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Detecting anomalies in energy consumption data is crucial for identifying energy waste, equipment malfunction, 
and overall, for ensuring efficient energy management. Machine learning, and specifically deep learning 
approaches, have been greatly successful in anomaly detection; however, they are black-box approaches that 
do not provide transparency or explanations. SHAP and its variants have been proposed to explain these models, 
but they suffer from high computational complexity (SHAP) or instability and inconsistency (e.g., Kernel SHAP). 
To address these challenges, this paper proposes an explainability approach for anomalies in energy consumption 
data that focuses on context-relevant information. The proposed approach leverages existing explainability 
techniques, focusing on SHAP variants, together with global feature importance and weighted cosine similarity 
to select background dataset based on the context of each anomaly point. By focusing on the context and 
most relevant features, this approach mitigates the instability of explainability algorithms. Experimental results 
across 10 different machine learning models, five datasets, and five XAI techniques, demonstrate that our 
method reduces the variability of explanations providing consistent explanations. Statistical analyses confirm the 
robustness of our approach, showing an average reduction in variability of approximately 38% across multiple 
datasets.

1. Introduction

The rising global demand for energy, particularly electricity, is caus-

ing significant environmental impacts, including increased greenhouse 
gas emissions and the depletion of vital resources [1]. Global electricity 
demand is anticipated to rise by nearly 80% by 2040 [2]. Residential 
and commercial buildings, accounting for one-third of global energy 
consumption, are major contributors to these environmental impacts 
[1]. Improving building energy efficiency, especially in terms of elec-

tricity usage, is essential to mitigate the adverse effects of growing 
energy consumption [3]. Achieving this goal relies heavily on detecting 
and correcting anomalies in electricity consumption. These anomalies, 
defined as irregularities or deviations from normal energy behavior, in-

clude unusual consumption patterns caused by faulty device operations, 
user negligence (e.g., leaving windows or refrigerator doors open), theft, 
or non-technical losses. If not addressed promptly, these issues can re-

sult in energy waste, increased power consumption, and devices running 
longer than necessary due to inefficiencies or malfunctions, leading to 
additional energy waste and potential equipment damage [4–6].
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Data-driven approaches have proven effective in identifying anoma-

lies, offering reliable alerts to analysts and energy managers [7,8]. 
Anomaly detection has evolved from traditional statistical methods, 
which struggle with complex structures and large datasets, to Deep 
Learning (DL) methods that automatically learn from time series data 
[9–11]. DL algorithms excel in identifying abnormal electricity con-

sumption patterns due to their ability to model complex non-linear 
relationships and leverage multi-layered architectures for hierarchical 
feature extraction [12,13]. Despite their superior accuracy, DL mod-

els face challenges in transparency and explainability, crucial factors 
for building trust and ensuring successful real-world deployment [14]. 
Providing clear, instance-specific explanations for anomalies are needed 
to enhance expert trust, support informed decisions, and facilitate the 
adoption of complex DL models in the energy sector [15].

Explainable Artificial Intelligence (XAI) aims to enhance trans-

parency and provide explanations, allowing users to understand and 
trust them [16]. While XAI methods have been primarily used in com-

puter vision to provide visual interpretability and explain decisions in 
tasks such as object recognition, they are equally important for time se-
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List of Acronyms and Symbols 
Acronym/Symbol Definition 
1D-CNN One-dimensional Convolutional Neural Network 
AI Artificial Intelligence 
BaseValue Average prediction made using the background dataset 
BGRU Bidirectional Gated Recurrent Unit 
BLSTM Bidirectional Long Short-Term Memory 
CNN Convolutional Neural Network 
DCNN Dilated Convolutional Neural Network 
DL Deep Learning 
DNN Deep Neural Network 
𝑒 Prediction error |𝐹 | Total number of features in the model 
𝐺𝐹𝐼𝑖 Global Feature Importance score for feature 𝑖
𝐺𝐹𝐼 ′

