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Abstract—Anomaly detection is crucial in the energy sector to
identify irregular patterns indicating equipment failures, energy
theft, or other issues. Machine learning techniques for anomaly
detection have achieved great success, but are typically centralized,
involving sharing local data with a central server which raises
privacy and security concerns. Federated Learning (FL) has been
gaining popularity as it enables distributed learning without
sharing local data. However, FL depends on neural networks,
which are vulnerable to adversarial attacks that manipulate data,
leading models to make erroneous predictions. While adversarial
attacks have been explored in the image domain, they remain
largely unexplored in time series problems, especially in the
energy domain. Moreover, the effect of adversarial attacks in
the FL setting is also mostly unknown. This paper assesses the
vulnerability of FL-based anomaly detection in energy data to
adversarial attacks. Specifically, two state-of-the-art models, Long
Short Term Memory (LSTM) and Transformers, are used to
detect anomalies in an FL setting, and two white-box attack
methods, Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD), are employed to perturb the data. The
results show that FL is more sensitive to PGD attacks than to
FGSM attacks, attributed to PGD’s iterative nature, resulting in
an accuracy drop of over 10% even with naive, weaker attacks.
Moreover, FL is more affected by these attacks than centralized
learning, highlighting the need for defense mechanisms in FL.

Index Terms—Adversarial Attacks, Federated Learning, Time
Series Classification, Energy Consumption, Anomaly Detection

I. INTRODUCTION

In 2022, commercial and residential buildings accounted
for approximately 34% of global energy consumption while
contributing to 37% of energy and process-related carbon
dioxide (CO2) emissions [1]. The United Nations’ Net-zero
emission goal aims to reduce the adverse effects of global
warming by decreasing global net CO2 emissions to 55%
of 2010 levels by 2030, with the target of achieving net
zero by 2050 [2]. Therefore, identifying and mitigating energy
waste is essential to align with the net-zero emissions goal.
Anomaly detection, the process of identifying patterns that
diverge from the established normal behavior [3], plays a
crucial role in determining energy waste. Example causes of
anomalies in energy consumption data include wasteful human
usage [4], faulty control systems [5], and energy theft [6].
These anomalies can be detected by identifying deviations
from the consumer’s historical energy patterns, which can then

trigger energy-conserving measures, promoting efficiency and
reducing environmental impact.

Energy distribution companies have been transitioning to
smart meters, which measure and transmit energy consumption
information for improved energy management and control [6].
The potential of smart meter data for anomaly detection has
been widely recognized, and several techniques have been
proposed, with Machine Learning (ML) approaches providing
state-of-the-art solutions. Common approaches to training ML
models involve transmitting data to a central server for model
training on that server [7]. However, this centralized approach
exposes data to privacy and security risks.

Federated Learning (FL) [8] reduces these privacy and se-
curity risks by decentralizing the learning with multiple nodes
collaboratively training a global model without sharing their
local data. Upon receiving the global model weights from
the server during an FL round, clients train independently on
their local data for several iterations and subsequently send the
updated model weights to the server. The server aggregates
clients’ weights to update the global model, which is then
broadcast back to the clients for the next training round. By
keeping data local, FL enhances privacy and security while
facilitating compliance with regulatory requirements such as the
EU/UK General Data Protection Regulation [9]. Recognizing
these advantages, energy consumption studies have integrated
FL to train neural networks and preserve data locality [10],
[11]. Thus, our study focuses on FL-based anomaly detection
in smart meter energy consumption data.

While FL mitigates privacy and security risks associated
with data sharing, it still raises other security concerns [12]–
[14] such as the vulnerability to adversarial attacks from
malicious clients [14]. Several studies [15], [16] in vision
tasks showed that FL is vulnerable to white-box adversarial
attacks targeting client neural networks (NNs), such as the
Fast Gradient Sign Method (FGSM) [17] and Projected Gra-
dient Descent (PGD) [18]. These attacks effectively degrade
NN performance by exploiting the network’s vulnerabilities
through subtle perturbations of input data. Initially designed for
the computer vision domain, these attacks have subsequently
been adopted in time series tasks [19], [20], demonstrating
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their transferability. However, in the time series domain, these
attacks still focus on centralized ML and do not examine the
effect of attacks in the FL setting. As NNs are deployed on
client nodes in FL, the attack surface expands, increasing the
risk as individual compromised nodes can affect the complete
federation. Therefore, it is crucial to understand how adversarial
attacks affect the FL process.

