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Abstract— Shoulder injuries and conditions are common
musculoskeletal complaints that can limit a patient’s range
of motion and daily activities. Recently, serious games and
mixed reality technologies, such as the HoloLens, have been
proposed for shoulder rehabilitation. However, it is unclear
if this technology accurately tracks 3D hand movements
for reporting therapy-related kinematic metrics. This paper
presents accuracy and repeatability tests of the HoloLens 2
in tracking hand movements, and its potential for shoulder
rehabilitation assessment. Comparisons were made between
index fingertip, palm, and wrist movements captured by the
HoloLens 2 and an Aurora electromagnetic system, which was
used as the ground truth. A mixed-reality environment was
developed to capture static hand positions, as well as dynamic
hand movements performed during a shoulder physiotherapy-
based exercise. The tracking data were used to calculate several
kinematic metrics. The results show that the HoloLens 2 hand-
tracking system is accurate to within a median of 10.2 mm
and has repeatability comparable to the Aurora system, with
the palm exhibiting the best results. The HoloLens 2 data
are suitable for computing kinematic metrics for shoulder
rehabilitation assessment, achieving accuracies above 86.9% for
all of the tested metrics. Metrics such as time-to-speed peak
and the log dimensionless jerk were found to have significant
differences between dynamic hand movements. These findings
support the mixed reality technology potential to assist shoulder
rehabilitation through immersive and interactive environments.

I. INTRODUCTION
Shoulder affections are one of the most frequent muscu-

loskeletal complaints [1], [2], which usually worsen with age
[1], [3], limiting the patient’s range of motion, dexterity, and
muscle strength [2], [4]. Since shoulder motion is essential
for completing basic activities of daily living such as eating,
bathing, and dressing, restoring their function is a critical
goal in upper limb rehabilitation. Therefore, the intensity
and precision of the rehabilitation exercises are important
for the patient’s recovery even in the presence of shoulder
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pain [4]–[6]. However, it is difficult for patients to endure the
pain and remain motivated while doing repetitive exercises,
affecting their performance and increasing recovery time
[7]–[9]. Furthermore, clinicians often subjectively evaluate
therapy progress, and patients lack information about their
performance [7].

As a potential solution, the combination of serious games
(SGs) and virtual reality (VR), augmented reality (AR), or
mixed reality (MR), has been proposed in rehabilitation.
SGs are video games made to educate or train rather than
entertain. In VR, the users interact with a completely im-
mersive virtual world, while AR shows virtual elements su-
perimposed on top of a real environment, and MR combines
virtual and physical content in an interactive system [10]. The
disadvantage of VR is that it limits the patient’s observation
of their body movements and the real environment [8], [11].
Therefore, the person is not aware of their surroundings
and cannot interact with physical objects [9]. The AR and
MR approaches solve this issue, but MR can deliver more
immersive experiences, track user movements, and provide
more intuitive interactions [11].

When combined with therapy exercises, SGs and MR can
increase treatment intensity and patient engagement while
also enabling the recording of movement data [8], [12], [13].
Motion tracking systems included in videogame consoles and
virtual or mixed reality devices have been used to record
these data. The Kinect employs an optical system [14]–[16],
while the Wii uses inertial sensors [16], [17]. Both devices
are examples of console technologies. The High Tech Com-
puter Vive [18] is a VR headset, while the HoloLens 2 (HL2)
[13] falls into the MR category. The motion data captured by
these types of systems are relevant in physiotherapy because
they can be used to calculate kinematic metrics (KMs) related
to the patient’s performance [19]–[21].

In terms of motion tracking for shoulder rehabilitation
exercises, the data recorded are usually coming from shoul-
der, elbow, wrist, and hand movements [9], [13], [15], [18].
The KMs computed from those data are used to assess
patient’s movement accuracy, efficacy, efficiency, planning,
smoothness, and speed [19]–[21]. Therefore, the accuracy
and repeatability of the device used for motion tracking are
crucial for determining expected measurement errors.

Recently, the HL2 has been used for tracking hand move-
ments in medical applications, such as training for obstetric
sonography [22], upper-limb rehabilitation [9], [23], and
robotics rehabilitation [13]. Nam et al. [13] compared this
MR technology to a robotic system using a rehabilitation-
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based reaching task. They estimated three KMs using the
index finger position. The tracking data of the index finger
were also used by Soares et al. [24] to test the accuracy
and repeatability of the HL2 in a user-computer interaction
application. However, the HL2 tracking system requires
further research to validate its accuracy and repeatability in
tracking different parts of the hand. Specifically, the wrist
and palm movements are variables of interest due to their
importance for performing activities of daily living [25].
Moreover, an evaluation of the usability of the tracking data
to determine KMs for upper limb rehabilitation assessment
is necessary.

