN learning algorithms and is convenient for 
feedforward networks [18].  

D. M5 model trees 

The “model tree” is a technique for dealing with continuous 

class learning problems. It was developed by Quinlan [19] and 

was exemplified in a learning algorithm known as the “M5 

model tree”. A model tree is like a regression tree, but it builds 

trees whose leaves are associated with a multivariate linear 

model. The nodes are then chosen over the attributes that 

maximize the expected error reduction as a function of the 

standard deviation of the output parameters. Building the 

model tree consists of three steps:  

i) Building the initial tree: A decision-tree induction 

algorithm is introduced to create a tree. Instead of 

maximizing the information gain at each interior node, a 

splitting criterion is presented that minimizes the intra-

subset variation in the class values down each branch.  

ii) Pruning the tree: this is based on minimizing the estimated 

absolute error of the multiple linear regression models. It 

starts from each leaf by using the regression plane rather 

than a constant value [20]. 

iii) Smoothing the tree: this is done to compensate for severe 

discontinuities that cannot be avoided between adjacent 

linear models at the leaves of the pruned tree. 

IV. METHODOLOGY 

The methodology is divided into two phases, as illustrated 
in Figure 1. Phase I first processes the data set and generates 
new features that express the impact of seasonal changes and 
workload. Multiple linear regression is used to evaluate the 
impact of these features on the prediction model. Features are 
selected based on their regression correlation coefficients. In 
Phase II, M5 model trees are used to predict energy demand. 
The impact of data set normalization on the results of the M5 
model tree is explored. The following subsections provide 
details of the research methodology. 

A. Phase І 

1) Data processing 
To conduct this study, data including energy demand 

values with their related temporal features were selected and 
retrieved from meter and sensor readings. 

 

 

 

  

 

 

 

 

 

Weather history data such as temperature, humidity, and 

weather conditions (sunny, rainy, etc.) were obtained. To 

obtain a better idea of the influence of both seasonal changes 

and workload on demand values, the data were expressed in 

new forms such as date as season, day in week, and day in 

month: 
a) Date as season: has a discrete value in the set {1, 2, 3, 4}, 

where 1 is winter and 4 is fall. It provides a more 
comprehensive understanding of the effect of the seasonal 
changes on demand values. 

b) Day in week: indicates the effect of work load on the 
demand peak regardless of the weather. Day in week is 
assigned one of seven values: 1 for Sunday, 2 for Monday, 
and so on to 7 for Saturday. 

c) Day in month: is assigned a discrete value according to the 
order of a given day in the month. 

2) Feature selection with multiple linear regression 

The aim of feature selection is to select the most valuable 

features to establish an efficient predictor for the learning 

algorithm. Irrelevant features are discarded to minimize model 

dimensionality. Selecting the features used in prediction 

streamlines the calculation while increasing the possibility of 

refining the model accuracy. Multiple linear regression was 

used to study the impact of each feature on demand values and 

was calculated by: 

 Y=Xβ+ɛ    

where β is the vector of coefficients, X is the model matrix, 
and ɛ is the error due to  fit. The model matrix consisted of the 
collection of all features chosen to test the prediction model.  
The correlation coefficients R were calculated using equations 
2 and 3. 

 The second step was to arrange the features in descending 
order according to their correlation coefficients. To find the 
data set with the optimum features number, this ordered list 
was divided into smaller subsets. The first data subset started 
with the first two features on this list. The next data subset 
included the previous data subset and added the next feature on 
the list. This process continued until the final data subset with 
all features on the list. Finally all these subsets were tested 
using the prediction model to decide on the optimum number 
of features. The optimum number was selected based on the 
prediction model with the lowest error. 
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B. Phase IІ 

1) M5 model trees 
The feature subsets obtained from phase I were tested using 

M5 model trees. The M5 model trees were created using a 
three-step procedure.  

Building the initial tree 
The features used in building the tree are precisely those 

that contribute to decisions in nodes subordinate to the current 
one. These attributes are feature subsets generated from the 
feature selection process. The standard deviation reduction 
(SDR) used as the splitting criterion was defined as: 

 SDR=sd (T) − ∑
𝑇𝑖

𝑇𝑖  × sd (𝑇𝑖), (6)  

where 𝑇1, 𝑇2, … , 𝑇𝑛 are the sets defined by splitting data at the 
node.  