Consequently, this study assesses the vulnerability of FL-
based anomaly detection in energy consumption to adversarial
attacks. Specifically, the study examines how attacks on indi-
vidual FL nodes affect the global model and impact overall FL-
based anomaly detection performance, focusing on the effects
of different adversarial attacks. We adopt state-of-the-art time
series neural networks, Long-Short Term Memory (LSTM) and
Transformer, given their proven effectiveness in the energy
consumption domain [10], [21]–[23]. The impact of attack
magnitude in both non-iterative FGSM and iterative PGD attack
methods within the FL setting is examined. Further, the FGSM
and PGD attack methods are compared against simpler tech-
niques: label flipping [24] and random perturbation. Finally, we
evaluate the impact of the number of malicious clients in the
FL environment. The results indicate the vulnerability of FL-
based anomaly detection in energy consumption to adversarial
attacks, regardless of the underlying model, highlighting the
need for further research on resilient FL techniques.

The remainder of this paper is organized as follows: Section
II discusses related work, Section III provides background,
Section IV describes the methodology, and Section V presents
the result and finding. Finally, Section VI concludes the paper.

II. RELATED WORK

This section reviews energy anomaly detection in FL and
discussed adversarial attacks.

A. Energy Anomaly Detection and Federated Learning

Anomaly detection in energy has been an active research
area due to its critical importance in detecting sub-optimal per-
formance, device malfunction, and abnormal behavior, thereby
contributing to energy efficiency. Several studies [25]–[28]
proposed anomaly detection based on Deep Neural Networks
(DNN) due to their ability to model complex relationships.
Recently, LSTMs have gained popularity in the energy domain
due to their ability to capture temporal dependencies [26], [27].

In the Natural Language Processing (NLP) domain, Trans-
former has been renowned for its attention mechanism and the
generative capabilities utilized in diverse applications such as
ChatGPT [29]. Consequently, Transformer has been adapted in
various energy data studies [23], [30]. Energy forecasting is
commonly used with Transformers in self-supervised anomaly
detection solutions. Such solutions examine the difference
between the actual and predicted values: if this difference
exceeds a threshold, the sample is deemed abnormal. Zhang
et al. [23] combined Transformer and K-means clustering to
forecast energy consumption and detect anomalies. Nazir et
al. [30] also presented a Transformer-based solution focusing
on energy forecasting. As LSTMs and Transformers have

dominated energy anomaly detection and forecasting, our study
considered these two architectures in the FL setting.

These energy forecasting/anomaly detection techniques typ-
ically train models centrally where the data sharing raises
privacy and security risks. Due to its data privacy-enhancing
capabilities and distributed nature, FL has been gaining pop-
ularity for various tasks in the energy domain. Fekri et al.
[10] proposed a distributed load forecasting method based on
FL which takes advantage of LSTM as the base learner. The
same group further advanced FL-based forecasting to enable
asynchronous learning in the presence of non-IDD data by
introducing a novel aggregation technique [11]. Similarly, Sater
et al. [31] also integrated LSTM but combined it with multi-
task learning for anomaly detection in smart buildings. The
approach proposed by Jithish et al. [7] for anomaly detection in
smart grids is also based on FL. They considered the diversity
of ML models as the base learning, including LSTM, Gated
Recurrent Neural Networks (GRU), and Vanilla RNN.

The studies employing FL in the energy field made great
strides in improving energy prediction and anomaly detection
by enabling model training without sharing raw data. Neverthe-
less, they did not consider the possible presence of malicious
clients in the federation. Consequently, we address this gap
by examining the vulnerability of FL-based anomaly detection
techniques to adversarial attacks.

B. Adversarial Attacks

Adversarial attacks are designed to deceive the ML model,
leading to incorrect classifications. Often examined in computer
vision, adversarial samples are created by altering the images
so they still look normal to the human eye but lead the model
to incorrect predictions. Goodfellow et al. [17] proposed the
Fast Gradient Sign Method (FGSM) that utilizes the gradients
of a neural network to craft adversarial input image samples. In
the FGSM approach, the gradient is calculated only once. To
extend this, Kurakin et al. [32] introduced the Basic Iterative
Method (BIM), an iterative approach that adds perturbations to
the input data. Similarly, Madry et al. [18] introduced another
iterative attack named Projected Gradient Descent (PGD).
PGD uses random initialization and a projection step which
iteratively alters the input to improve the generated samples.
However, these algorithms were designed for the computer
vision domain, adding perturbations to images.