Therefore, the main objective of this research is to perform
a preliminary evaluation of the accuracy and repeatability
of an MR system, in tracking hand movements, including
index fingertip, palm, and wrist, for its application in shoul-
der rehabilitation. The secondary goal is to investigate the
usability of the tracking data to compute KMs for shoulder
rehabilitation assessment.

II. RELATED WORK

The Microsoft MR system, the HoloLens (HL), has found
applications in diverse healthcare areas such as gait analysis,
medical training, rehabilitation, and surgical navigation [26].
In the area of upper limb rehabilitation, Codino et al. [7]
used the first version of the HL headset to develop and test
the usability of an SG for shoulder rehabilitation exercises.
Pillai et al. [9] made several SGs for shoulder, elbow, wrist,
and finger therapy for the HL2. In addition to a usability
test, they compared estimations of shoulder and elbow angles
made with the HL2 hand tracking algorithm to the same
angles obtained with a Kinect device, finding insignificant
differences.

Franzo et al. [23] also compared an HL2 to a Kinect,
but they tracked the three-dimensional (3D) movements of
a participant’s right hand while performing a reaching task
exercise designed for ataxic patients. They found that the
subjects achieved the goals in less time with the MR system
than with the Kinect-based prototype, and the MR immersion
made it easier to understand the depth and position of
the targets. Furthermore, they noted that the HL2 has a
higher sample rate than the Kinect, and concluded that the
HL2 can follow unexpected patient movements better. A
similar reaching exercise for upper limb rehabilitation, but
in two dimensions, was considered by Nam et al. [13] to
compare the performance of the HL2 to an end-effector-
based rehabilitation arm. They tracked the hand movements
and computed three KMs: average speed, total movement
time, and curvilinearity ratio (a relation between the minimal
distance to complete a movement and the actual distance per-
formed). The differences found in the subjects’ performance
were produced by specific characteristics of the robotic
system, such as arm support and haptic feedback. The authors
concluded that a combination of MR and the robot could be
suitable for upper-limb exercises for stroke survivors.

In general, MR systems have a promising future in ad-
vanced upper-limb therapy applications, alone or joined with

a complementary device such as a Kinect or a robot [9], [13].
In particular, the capability of the HL2 to track the user’s
hand motion can be used to compute more KMs than those
reported by Nam et al. [13]. Therefore, a comprehensive
analysis of the accuracy and repeatability of the data that can
be extracted from these MR devices is crucial to establish
its usability in reporting these metrics. Soares et al. [24]
tested accuracy and repeatability on the HL2 index fingertip
tracking using several experiments and an OptiTrack system
as ground truth. They registered an accuracy of around
20 mm and a repeatability between 5.8 mm and 11 mm.
However, the tasks performed during the experiments were
not based on therapy exercises; therefore, the effect on
rehabilitation performance parameters was not measured. In
terms of orientation accuracy and precision, Costa et al. [27]
evaluated the ability of the HL2 to detect the orientation
of a static QR code. They used a spherical structure with
hexagonal holes as ground truth and reported HL2 average
accuracy of 0.755◦ and average precision of 0.018◦.

As a contribution, this paper presents accuracy and re-
peatability results for 3D motion tracking obtained from the
HL2, not only for the index fingertip but also for the hand
palm and wrist. Moreover, the accuracy test is extended
to analyze the results of six KMs used in upper limb
rehabilitation assessment.

III. MATERIALS AND METHODS

In order to evaluate the accuracy and repeatability of an
HL2 for tracking the 3D positions of the index fingertip,
palm, and wrist, two tasks were designed. Both tasks were
adapted for an MR interaction. The first task was used for
the accuracy and repeatability tests. The second task was
used for accuracy tests, as well as for computing upper
limb rehabilitation performance KMs. Two of the authors
performed both tasks several times while the mentioned 3D
positions were simultaneously tracked by the HL2 and an
Aurora electromagnetic system, which was used as ground
truth. The participants were right-handed, between 40 and
55 years of age, and of both genders, without any visible or
diagnosed upper body impairment. Fig. 1 depicts the method-
ology followed in this study. An expanded explanation of the
devices, tasks, materials, and methods to record and process
data, and calculate accuracy, repeatability, and rehabilitation
KMs, are presented in the following subsections.