Pruning the tree 
First, the absolute difference between the predicted demand 

value and the actual value was averaged for each of the training 
examples that reached the node. Then this average was 
multiplied by the factor ( n + v )/ ( n − v ), where n  is the 
number of training examples that reached the node and v is the 
number of features in the model at that node. Pruning was 
applied from the bottom up; the error for the regression model 
at an internal node was compared to the error for its sub-tree. 

Smoothing the tree 
The smoothing procedure first used the leaf model to 

compute the predicted value and filtered that value along the 
path back to the root while smoothing each node by combining 
it with the value predicted by the linear regression model for 
that node. The smoothing formula was defined as: 

 p′ 
𝑛𝑝+𝑘𝑞

𝑛+𝑘
 

where p′ is the prediction passed up to the next higher node, p 
is the prediction passed to this node from its children, q is the 
value predicted by the model at this node, n is the number of 
training instances that reach the child node. k is a constant. 

2) Data normalization 
Normalization, which is adjusting values measured on 

different scales to a notionally common scale, was used to test 
the impact of data non-formality. M5 model trees are typically 
used with un-normalized data; however, this work explores the 
effect of data normalization on the accuracy of the prediction 
model. Normalization was applied to the final feature subset 
selected from the M5 model tree prediction. The impact of data 
normalization was tested by comparing the M5 model tree 
prediction model accuracy with and without normalization. 

V. EXPERIMENTS AND EVALUATION 

This study was conducted in collaboration with 
Powersmiths, a company that aims to help in building a 
sustainable future by supplying products and services that 
support reducing electricity waste [21]. Powersmiths is located 
in Brampton, approximately 26 km from Toronto International 
Airport. They have developed a sustainability management 

system called Windows on the World (WOW). WOW 
provided this study with historical data assembled from 
building meters and sensors. Below, a detailed description of 
the implementation and evaluation of the methodology are 
provided. 

A. Phase І 

1) Data processing 
Readings for energy demand measured in kilowatts (KWs) 

were captured on a time scale varying between five-minute to 
fifteen-minute intervals. Weather history information was 
obtained from Weather Underground [22]. Data from Toronto 
International Airport were added to the data set. The data 
consisted of temperature, humidity, conditions, visibility, 
Dewpoint and SeaLevelPressure. The original data set 
consisted of 13,208 tuples representing readings of electricity 
demand over a three-year interval from 2011 to 2013. The 
original data set needed to be cleaned and processed. 
Processing and preparing the data set included the following 
steps:  

i) Eliminating tuples with missing and invalid values 

because they significantly affected the prediction. 

ii) Aggregating the demand readings recorded for each day 

by finding the maximum readings of the demand from the 

given readings for each day. This aggregation is 

convenient for understanding the daily peak. 

iii) Aggregating each feature readings in the dataset by 

calculating its mean value. 
 This process resulted in a cleaned and consistent data set of 
2000 tuples. The data set was then split into two sets, with 85% 
of old data assigned as the training set and the other recent 
15% of data used for testing. Each of the training and test sets 
was divided into two subsets, the Input and Target sets. The 
training set was fed to the prediction model for learning. The 
test set was used to evaluate the prediction model and to 
calculate the prediction error. The predicted demand vector 
was calculated from feeding the training set to the model. This 
vector was compared to the target test set, which have the 
actual demand values. 

2) Feature selection 
The multiple linear regression model was implemented in 

R, which is a free open-source language and environment for 
statistical computing and graphics developed at Bell 
Laboratories [23]. Figure 2 shows the result of features 
correlation coefficients values.  