Considering the transferability of the mentioned attack mod-
els, Fawaz et al. [19] emphasized that adversarial attacks have
not been thoroughly explored for time series classification.
Thus, they perturbed time series data using FGSM and BIM
and compared the effectiveness of the attack models. Mode
et al. [20] also considered adversarial attacks on multivariate
time-series data and adapted adversarial attacks from the image
domain, such as FGSM and BIM, to deep learning regression
models for multivariate time series forecasting. However, these
studies [19], [20] only considered centralized ML.

Overall, adversarial attacks were mostly considered in the
vision domain, with a few works investigating time-series [19],



[20] but in the centralized setting. Furthermore, Bondok et al.
[33] studied attacks in an FL setting; however, they focused on
theft detection while our study focuses on generic anomaly
detection. Nevertheless, there is a need to understand how
adversarial attacks affect anomaly detection in the FL setting.
To address this gap, our work investigates the vulnerability of
FL-based anomaly detection models, specifically LSTM and
Transformer, to adversarial attacks of various strengths and
compares their vulnerability to that of centralized training.

III. BACKGROUND

This section provides an overview of the two white-box
attacks adopted in this paper. In white-box attacks, the adver-
saries have full access to the trained model, including the model
structure, parameters, and training data. White-box attacks were
selected over black-box attacks because access to the model’s
architecture and parameters enables more effective adversarial
attacks. Specifically, the two white-box attacks considered,
FGSM and PGD, perturb the input sample in the direction of
the model’s gradient with respect to the input.

The FGSM, as depicted in Algorithm 1, generates an ad-
versarial sample by computing the gradient of the loss with
respect to the input and adding a proportion of this gradient to
the input as the perturbation. Given a model parameterized by
θ, an original input sample x, and its label y, the computation
of the adversarial sample xadv by FGSM can be expressed as:

xadv = x+ ϵ · sign(∇xJ(θ, x, y)), (1)

where ∇xJ(θ, x, y) represents the gradient of the loss function
J with respect to input x, and sign(·) function extracts the
sign of each element in the gradient. A scalar ϵ controls the
magnitude of the perturbation.

While FGSM is a one-step attack, the PGD is a multi-step
variant of the FGSM, offering increased effectiveness over
FGSM. As illustrated in Algorithm 2, the iterative loop of
the PGD algorithm perturbs the input sample incrementally in
multiple sequential steps. Given a model parameterized with θ,
an original input sample x and its label y, in the tth iteration,
PGD updates the adversarial sample from previous step xt−1

adv

to the new adversarial sample xt
adv as follows:

xt
adv =

(
xt−1
adv + ϵ · sign(∇xJ(θ, x

t−1
adv , y))

)
. (2)

Here ∇xJ(θ, x
t−1
adv , y) is the gradient of the loss function with

respect to the adversarial sample from the previous step, sign(·)

Algorithm 1: FGSM attack algorithm
Input : Neural network model M , input data x, true

labels y, magnitude of the perturbation ϵ
Output: Adversarial data xadv

1 Function FGSM_Attack(M,x, y, ϵ):
2 Calculate ∇xJ(θ, x, y), gradient of the loss w.r.t.

input x;
3 Perform FGSM attack on input data x:

xadv ← x+ ϵ · sign(∇xJ(θ, x, y));

function extracts the signs of the gradient components, and ϵ
is the step size of the perturbation.

Both FGSM and PGD were initially proposed and subse-
quently examined using image data. Their consideration with
time-series data has been limited [19]. In this study, we adapt
them to generate attacks on anomaly detection in energy data.

IV. METHODOLOGY

This section outlines our methodology to assess the vulnera-
bility of anomaly detection in energy data within the FL setting.
First, the anomaly detection dataset generation is described,
followed by the adaptation of the white-box attacks to perturb
energy data. Then, the integration of adversarial attacks into
the FL process by simulating adversarial clients is described.

A. Energy Anomaly Detection Data

The anomaly detection process requires transforming the
energy data recorded by smart meters into a suitable input
format for the anomaly detection model, in our case, LSTM or
Transformer. The smart meter data, in the form of hourly energy
consumption readings, are divided into segments representing
24-step daily load profiles. One input example for the anomaly
detection model, thus, represents the daily energy consumption
pattern over 24 hours. The resulting dataset of time-series
energy consumption consists of the sets of inputs X and the
corresponding labels y:

X = {x1, . . . ,xi, . . . ,xn}, y = {y1, . . . , yi, . . . , yn}

where xi =
[
xi1 xi2 · · · xi24

]T
(3)

Here, input xi is a load profile vector of day i with 24 hourly
readings, and yi indicates whether xi is anomalous or not.