𝑖
Exponentially transformed Global Feature Importance score for feature 𝑖

GRU Gated Recurrent Unit 
ℎ Forecasting horizon 
𝐼 Number of time steps for inputs sequence 
𝐼𝑄𝑅 Interquartile range, calculated as 𝑄3 −𝑄1
𝑘(𝐹 ,𝑆) Kernel weights ensuring fair evaluation of feature contributions 
LIME Local Interpretable Model-Agnostic Explanations 
LSTM Long Short-Term Memory 
𝑂𝑖 Output sequence of target values in horizon 𝑖
𝑄1 First quartile (25th percentile) of the prediction errors 
𝑄3 Third quartile (75th percentile) of the prediction errors 
RNN Recurrent Neural Network 
𝑆(𝑥𝑐 , 𝑥𝑎) Weighted cosine similarity score between 𝑥𝑐 and 𝑥𝑎
SD Standard Deviation |𝑆| Number of features in subset 𝑆
SHAP Shapley Additive Explanations 
TCN Temporal Convolutional Network 
TFT Temporal Fusion Transformer 
TPE Tree-structured Parzen Estimator 
TST Time Series Transformer 
𝑣(𝑆) Model value function evaluated for subset 𝑆
WLS Weighted Least Squares 
XAI Explainable Artificial Intelligence 
𝑋 Original feature values 
𝑋′ Scaled feature values 
𝑋𝑓,𝑡 Value of feature 𝑓 at time 𝑡
𝑋max Maximum value of the feature 
𝑋min Minimum value of the feature 
𝑥𝑎𝑖 Value of feature 𝑖 for the anomalous sample 
𝑥𝑐𝑖 Value of feature 𝑖 for a sample from the training dataset 
𝑌𝑡+ℎ Target energy consumption values for time steps 𝑡+ ℎ(|𝐹 ||𝑆| ) Binomial coefficient representing the number of ways to choose |𝑆| features from |𝐹 |
𝜙0 Base value representing the average prediction over the entire background dataset 
𝜙𝑖 SHAP value representing feature 𝑖’s contribution to the prediction 

ries data to understand decision-making processes. As sensors become 
more affordable and ubiquitous, generating vast amounts of electricity 
consumption time series data, analysis of these data can automate tasks 
such as energy usage monitoring to enhance maintenance and reduce 
inefficiencies. For DL-based time series models, such as Long Short-

Term Memory (LSTM) networks or Transformers, data are typically 
transformed into time-series segments using the sliding window tech-

nique, necessitating the adaptation of current explainability approaches 
to provide meaningful explanations for electricity consumption analy-

sis based on this segmented data structure. Converting time points into 
features for local feature importance and visualizing relevance, simi-

lar to saliency masks in images, will provide experts with insights into 
the decision-making process and facilitate energy improvement tasks 
[17].

While XAI approaches are generally categorized as either model-

specific, tailored to particular model architectures, or model-agnostic, 
applicable to any model by focusing on input-output relationships, this 
study focuses on model-agnostic methods due to their versatility and 
broad applicability across diverse machine learning models. A promi-

nent model-agnostic approach is SHapley Additive exPlanations (SHAP), 
which is widely recognized for its ability to provide consistent and in-

terpretable feature importance scores using Shapley values from game 
theory [18]. SHAP has gained considerable attention due to its solid 
theoretical foundation and its effectiveness in delivering reliable expla-

nations across various domains, making it a widely accepted method for 
local explanations [19].

Despite the great success of SHAP, its application to large datasets is 
often hindered by its computational complexity. Calculating exact SHAP 
values is not only time-consuming but can also be impractical for many 
widely used models. To address these challenges, approximation meth-

ods such as Kernel SHAP have been proposed. Kernel SHAP estimates 
SHAP values by solving a weighted linear regression on a sample of per-

turbed instances, providing a more computationally efficient means of 
obtaining SHAP value estimates with fewer evaluations of the original 
model [20].