A. Hardware

The Aurora system consisted of a Planar 20-20 electro-
magnetic field generator, a control unit, a sensor interface
unit, and three 5-degree-of-freedom sensors to capture the 3D
location of the index fingertip, palm, and wrist. This Aurora
provided 3D location signals with a root-mean-square error
(RMSE) of 0.7 mm at a sampling frequency of 40 Hz, in
a cubic workspace with a side length of 500 mm [28]. The
sensors were attached to the hand using 3M medical tape
and positioned on the palm-side of the hand, so as not to
interfere with the HL2 tracking algorithm.



Figure 1. Methodology for processing hand motion data captured during a trial. Data from index fingertip, palm, and wrist 3D locations are captured with
the Aurora system and the HoloLens 2 while performing two tasks based on an upper–limb rehabilitation exercise. The HoloLens and Aurora reference
frames are represented using a red arrow for the x axis, a green arrow for the y axis, and a blue arrow for the z axis.

The HL2 is a wireless head-mounted-display device [29]
that has see-through holographic lenses with a resolution
of 2k and 3:2 ratio, visual projection with a focal length
of 1.08 mm and a field of view of 96.1◦, a camera of 1
Megapixel resolution for time-of-flight depth sensing, and
a visual camera of 8 Megapixels. This device contains an
algorithm for hand tracking based on a two-handed fully
articulated model.

B. Experimental Tasks

The Aurora and the MR systems recorded 3D location data
while the following experimental tasks were performed:

Task 1: This task was used for accuracy and repeatability
tests of 3D position tracking using static hand positions. Ten
virtual objects (named targets) were touched with the right-
hand index fingertip for 3 seconds each. Each of the ten 3D
positions was referred to as a static position. The targets had
a 3D icosahedron shape delimited by a sphere with a radius
of 35 mm. They were shown sequentially on the vertexes
and center of a rectangular cuboid. The size of this cuboid
was selected as 350 mm in height and length and 250 mm
in width, so that the targets and the hand were inside the
workspace of the Aurora system.

Task 2: This task was used to calculate KMs and evaluate
the HL2 accuracy with respect to the Aurora, during dynamic
hand movements. It was based on a therapeutic exercise for
dynamic shoulder rehabilitation, which requires the patient
to touch, as quickly as possible, physical objects randomly
appearing in a reachable space in front of them with a
finger or hand. The exercise includes shoulder horizontal
abduction or adduction and flexion or extension movements.
An MR-based SG was developed for this experimental task.
The SG had a duration of 60 seconds and showed targets
randomly inside the same cuboid used for Task 1. In contrast
to Task 1, the interaction between the target and the user’s
index fingertip required 0.2 seconds for the target to change
its location. Each hand movement from one target to the
next one was considered as a basic repetition. Task 2 was
performed under four conditions: 1) high speed, by moving
from one to the next target as quickly as possible using
a natural arm speed, 2) medium and 3) low speeds, with

guidance to reduce the arm motion speed, and 4) a jerky
motion, by vibrating the arm.

Each participant performed each task eight times. The
execution of one Task 1 followed by one Task 2 was
considered as a trial. Task 1 was the same during all trials,
while Task 2 was sequentially modified by the mentioned
conditions in each trial. For example, Trial 1 included one
Task 1 and one Task 2 at high speed; Trial 2 consisted of one
Task 1 and one Task 2 at medium speed, and so on. After
going through the four conditions of Task 2, the sequence
was repeated. The SG, running in the HL2, and the data
recording from the Aurora system were restarted between
trials.

C. Data Recording

The game engine Unity v2020.3.42f1, the Mixed Reality
Toolkit v2.8.3, and the MR OpenXR plugin v1.8.0 were used
to create the MR environment, define user–MR interactions,
and record hand motion data. Using the HL2 hand-tracking
capabilities, 3D locations of the right-hand index fingertip,
palm, and wrist were recorded in addition to a timestamp,
3D locations of the virtual targets, and the number of targets
touched. The sampling frequency of the HL2 was around 55
Hz. The measurements coming from the Aurora system were
recorded using proprietary software from Northern Digital
Inc. The number of frames, the status of the sensors, and
3D locations were recorded. A representation of the data
recording and processing, as well as, the used devices are
shown in Fig. 1.