While energy consumption data are abundant, labeled data
are not commonly available, and this is also true for the dataset
used in our study. As the anomalies represent rare events, we
can assume that most recorded data are non-anomalous. Thus,
we label all original load profiles as normal data. Consequently,
to address the lack of anomalous data, we generate synthetic
anomalies that mimic irregularities in energy consumption
patterns. To generate synthetic anomaly data samples, the
historical 24-hour energy usage data is analyzed first to identify

Algorithm 2: PGD attack algorithm
Input : Neural network model M , input data x, true

labels y, number of PGD iterations T , PGD
step size ϵ

Output: Adversarial data xT
adv

1 Function PGD_Attack(M,x, y, T, ϵ):
2 Initialize x0

adv : x0
adv ← x;

3 for t← 1 to T do
4 Calculate ∇xJ(θ, x

t−1
adv , y), gradient of the loss

w.r.t. perturbed input xt−1
adv ;

5 Update perturbation:
xt
adv ← xt−1

adv + ϵ · sign(∇xJ(θ, x
t−1
adv , y));

6 end



periods of high and low electricity consumption (Referred to
as high/low energy usage periods).

Aligning with the energy consumption patterns, five dis-
tinct types of anomalies are introduced into the data. The
first anomaly type is a drop, which simulates a sudden and
unexpected decrease in energy usage to zero, potentially caused
by factors such as power outages or equipment failures. Given
an input sample xi, and a randomly selected step S from the
high energy usage period, a length l drop anomaly is generated
by modifying the time series entries xiS to xi(S+l−1) to zero:

x̂ij|j=S...S+l−1 = 0, l ∈ {1, 2}. (4)
Additionally, positive spikes and negative spikes are intro-

duced, representing increases or decreases in energy usage,
respectively. These anomalies are introduced for a single time
step (l = 1). Furthermore, segment positive spikes and segment
negative spikes are introduced to represent deviations that
persist for two timesteps (l = 2). These anomalies could be
indicative of events such as appliance malfunctions, unusual
weather conditions, or changes in usage patterns. While in our
experiment, only duration of l = 2 was considered, longer
anomalies could be simulated. To generate spike anomalies, a
random variable r, sampled from the range [0.5, 1.5], deter-
mines the amplitude of each spike or dip. For positive spike
and segment positive spike anomalies, the modified value is:

x̂ij|j=S...S+l−1 = xij + r · xij , l ∈ {1, 2}, (5)
where S is from low energy usage period. For negative spike
and segment negative spike anomalies, the modified value is:

x̂ij|j=S...S+l−1 = xij − r · xij , l ∈ {1, 2}, (6)
where S is chosen from high energy usage period.

The resulting anomalous data points are combined with
the original data to build the anomaly detection dataset. This
study considers two models for anomaly detection: LSTM
and Transformer. LSTM was selected for its effectiveness in
capturing temporal patterns and its widespread use in energy
modeling [10]. Transformer was chosen due to its success in
sequential tasks like GPT [29] and energy forecasting [22].

B. Time Series Adversarial Attacks
To create attacks on X, the input data xi needs to be

perturbed to cause the model to misclassify it as ŷi where
ŷi ̸= yi. The FGSM attack is performed as in Equation 1.
While the input x in Equation 1 is an image in the image
domain, in our case, it is the daily load profile xi.

The gradients ∇xJ(θ, x, y)) calculated in Equation 1 depend
on the model parameters θ. The LSTM and Transformer models
used for the anomaly detection contain different parameters θ.
Since the perturbation depends on the gradient of the loss, it
will differ for each of the two models, potentially resulting in
varying vulnerability to attacks between the two models.

As for FGSM and PGD attacks, the gradients are calculated
the same way. The difference, as illustrated in Algorithm 2,
is that for PGD, the process is iterative. For both attacks, we
examine the vulnerability of ML models under different attack
strengths by varying parameter ϵ.

(a) FL without adversarial attacks (b) FL with adversarial attacks

Fig. 1: Federated learning without and with adversarial attacks.

C. Adversarial Attacks in FL Setting

Consider an FL environment as in Fig. 1a with a set C
of clients, i.e., houses with their energy consumption. The
FL process with the integrated attack simulation is presented
in Algorithm 3. The highlighted lines 7 to 13 are added or
modified to integrate the adversarial attacks into the FL process,
while the remaining lines are traditional FL process. The
training begins by randomly initiating global model weights,
Line 1. The FL process iterates over T rounds, Line 2, where
each round starts with the global weights being broadcasted to
a randomly selected subset K of N clients, Lines 3 and 4.