However, while Kernel SHAP offers improvements in efficiency, it in-

troduces a new challenge: instability in explanations [21]. Kernel SHAP, 
as well as its variants Partitioning, and Sampling, depends on the choice 
of a background dataset as the baseline, which serves as a reference 
point for SHAP explanations and can strongly impact feature attribu-

tion values. Different executions of Kernel SHAP with the same inputs 
can produce varying explanations, leading to inconsistencies that can 
undermine the reliability of the results and decrease user trust [21,22], 
particularly in anomaly detection for energy consumption data, where 
stable and consistent explanations are essential for effective decision-

making and energy management.

To address these challenges, this paper proposes an approach for 
explaining anomaly detection models in energy consumption data that 
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mitigates instabilities and enhances explanation reliability, particularly 
in SHAP-based techniques. The consistency of explanations is improved 
by selecting data samples relevant to the anomaly under observation 
when determining the baseline for SHAP value calculations. Moreover, 
our approach prioritizes the features most relevant to anomalies, pro-

viding consistent and accurate insights while minimizing computational 
burden by selecting only a few background data samples. Evaluation re-

sults across five datasets and five XAI techniques demonstrate improve-

ments in explanation stability and reliability, with reduced variability 
in feature importance.

The rest of this paper is structured as follows: Section 2 reviews re-

lated work, Section 3 provides the background, Section 4 details the 
methodology, Section 5 presents the results and discusses the finding, 
and Section 6 concludes the study.

2. Related work

This section reviews XAI techniques in energy systems and time se-

ries applications, as well as in anomaly and fault detection.

2.1. XAI in energy systems and time series applications

Several studies have leveraged XAI to provide insights into workings 
of energy load forecasting models and other building energy manage-

ment systems. Moon et al. [23] proposed Explainable Electrical Load 
Forecasting (XELF) methodology for educational buildings, emphasizing 
the importance of understanding and interpreting the factors that influ-

ence electrical load predictions. By incorporating external factors such 
as weather and internal building data, they trained various tree-based 
models and utilized SHAP to provide interpretable explanations for the 
energy predictions made by these models. Similarly, Chung and Liu [24] 
analyzed input variables for deep learning models predicting building 
energy loads, comparing the XAI techniques Local Interpretable Model-

Agnostic Explanations (LIME) and SHAP, and found that SHAP out-

performed LIME by maintaining prediction accuracy with fewer input 
variables. Joshi et al. [25] presented a data-driven approach for bench-

marking energy usage in Singapore, employing ensemble tree models 
and XAI techniques such as SHAP for a detailed analysis of the impact 
of building attributes on energy consumption.

The integration of XAI in power systems and renewable energy has 
also been explored. Zhang et al. [26] utilized SHAP to explain deep 
reinforcement learning models for power system emergency control, 
generating SHAP values to quantify the impact of each system variable 
and clarify how different factors influenced emergency control deci-

sions. Tan et al. [27] proposed an explainable Bayesian neural network 
for probabilistic transient stability analysis in power systems, using the 
Gradient SHAP algorithm for explanations. Their approach provided in-

sights at both global and local levels, with global explanations offering 
a comprehensive understanding of factors influencing overall model be-

havior and local explanations detailing individual predictions.

Leuthe et al. [28] explored XAI in building energy consumption 
forecasting and compared transparent and black-box models. They con-

sidered linear regression, decision tree, and QLattice as transparent 
prediction models and applied four XAI methods - partial dependency 
plots, Accumulated Local Effects (ALE), LIME, and SHAP - to an artifi-

cial neural network using a real-world dataset of residential buildings. 
Their findings indicate that appropriate XAI methods can significantly 
improve decision-makers’ satisfaction and trust in machine learning 
models for energy forecasting. Mueller et al. [29] examined the use of 
XAI to explain characteristics of vehicle power consumption, referring 
to the energy consumption within a vehicle’s low-voltage electrical sys-

tem. The study applied methods such as ALE and Permutation Feature 
Importance (PFI) for global insights, and LIME and SHAP for local anal-

ysis.