D. Synchronization of Signals

Since the HL2 and the Aurora system recorded the
tracking data in different devices and at different starting
times and sample frequencies, the following procedure for
synchronizing signals from each trial was applied: 1) invert
the y and z axes from the HL2 signals to have the same
orientation as the z and y axes from the Aurora signals,
respectively, according to the orientation of the HL2 and
Aurora reference frames during the experiments (the frames
are shown in Fig. 1), 2) resample HL2 signals at 40 Hz using
linear interpolation, 3) calculate the lag between the Aurora
signals and the HL2 signals according to their maximum
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cross-correlation, 4) apply the lag to the Aurora signals, and
5) split the signals into Task 1 and Task 2 using the HL2
timestamp.

E. Accuracy of 3D Location Data

For the accuracy analysis of the MR system, data related to
the 3D location of the hand from both tasks were considered.
The index fingertip, palm, and wrist data were processed
independently using the same procedure. In order to obtain
data related to only static positions, without the transition
movements between targets, the intervals of time for which
the finger was in contact with the targets were used for
segmenting the signals from Task 1 (See Fig 1). In contrast,
signals from Task 2 were not segmented to maintain dynamic
hand movements and compare the HL2 accuracy between
static and dynamic hand motions.

After the segmentation, the signals were cleaned from
lost–tracking samples. The Aurora system lost tracking when
its sensors were outside of its workspace, while the HL2 lost
hand tracking when the hand was outside of the camera field
of view. Since the comparison of the signals would be made
point to point for each time instant, the lost tracking data
needed to be removed from the data set. Then, the HL2
3D location points PHL were transformed into the Aurora
reference frame PAu

HL by following the Procrustes analysis,
since the HL2 and the Aurora tracking data were measured
with respect to different world frames. The Procrustes anal-
ysis searches for the optimal transformation matrix between
two reference frames by minimizing the Euclidean distance
between shared data points [30]. MATLAB v2022b was used
to perform the analysis and obtain the rotation matrix R
and the translation vector c between the HL2 and Aurora
reference frames. Although it is possible to modify the scale
of the HL2 data when transforming them to the Aurora
frame, this modification was not made in order to preserve
the HL2 data as measurements of physical distances. To
complete the transformation, the Equation 1 was applied to
the HL2 signals.

PAu
HL = PHL ∗R+ c [mm] (1)

The accuracy of the HL2 was computed by taking the
3D location data from the Aurora system PAu as the ground
truth. The accuracy of each trial and task was estimated using
RMSE, calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

∣∣PiAu − PAu
iHL

∣∣2 [mm]. (2)

In this equation, n is the number of 3D location samples
from a specific trial and task, and |.| represents the norm of
a vector.

F. Repeatability of 3D Location Data

A repeatability test to evaluate HL2 ability to estimate
the 3D position of the hand in every measurement repetition
was also performed. A comparison between the dispersion of
the 3D position measurements obtained during Task 1 from

the HL2 and the Aurora was done. Usually, a repeatability
test is only made over the evaluated system [24], [31], [32],
the HL2 in this case. However, the dispersion of the Aurora
measurements was included in this study because the natural
hand motion generates changes in the reference 3D position
over time. The test was applied to both systems following
the ISO 9283 [33] standard, which has been used to test the
repeatability of other tracking systems [31], [32] as well as
the HL2 [24]. The standard deviation of the measurements
was computed from each system (HL2 or Aurora), static 3D
position, and trial, using the following equation:

σ3D =

√√√√ 1

m− 1

m∑
i=1

(li − l̄)2 [mm], (3)

where m is the number of 3D location samples from a
specific 3D static position, .̄ represents the mean over the
m samples, and li is defined by (4), where xi, yi, and zi,
are the components of the ith 3D location sample.

li =
√

(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2 [mm] (4)

The repeatability, Reps, evaluated for each system and
each static position was then computed using the following
equation:

Reps = l̄ + 3σ3D [mm]. (5)

G. Kinematic Metrics

In addition to the accuracy and repeatability tests, an anal-
ysis of HL2 capability to produce suitable information for
rehabilitation performance assessment was performed. KMs
obtained from the HL2 data to the same KMs computed from
the Aurora data collected during Task 2 were compared. This
task was selected because the movements were more similar
to an actual rehabilitation exercise than those performed
during Task 1.