 
Fig. 2: Multiple linear correlation coefficients of the attributes. 
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SeaLevelPressure, Dewpoint, and WindDirection scored the 
lowest correlation coefficients. These low values indicate the 
weak impact of these features on the demand value. Date-as-
season, Day-in-week, Humidity, and Conditions had the 
highest coefficients. These high values indicate the strong 
impact of weather and workload on demand. Features were 
ordered in a descending order according to their correlation 
coefficients and were divided into feature sets to be used in 
training the prediction model. In phase II the M5 model tree is 
used to select the optimum number of features according to the 
lowest error value of the prediction model. 

B. Phase IІ 

1) M5 model trees 
 The M5 model tree was implemented in R using the Weka 
package that enhances the original Quinlan M5 algorithm [24]. 
Root mean square error (RMSE) and mean absolute error 
(MAE) were used to compare the feature subsets used and 
evaluate prediction accuracy. Figure 3 shows the experimental 
results for M5 model tree performance using the feature 
subsets. The subset including the features Date-as-season, Day-
in-week, Humidity, and Conditions resulted in the lowest 
errors in the prediction model.  

2) Data normalization 
Values of the selected feature set varied in scale from 

integers belonging to the interval [1,4] to other scales that 
belong to the real numbers and have different ranges. Feature 
such as weather conditions had string values. This kind of non-
conformity in feature value scales could have a significant 
impact on the predicted values. Therefore, all values were 
scaled to (0, 1). Weather condition values were mapped to 
integer values in order to match with other features domain. 
Figure 4 shows the comparison between the model accuracy 
before and after normalization. The normalized feature set 
performed better than that of the non-normalized set. 

C. Experimental results 

The “e1071” package was used to implement SVR in R. 
The statistical model was trained using the normalized selected 
feature set obtained from the M5 model tree experiments.    
Tuning was applied to achieve the best fit to the SVR model. 
The ANN model was implemented using the Stuttgart Neural 
Network Simulator (SNNS) library. The “RSNNS” package 
was used to wrap the SNNS functionality and make it 
accessible in R. The same normalized selected feature set was 
used to test the ANN model. 

 
Fig. 3: Results of testing M5 model trees on feature subsets.  

 
Fig. 4: M5 model tree performance before and after normalization. 

The comparison between M5 model tree performance and both 
SVR and ANN models is showed in Figure 5. M5 model tree 
outperformed SVR and ANN models with MAE of 8.95, 
compared to 10.03 and 12.05 KWs for SVR and ANN models 
respectively. M5 model tree scored 11.71 KWS in RMSE 
compared to 14.13 and 18.16 for SVR and ANN respectively. 
Finally, the M5 model tree was used to predict both daily and 
monthly demand peaks. The most recent data for year 2013 
was used for testing the model. August 2013 was selected to 
demonstrate the daily peaks. Figure 6 shows the comparison 
between the actual and predicted daily peaks in this month. The 
entire year data were selected to test monthly peaks prediction. 
Figure 7 shows the comparison between the actual and 
predicted peaks for each month in year 2013.  The dashed line 
represents the predicted monthly peak values. The dots in the 
figure show that the M5 model tree predicted the peak in the 
same day as the actual one, but with a difference in the values 
according to the MAE of 8.95 KWs. 

VI. CONCLUSIONS 

Predicting energy demand peaks can be beneficial to 
balance the energy demand and reduce electricity bills. This 
paper discussed the capabilities of M5 model trees in 
predicting energy demand peaks for commercial buildings. The 
proposed framework uses multiple linear regression for 
selecting features based on their correlation coefficients. 
Experimental results showed that the selected feature set can 
improve prediction model efficiency. The performance of the 
M5 prediction model improved remarkably after normalizing 
the data set values. The data set used in this study was provided 
from sensors and meters of Powersmiths, a green energy 
company located in Canada. 

 
Fig. 5: Comparison of M5, SVR, and NN models 
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Fig. 6: Actual vs. predicted daily demand peaks. 

 

The results showed that M5 prediction model outperformed 
both SVR and ANN with an MAE of 8.94 compared to 10.02 
and 12.04 for the SVR and ANN models respectively.  

 Further examination could be pursued to improve the 
accuracy of this model. Eliminating weekends from the data set 
to avoid weekly cyclist nature could be considered. Increasing 
the size of training set and different feature selection methods 
will be considered.  
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