The selected clients participate in the training round where
they learn in isolation with their respective local datasets for e
number of epochs and update their local model weights Wk –
without adversarial attacks, Line 12 in Algorithm 3. Afterward,
each client sends the locally updated weights to the global
server for weight aggregation, Line 16. We consider the Feder-
ated Averaging (FedAVG) algorithm [34] as a greatly popular
aggregation technique. FedAVG averages client weights, Line
17, to compute the new global weights W as follows:

W =
1

N

∑
k∈K

Wk (7)

The process then continues to the next training round from
Line 2 by selecting a new subset K of N clients to participate
in training and broadcasting the new global weights W . The
process repeats for T training rounds or until convergence.

With adversarial attacks, the set C of all clients now contains
a subset A of adversarial clients whose training data are
perturbed by adversarial attacks. As shown in Fig. 1b, if a
particular adversarial client participates in the training round,
its data is modified through FGSM/PGD attacks. Suppose
adversarial clients are present among the selected subset K for
a particular training round. In that case, their data is perturbed
by performing FGSM/PGD attacks, Line 9, with gradients
calculated on the local models obtained in Line 8. The FGSM
and PGD attacks are described in Section III.

The malicious clients in set K train on perturbed data, Line
10, while non-malicious clients train on their original data,
Line 12. Both types of clients send data to the server for
aggregation, Lines 16 and 17. The presence of such perturbed
local weights in the weight aggregation process results in



Algorithm 3: Perform adversarial attacks in FL setting
Input : Set of FL clients {C}, number of training

rounds T , number of randomly selected clients
per each training round N , number of epochs
to train a local model e, randomly selected
adversarial clients set {A}

Output: Global model weights Wglobal

1 Initialize Wglobal at the server;
2 for t← 1 to T do
3 Select set {K} using N random clients from {C};
4 Server broadcasts Wglobal to all k ∈ {K} clients;
5 foreach k ∈ {K} in parallel do
6 Client k receives Wglobal;
7 if k ∈ {A} then
8 Get client model: Mk;
9 Perform attacks on client data xk:

xadv ← Perform Attack(Mk, xk, y);
10 Train local model on adversarial data:

Wk ← train(Wk, xadv, e);
11 else
12 Train local model on non-adversarial data:

Wk ← train(Wk, xk, e);
13 end
14

15 end
16 Global server aggregates Wk from all k ∈ {K}

clients;
17 Wglobal ← 1

N

∑
k∈K Wk;

18 end
19 Server sends updated Wglobal back to all clients;

subsequently broadcasting the effect of perturbed weights to all
participating clients. Depending on the strength of the attack,
modified weights Wk can have a major impact on the global
model aggregated by FedAVG. Therefore, malicious clients
degrade the performance of the complete federation.

V. EVALUATION

This section describes the dataset and experimental setup,
model training and evaluation metrics, followed by the effect
of attacks during inference and training. Finally, the impact of
the attack magnitude is examined.

A. Dataset and Experimental Setup

The empirical evaluation was conducted using a real-world
residential energy consumption dataset provided by London
Hydro, a local electricity distribution company serving the city
of London, Ontario. The dataset comprises energy consumption
data from 19 households, with each consumer’s dataset con-
taining hourly energy consumption readings for three years,
resulting in 25,560 samples per household. The simulated
FL setting treated each household with its associated energy
consumption data as a distinct local node or client.

The data were first segmented into daily load profiles as de-
scribed in Section IV-A and daily energy consumption patterns

Fig. 2: Average 24-hour electricity usage for each house.

(a) ϵ = 0.2 (b) ϵ = 0.4

(c) ϵ = 0.5 (d) ϵ = 0.8

Fig. 3: Clean (without attack) sample and its PGD and FGSM
attacked variations with varying attack magnitudes.

were analyzed. Fig. 2 represents the household-wise average
24-hour electricity usage pattern. The low energy usage occurs
between 4 a.m. and 10 a.m., and the high energy usage from 6
p.m. to 1 a.m. These low and high periods were used to generate
synthetic anomalous profiles and build the energy consumption
anomaly detection dataset. The normal data were labeled 0,
whereas synthetically generated anomalies were labeled 1.