The preprocessing of the HL and Aurora signals is shown
in Fig. 1. After the synchronization, position signals were
filtered using a fourth-order low-pass Butterworth filter with
a 6 Hz cutoff frequency without taking out the lost tracking
samples but replacing them through linear interpolations.
This filtering approach was applied in order to maintain the
dynamic of the movements over time and obtain dynamic
KM values. Later, a segmentation of the signals into basic
repetitions of hand movements between one and the next
target was made. Then, the following KMs were computed
for each basic repetition: path length (PL), mean speed (MS),
normalized mean speed (NMS), number of speed peaks
(NSP), log dimensionless jerk (LDJ), time to speed peak
(tSp), and movement accuracy (MAcc). Table I shows their
definitions and equations. The selection of the KMs was
made considering their evidence of quality and reliability for
shoulder kinematic assessment [19]–[21]. For example, PL is
used to assess the efficiency of a patient’s movement during
therapeutic exercises; MS, NMS, NSP, and LDJ measure
movement smoothness; movement planning is evaluated with
tSp; and MAcc assesses the patient’s ability to reach a 3D
location with their arm.
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TABLE I
KINEMATIC METRICS FOR SHOULDER ASSESSMENT, THEIR DEFINITIONS

AND EQUATIONS

KM: Definition Equation

Path Length (PL):
Length of travelled
trajectory

PL =

k−1∑
i=1

|Pi+1 − Pi| [mm] (6)

Mean Speed (MS)
The arithmetic mean
of speed samples

MS =
1

k − 1

k−1∑
i=1

∣∣∣∣dPdt
∣∣∣∣
i

[mm/s] (7)

Normalized Mean
Speed (NMS) MS
divided by the
maximum speed
(Smax)

NMS =
MS

Smax
(8)

Number of Speed
Peaks (NSP ) The
count of speed peaks
greater than 60% of
Smax

NSP =

p−1∑
i=1

∣∣∣∣dPdt
∣∣∣∣
i

> 0.6Smax (9)

Log Dimensionless
Jerk (LDJ) Measure
of movement
smoothness

LDJ=−ln

(
(t2 − t1)3

S2
max

∫ t2

t1

∣∣∣∣d3Pdt3

∣∣∣∣2dt
)

(10)

Time to Speak (tSp)
The time between the
movement starts and
when Speak happens

tSp = t

(∣∣∣∣dPdt
∣∣∣∣ == Speak

)
[s] (11)

Movement Accuracy
(MAcc) Distance
between the fingertip
(Pf ) and the center of
a target (Pt)

MAcc = |Pf − Pt| [mm] (12)

P : 3D–location vector, k: number of elements of the P vector,
p: number of peaks, t1: time when the finger touches a target, and
t2: time when the finger touches the next target.

Since the KMs have different units and ranges of val-
ues, the normalized metric presented in Equation 13 was
applied to estimate the accuracy of the HL2 (KMHL), using
the Aurora KMs as ground truth (KMAu). Similar to the
normalized mean absolute error and the normalized root
mean square error, applied in other studies [34]–[36], this
equation normalizes the error with the range of the ground
truth measurements. This approach facilitates the comparison
across different variables that can include small or zero
values for the ground truth KMs.

Acc=100

(
1−

∣∣∣∣ KMAu −KMHL

max(KMAu)−min(KMAu)

∣∣∣∣) [%] (13)

In order to identify differences in accuracies, repeatabil-
ity, and KMs, statistical tests were performed (a p <0.05
was considered significantly different). Normality and non-
parametric tests were made using MATLAB v2022b. The
Wilcoxon Rank Sum test was employed to compare two vari-
ables and the Kruskal-Wallis test for more than two variables
with a Bonferroni correction to adjust the significance level.

IV. RESULTS

No data were deleted from the HL2 measurements, in
the time intervals of interest. However, the Aurora lost
track of the wrist sensor during one trial, affecting the data
recorded. Therefore, those particular data were deleted from
the corresponding HL2 data stream, affecting 2.1% of the
dataset.