XAI techniques have also been investigated in time series analy-

sis beyond the energy domain. Rožanec et al. [30] examined the ex-

plainability of global time series forecasting models. They used the 
M4 competition and Kaggle Wikipedia Web Traffic datasets, integrat-

ing anomaly detection with XAI techniques to identify and explain poor 
forecasts. Anomaly detection flagged deviations, while XAI methods, 
such as LIME, computed feature attributions and generated counter-

factual examples to elucidate the reasons behind these deviations. In 
addition, Labaien Soto et al. [31] proposed a model-agnostic approach 
that uses autoencoders to generate real-time counterfactual explana-

tions. This approach used one-dimensional Convolutional Neural Net-

works (1D-CNN) and Recurrent Neural Networks (RNNs) to analyze time 
series vibration data. The approach explains anomalies by making small 
input modifications to measure how far they deviate from normal be-

havior, providing insights into the factors contributing to the anomaly.

Freeborough and van Zyl [32] explored XAI methods for financial 
time series forecasting, focusing on ablation, integrated gradients, added 
noise, and permutation techniques to assess feature importance and en-

hance model explainability. These methods were applied with several 
ML models including standard RNN, LSTM, and Gated Recurrent Unit 
(GRU). Schlegel and Keim [33] focused on enhancing the explainability 
of deep learning models for time series data using perturbation anal-

ysis and evaluated state-of-the-art XAI techniques, including gradient-

based methods (Saliency, Integrated Gradients) and SHAP-based meth-

ods (DeepLiftShap, Kernel SHAP), on three time-series classification 
datasets: FordA, FordB, and ElectricDevices. The study analyzed attri-

bution distributions, skewness, and both Euclidean and cosine distances 
between original and perturbed instances. It found that SHAP and its 
derivatives generally produce effective attributions, while noting that 
the efficacy of XAI techniques can vary significantly depending on the 
chosen perturbation strategy.

Despite significant advancements in using XAI techniques for energy 
load forecasting and time series analysis, current methods do not ade-

quately address the reliability of explanation results. Given that SHAP 
methods are grounded in tabular data, they needed to be adapted to 
accommodate time series data. SHAP struggles with computation com-

plexity while SHAP variants result in unstable explanations. To address 
this, we propose a technique leveraging SHAP approaches, but address 
instability through targeted selection of the background dataset based 
on context-relevant information.

2.2. XAI in anomaly/fault detection

XAI has been instrumental for enhancing the explainability of 
anomaly detection and fault detection models. Roshan and Zafar [34] 
explored the use of SHAP for feature selection in an unsupervised 
anomaly detection setting. Their approach leveraged SHAP to improve 
the performance of autoencoders by identifying key features respon-

sible for anomalies, and retraining the model using only benign data. 
While the SHAP-based feature selection showed improved results over 
other methods, the paper faced limitations in computational cost due 
to Kernel SHAP’s complexity and potential sampling bias from using a 
subset of the CICIDS2017 dataset, which could affect generalizability. 
On the other hand, Antwarg et al. [15] focused on applying the SHAP 
framework, traditionally used in supervised learning, to explain anoma-

lies detected by unsupervised autoencoders. Their approach emphasizes 
understanding the relationships between features with high reconstruc-

tion errors and those most critical to anomaly detection. Kernel SHAP is 
utilized to calculate feature importance, offering detailed insights into 
why certain anomalies occur, by identifying both contributing and off-

setting features. However, challenges such as selecting the appropriate 
background dataset and further validation across various autoencoder 
architectures remain areas for future research. While Roshan and Zafar’s 
work primarily aimed at enhancing model prediction accuracy through 
feature selection, Antwarg et al. focused more on interpreting feature 
contributions and relationships in the context of anomaly explanations.