The white box attacks on the prepared time series data
were generated as described in Sections III and IV-B. Fig. 3
illustrates a time series sample from the dataset before attacks
(clean sample), and samples after FGSM and PGD attacks with
varying magnitudes of attack ϵ. When ϵ is set to a lower value,
the perturbations introduced to the data are smaller, making the
adversarial sample closer to the clean sample. As ϵ increases,
the perturbations become larger, making the adversarial sample
more distinct from the clean sample. The perturbed samples
by the PGD attack are still visually similar to the clean
sample, whereas the FGSM attack introduces more noticeable
deviations from the clean sample. The iterative process, in our
experiment 10 iterations, allows the PGD attack to carefully
adjust the input data for a more effective attack than FGSM.



B. Model Training and Evaluation Metrics
This study examined two time series networks, LSTM and

Transformer. The LSTM used in experiments comprises an
LSTM layer containing 100 units, followed by a dense layer
with a single unit and sigmoid activation to output the anomaly
probability. Transformer consists of five transformer encoder
blocks. Each block includes a multi-head attention layer with
eight heads, each having a dimension of 160, followed by
a feed-forward layer with a hidden dimension of 128. After
passing through the Transformer blocks, the output across time
steps is globally averaged and passed to a fully connected
layer with a hidden dense layer of 256 units, followed by an
output layer with a single unit. The models were trained for
100 epochs with a batch size of 32. The RMSprop optimizer
was used with an initial learning rate of 0.01 multiplied by 0.1
at epochs 50, 70, and 90. Binary Focal Loss [35] was used to
address the imbalance between normal and anomalous classes.

The accuracy, precision, recall, and F1 Score were used
to measure the anomaly detection performance. Accuracy is
the ratio of the number of correct classifications to the total
number of predictions. The precision reflects the probability
of a model-flagged anomaly being a ground truth anomaly,
whereas the recall represents the probability of the model
successfully flagging ground truth anomalies. The F1 Score
is the harmonic mean of precision and recall. Measuring the
success of the adversarial attacks involves comparing the model
performance before and after the attack. We also calculated
the Attack Success Rate (ASR), which quantifies the success
probability of an adversarial attack. ASR is the ratio between
the number of samples whose predicted labels are changed
by the attack and the total number of samples. Higher ASR
correlates with a greater degradation in model performance.

ASR =

∑N
i=1 ζ (y

′
i ̸= yi)

N
(8)

C. Effect of Adversarial Attacks during Inference
In our first experiment, both federated and centralized models

were trained with clean data (non-perturbed) and evaluated on

Setting Attack Acc(%) Prec(%) Rec(%) F1(%) ASR(%)

LSTM No Attack 95.74 93.91 93.64 93.78 -
(Central) AWGN 94.02 90.23 96.20 93.12 10.1

FGSM 50.58 38.6 75.7 51.19 49.4
PGD 18.12 14.4 31.2 19.7 86.8

LSTM No Attack 91.6 90.3 85.1 87.62 -
(FL) AWGN 91.36 92.01 87.38 89.64 14.2

FGSM 49.79 37.61 71.84 48.61 52.98
PGD 25.63 22.47 23.88 25.5 78.55

Transformer No Attack 96.24 94.32 97.37 95.82 -
(Central) AWGN 93.11 90.66 94.75 92.66 12.5

FGSM 38.7 30.01 59.39 39.87 61.2
PGD 17.9 21.4 52.4 30.4 82.03

Transformer No Attack 86.7 78.3 88.3 82.3 -
(FL) AWGN 86.12 85.12 90.31 87.64 17.2

FGSM 34.1 29.1 33.6 31.2 71.1
PGD 27.1 23.4 35.06 28.1 76.19

TABLE I: Models trained on clean data, attacked in inference.

the test data that contained adversarial samples. All samples in
the test set were perturbed with the considered attack: FGSM,
PGD, or Additive White Gaussian Noise (AWGN). An attack
strength of ϵ = 0.5 was used for FGSM and PGD, while a noise
variance of σ2 = 0.1 was used for AWGN. Table I illustrates
the results of this experiment. The first row in each segment
shows the model performance on the clean test set, and the
subsequent rows show the model performance with perturbed
test sets. The ASR measures the percentage of attacks in the
test data that resulted in flipped predictions.

Both centrally and federated-trained models demonstrated
strong baseline anomaly detection performance on the clean test
set with centrally-trained models showing better performance.
FGSM and PGD attacks during inference considerably reduced
the model performance, whereas AWGN resulted in minor
performance reduction. Both FGSM and PGD attacks led to
a higher ASR for the FL model than for the central model.
Overall, PGD posed a significant challenge for both federated
and centrally trained models.