A. Accuracy of 3D Location Data

Fig. 2 shows a box plot of the RMSE obtained from
Task 1 (static positions) and Task 2 (dynamic motion). The
median RMSE was below 10.2 mm for all of the hand
segments and the two tasks, which is lower than the mean
error of around 20 mm reported by Soares et al. [24].
This discrepancy lies in the differences in the experiments,
ground-truth equipment, and signal processing. Moreover,
the irregular sampling frequency and delays of the HL2 data
are other critical factors. The methodology shown in Fig. 1 is
proposed as a solution to reduce the effects of these factors
on the HL2 tracking accuracy.

The minimum median error was obtained by tracking the
palm, with 7.06 mm for static positions and 6.71 mm for
dynamic motion. There were no significant differences in
accuracies between tasks (p=0.64). However, a significant
difference was found between the palm accuracy compared
to the index and wrist accuracies (p <0.01 and p <0.001,
respectively) during Task 1. The outperformance of the
palm, compared to the wrist and the index fingertip, can
be caused by the tracking algorithm included in the HL2
to capture the hand position. This algorithm continuously
adjusts a hand model to the actual user’s hand. Therefore,
the adjustment produces greater variance in the fingertip and
wrist measurements compared to the palm. These results
suggest that tracking palm motion with the HL2 should be
considered as an alternative to the motion tracking of index
fingertip typically made [13], [23], [24].

Figure 2. RMSE obtained from comparing the HoloLens 2 tracking data
to the Aurora system during a static positions task and a dynamic motion
task, related to the 3D location of the index fingertip, palm, and wrist. Here,
** indicates p <0.01 and *** p <0.001.

Type text here



B. Repeatability of 3D Location Data

In terms of repeatability, Fig. 3 shows that the dispersion
was similar for both systems, ranging from 5.74 mm to 15.08
mm for the HL2 and from 5.85 mm and 13.56 mm for the
Aurora. The minimum medians were obtained from the palm
measurements for both systems, 8.44 mm for the HL2 and
7.87 mm for the Aurora. Measurements from the three hand
segments between systems showed insignificant differences
(p=0.16 for the index, p=0.17 palm, and p=0.17 wrist).
Furthermore, there were insignificant differences between
hand segments in the HL2 (p=0.57 index vs. palm, p=0.3
index vs. wrist, and p=1 palm vs. wrist). These results imply
that the tested MR system has a similar repeatability to the
Aurora system, confirming, with the accuracy results, the
HL2 reliability in tracking hand positions.

C. Kinematic Metrics

For the KM computation, 812 basic repetitions from Task
2 were considered. The accuracies obtained are shown in
Fig. 4 and Fig. 5. MAcc has accuracy only from the finger
data because the palm and wrist did not have contact with
the target during the experiments. For easy visualization the
outliers have been removed. The percentages of outliers for
each KM were 10%, 13.7%, 5.2%, 29.3%, 16.1%, 8.1%,
and 5.3%, for PL, MS, NMS, NSP, tSp, LDJ, and MAcc,
respectively.

To investigate the accuracy of the majority of KM esti-
mations, the 10th percentile was calculated for each KM,
obtaining 93.1%, 90%, 86.9%, 90.9%, 95%, 89.6%, and
88.4%, for PL, MS, NMS, NSP, tSp, LDJ, and MAcc,
respectively. In general, there were insignificant differences
between the KMs accuracies obtained from the analyzed
hand segments (See Fig. 4). However, differences in accuracy
were found depending on the Task 2 experimental condition
(See Fig. 5). The PL and MS obtained better estimations
during low-speed conditions (medians of 99.6% and 99.8%,
respectively) and worse estimations for high-speed condi-
tions (medians of 95.4% and 93.3%). The NMS and LDJ
were better estimated for medium and low-speed conditions
(medians above 96.5%). The accuracy of NSP estimations
presented less variability for medium-speed conditions and

Figure 3. Repeatability obtained from the HoloLens 2 and the Aurora
measurements while tracking 3D locations of the index fingertip, palm, and
wrist. Note that the y axis does not start at zero.

Figure 4. Accuracy obtained by comparing KMs calculated with HoloLens
2 tracking data to the Aurora data, related to the index fingertip, palm, and
wrist. See Table I for KM definitions. Note that the y axis starts at a number
different than zero.

significant differences with low-speed and jerky movements,
but an insignificant difference with high-speed conditions
(p=0.32). Estimations of tSp had lower accuracy during low-
speed movements. For MAcc estimations, no experimental
condition produced a significantly higher accuracy.