D. Effect of Adversarial Attacks during Federated Training

In the second experiment, the adversarial attacks were intro-
duced during training, and the anomaly detection performance
was evaluated on clean test data. Attacks in the FL setting were
carried on as explained in Section IV-C where 9 out of the 19
clients were malicious, with 30% of their training data being
perturbed. The tested attack techniques consist of sophisticated
attacks, PGD and FGSM, as well as naive attacks, AWGN,
and label flipping. The PGD and FGSM were conducted with
ϵ = 0.5, whereas the AWGN used σ2 = 0.1. The central
training was similarly subjected to attacks, with 30% of the
total data being perturbed by the corresponding attack during
training. Table II shows the results of this study, where the
first row in each segment shows the clean-trained model per-
formance, and the subsequent rows show model performance

Setting Attack Acc(%) Prec(%) Rec(%) F1(%) ASR(%)

LSTM No Attack 95.74 93.91 93.64 93.78 -
(Central) AWGN 93.45 94.61 93.74 92.9 11.71

Label Flip 42.59 45.16 42.82 40.72 55.11
FGSM 33.13 31.13 31.62 32.14 76.71
PGD 22.36 19.63 20.43 21.31 82.41

LSTM No Attacks 91.6 90.3 85.1 87.62 -
(FL) AWGN 90.11 89.66 82.00 85.66 15.7

Label Flip 40.66 44.36 38.49 41.22 65.1
FGSM 36.6 37.3 33.1 35.07 77.7
PGD 23.5 21.4 24.04 22.6 85.3

Transformer No Attack 96.24 94.32 97.37 95.82 -
(Central) AWGN 94.12 92.16 93.34 94.57 11.21

Label Flip 62.27 60.26 61.75 63.32 39.17
FGSM 61.25 61.32 61.71 62.12 42.29
PGD 29.21 27.78 28.28 28.81 72.91

Transformer No Attacks 86.7 78.3 88.3 82.3 -
(FL) AWGN 84.61 80.66 78.68 79.66 25.1

Label Flip 75.66 62.36 85.50 72.12 40.7
FGSM 65.8 64.02 58.2 60.09 48.9
PGD 33.01 29.14 36.21 32.1 71.7

TABLE II: Models trained under adversarial attacks



after training under adversarial attacks. The ASR reflects the
percentage of clean test data whose model predictions were
flipped after training with attacks.

When trained in the FL setting without adversarial attacks,
LSTM achieved an accuracy of 91.6%, a precision of 90.3,
a recall of 85.1, and an F1 score of 87.62 on the clean test
set. Transformer, on the other hand, showed slightly lower
performance with an accuracy of 86.7%, precision of 78.3,
recall of 88.3, and an F1 score of 82.3. When attacked during
training, both models experienced a considerable drop in clean
test set performance. ASR was high for training under FGSM,
while PGD caused an even larger performance decline. Random
label flipping introduced a smaller drop in performance than
FGSM and PGD, while AWGN had the smallest impact on
the model performance. A large performance drop under PGD
attacks compared to FGSM is expected, as the iterative nature
of PGD makes it a more sophisticated attack. Nevertheless,
both attacks were highly successful. This is consistent with the
decline observed across all performance metrics.

Centralized training showed better performance than feder-
ated learning in the absence of attacks, which is expected since
the performance of federated learning is inherently bounded
by that of a centrally trained model. However, central training
showed similar performance drops with attacks during training.
Both LSTM and Transformer experienced substantial drops
in performance when subjected to FGSM and PGD during
training, with lesser impact from label flipping and the least
impact from AWGN. Central training generally showed lower
attack success rates than their federated-trained counterparts.
Overall, the FL setting was observed to be equally or more
vulnerable to all attacks than the central setting.

Transformer demonstrated better resilience against both at-
tacks than the LSTM in central and federated settings. The
FGSM attack on Transformer had a lower success rate than
on the LSTM. Similarly, although the PGD attack had a
higher success rate against Transformer compared to FGSM,
it was still less effective than when applied to the LSTM.
Transformer exhibited a similar phenomenon for label flipping
while showing higher vulnerability to AWGN than LSTM.

Additional experiments were conducted on a larger resi-
dential dataset of 50 households, also provided by London
Hydro. The results, presented in Table III, reinforce the findings
from the first dataset, revealing performance degradation under
attacks. Both LSTM and Transformer experienced notable
performance degradation under FGSM and PGD attacks during
training, with PGD causing a more substantial impact. Trans-
former again demonstrated slight resilience compared to the
LSTM, though both models were highly vulnerable.