These accuracy results demonstrate the usability of an
MR device, such as the HL2, in upper–limb rehabilitation
assessment, without a preference for any segment of the
hand studied. Moreover, the high accuracy in detecting jerky
movements makes this MR system suitable for assessing
stroke [15], [19]–[21], [37], ataxic [23], [38], and injured
patients [9], for example. In contrast, the reduced accuracy
during high-speed movements of some metrics such as PL,
MS, and NMS can be generated by its dependency on the
computation of movement speed and the speed peak that
each system can measure (HL2 and Aurora). The sampling
frequency of the HL2 that makes it able to follow unexpected
movements [23] can also produce this reduction in accuracy.

An analysis of each KM was also performed to investigate
the usability of the HL2 data to distinguish between low,

Figure 5. Accuracy obtained by comparing KMs calculated with HoloLens
2 tracking data to the Aurora data, related to four different experimental
conditions during a shoulder rehabilitation exercise. See Table I for KM
definitions. Here, * indicates p <0.05, ** p <0.01, and *** p <0.001.
Note that the y axis starts at a number different than zero.
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Figure 6. Comparison of the kinematic metrics obtained with the HoloLens 2 and the Aurora data from four different experimental conditions during a
shoulder rehabilitation exercise. See Table I for KM definitions. Here, * indicates p <0.05, ** p <0.01, and *** p <0.001.

medium, and high speeds and jerky movements. Fig. 6 shows
box plots for each KM and system under the four different
conditions. Since MAcc presented insignificant differences, it
was not included. The notch of each box has been highlighted
in order to represent the region of possible statistical signif-
icance. The results of MS confirmed that the experiments
were performed at different speeds (p <0.001), the obtained
interquartile ranges were: 31.8 mm/s to 55.4 mm/s for low
speed, 68.3 mm/s to 111.6 mm/s for medium speed, 281.8
mm/s to 442 mm/s for high speed, and 103.4 mm/s to
224.9 mm/s for jerky movements. PL was significantly larger
for the high-speed condition (p <0.001) and distinguished
jerky movement (p <0.001) from the others, whereas PL
showed insignificant differences between medium and low-
speed conditions (p=0.38).

The results of NMS and tSp showed higher values for low-
speed followed by medium-speed conditions (p <0.001). The
tSp metric was also significantly different for high and jerky
movements (p <0.001), whereas NMS was not different
(p=0.13). Similar to tSp, LDJ was different for each of the
conditions (p <0.05) when calculated with the HL2 data.
LDJ was higher for medium-speed conditions, followed by
low-speed, high-speed, and jerky movements. From NSP, the
low-speed condition showed lower results (p <0.001) in both
systems.

These analyses reveal that the MS, LDJ, and tSp calculated
with the HL2 data can be used to estimate and differentiate
under the four studied conditions: low, medium, high and
jerky movements. Additionally, with PL is possible to dis-
tinguish between an exercise performed by a healthy subject
(high-speed condition) and a patient with jerky movements,

while a patient with low-speed movements can be assessed
using NMS and NSP. Results of MS, NMS, NSP, and LDJ
are comparable with those reported for stroke patients [15],
[21], [37]. However, they are not the same because of the
difference in the rehabilitation exercise performed.

V. CONCLUSION

The HL2 has a hand-tracking system accurate and precise
for applications that require static and dynamic movements.
This MR system exhibits a median RMSE below 10.2 mm
in tracking 3D locations of the index fingertip, palm, and
wrist. Moreover, the repeatability of the HL2 measurements
is comparable with the Aurora system repeatability. From the
studied hand segments, the palm showed the best accuracy
and repeatability results.

Data coming from an MR system, such as the HL2, are
suitable for computing KMs for upper–limb rehabilitation
assessment. Specifically, we obtained accuracies above 90%
for PL, MS, NSP, and tSp, and above 86.9% for NMS,
LDJ, and MAcc, for the HL2 when compared to the ground-
truth system. Higher accuracies were reached for movement
speeds below 111.6 mm/s. The KMs were computed with
the index fingertip, palm, or wrist tracking data without a
significant difference. These KMs can be used to detect low,
medium, and high-speed motion as well as jerky upper-limb
movements.

The results of this study open the possibility that serious
gaming in combination with MR technology can be used
appropriately and accurately to assist and support the re-
habilitation of patients with a range of shoulder conditions.
This research is part of a series of projects on serious gaming



for shoulder rehabilitation. Other MR environments will be
developed to include additional physiotherapy exercises and
kinematic metrics.
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