Overall, the FL setting showed comparable vulnerability to
the attacks as central learning. The FGSM and PGD attacks
caused considerable performance degradation, with PGD caus-
ing the highest impact, followed by FSGM, label flipping,
and random perturbations. In general, Transformer was less
vulnerable to the considered attacks than the LSTM. The results
emphasize the importance of considering adversarial attacks in

Setting Attack Acc(%) Prec(%) Rec(%) F1(%) ASR(%)

LSTM No Attack 82.3 82.5 80.3 81.4 -
(Central) AWGN 80.2 87.4 77.4 82.1 21.3

Label Flip 59.1 53.7 61.7 57.4 45.2
FGSM 35.2 42.1 32.5 36.7 61.7
PGD 27.5 33.3 24.3 28.1 66.4

LSTM No Attack 78.2 73.1 77.4 75.2 -
(FL) AWGN 78.1 84.3 74.5 79.1 25.1

Label Flip 57.2 52.9 58.1 55.4 55.6
FGSM 43.2 40.0 45.3 42.5 62.5
PGD 33.6 28.6 35.1 31.5 68.3

Transformer No Attack 84.1 79.6 85.4 82.4 -
(Central) AWGN 82.2 87.4 80.7 83.9 20.5

Label Flip 65.9 61.0 66.2 63.5 37.8
FGSM 46.1 50.1 45.3 47.6 53.1
PGD 32.5 29.4 34.2 31.6 61.6

Transformer No Attack 74.4 79.3 72.6 75.8 -
(FL) AWGN 71.6 76.4 69.5 72.8 28.2

Label Flip 62.2 66.5 61.1 63.7 48.6
FGSM 51.4 46.6 52.6 49.4 55.4
PGD 42.7 39.3 41.3 40.3 64.2

TABLE III: 50-houses dataset: Trained under attacks.

(a) Acc. with malicious clients % (b) Acc. with attack strength ϵ.

Fig. 4: Accuracy for varied attach strengths.

FL, underscoring the necessity for a deeper understanding of
these threats in the FL setting.

E. Impact of Attack Magnitude on Model Performance

This section investigates the effect of the magnitude of
attacks on anomaly detection performance in the FL setting. We
consider two approaches to vary the magnitude of the attack:
changing the number of malicious clients in the FL setting and
changing the attack strength ϵ of FGSM and PGD.

Fig. 4a illustrates the effect of the number of malicious
clients performing PGD attacks on the anomaly detection per-
formance of the LSTM in the FL setting. With 10% malicious
clients, the accuracy drops to 72.5%. As the percentage of ma-
licious clients increases to 20%, the accuracy further decreases
to 49.2%. When 50% of the clients are malicious, the model’s
performance is substantially compromised, with the accuracy
plummeting to 23.5%. As expected, the increasing number of
malicious clients in FL results in performance degradation in
terms of all considered metrics. Fig. 4b depicts the anomaly
detection accuracy of LSTM trained in the FL setting with
increasing attack strength ϵ for PGD and FGSM. The parameter
ϵ controls the magnitude of the perturbations applied during the



attacks, with higher values resulting in larger perturbations and
typically more successful attacks. For both PGD and FGSM
attacks, the model’s accuracy remained relatively high (around
89%) at low ϵ values of 0.1 and 0.2, indicating that minor
perturbations had minimal impact on the model’s performance.
However, as ϵ increased, the accuracy exhibited a large decline,
with PGD causing more severe degradation than FGSM.

These findings indicate that both PGD and FGSM attacks
become increasingly effective in degrading the model’s per-
formance as the ϵ value increases. The PGD attack, being an
iterative and more powerful method, had a greater effect on
reducing accuracy compared to the FGSM attack.

VI. CONCLUSION

This paper assessed the vulnerability of FL-based anomaly
detection in energy data to adversarial attacks. Two state-of-the-
art deep learning models, LSTM and Transformer, were exam-
ined for their sensitivity to attacks, FGSM, and PGD, where
both attacks greatly degraded model performance compared to
naive attacks. PGD, being an iterative attack, consistently had
a larger effect than the FGSM attack. Comparing the effect of
attacks on centralized training to that of FL, the experiments
show that the FL models are more affected. Transformer was
less sensitive to the attacks than the LSTM in general. The
strength of the attack, as well as the number of malicious
clients also had a large impact on the attack’s success. Overall,
the results highlighted the impact of adversarial attacks on FL
and the need to design robust defense mechanisms to mitigate
their impact. These vulnerabilities in the energy sector can have
major real-world impacts as undetected anomalies can trigger
financial and safety risks. Future work will design defense
mechanisms to overcome these vulnerabilities and techniques
for defending against malicious clients in the FL setting.
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