Kim et al. [35] proposed an explainable anomaly detection frame-

work for maritime main engine sensor data, combining SHAP with hier-
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archical clustering to interpret and group common anomaly patterns. By 
transforming SHAP values based on their distributions, Kim et al. were 
able to identify and isolate key sensor variables contributing to anoma-

lies, allowing for more precise segmentation and analysis of the detected 
anomalies. This method provides insights into the causes of anomalies 
by visualizing and grouping similar patterns, offering an improved un-

derstanding of the conditions leading to engine failures. A two-layer 
patient monitoring system employing Kernel SHAP for anomaly detec-

tion and explanation in healthcare data was presented by Abououf et al. 
[36]. The most influential features contributing to anomalies detected 
by an autoencoder-based model were identified utilizing SHAP.

Kernel SHAP was also used for fault detection in industrial appli-

cations. Asutkar and Tallur [37] proposed an explainable unsupervised 
learning framework using autoencoders for fault detection and Kernel 
SHAP for explanations. Their framework accurately identified machine 
faults under varying operating conditions, with Kernel SHAP highlight-

ing the most prominent features contributing to fault detection. The 
approach was validated using multiple datasets, demonstrating its effec-

tiveness and scalability in real-world industrial applications. For process 
monitoring, Choi and Lee [38] proposed an explainable fault diagnosis 
model that combines Stacked Autoencoders (SAE) with Kernel SHAP 
for feature importance and model behavior explanation. Kernel SHAP 
provided a clear explanation of which features contributed most signif-

icantly to the model’s predictions.

The Table 1 summarizes key studies that have applied XAI tech-

niques, especially SHAP variants, to energy consumption and related 
fields. These works highlight the benefits of using XAI methods to im-

prove model transparency, interpretability, and decision-maker trust. 
For example, SHAP methods have been effectively used to analyze en-

ergy load forecasting, identify influential features, and provide both 
global and local explanations for model predictions. By incorporating 
XAI techniques, these studies have enhanced the understanding of how 
external factors such as weather, building attributes, and sensor data in-

fluence predictions, enabling more informed decision-making in energy 
systems.

Although XAI methods such as SHAP have been successfully ap-

plied to anomaly detection and fault diagnosis, particularly with au-

toencoders, a gap remains in ensuring the reliability and stability of 
explanations. Current approaches suffer from inconsistencies, as noted 
in multiple studies [34,15], due to the random sampling of training data 
for the background dataset. For instance, Chung and Liu [24] noted vari-

ability in SHAP explanations due to random background data selection 
and input dependencies, while Antwarg et al. [15] and Chen et al. [22] 
highlighted challenges in selecting appropriate background datasets, 
which significantly influences explanation stability. Similarly, Schlegel 
and Keim [33] reported inconsistencies tied to perturbation strategies, 
often exacerbated by arbitrary baseline datasets, and Roshan and Zafar 
[34] documented issues with sampling bias impacting explanation ro-

bustness. We address these issues by proposing a robust approach that 
provides stable explanations focusing on highly relevant data for the 
anomaly under consideration. By aligning baselines with the contextual 
data of anomalies, our method provides consistent and reliable insights, 
representing a significant improvement over previous practices and en-

hancing the practical utility of explainability in anomaly detection.

3. Background

This section first introduces core concepts in explaining black box 
models. Next, classical SHAP and Kernel SHAP are introduced, as our 
approach leverages these techniques.

3.1. Explaining black-box models

Understanding and interpreting the decisions made by Artificial In-

telligence (AI) models, especially those that function as black-box sys-

tems, is crucial for ensuring their legitimacy and reliability in sensitive 

applications [39]. Modern AI models such as Deep Neural Networks 
(DNNs) are complex systems with many parameters, making them dif-

ficult to interpret [40]. To address this challenge XAI has emerged, 
offering two key types of explainability: local and global. Local ex-

plainability focuses on explaining the decision for a specific instance, 
offering detailed insights into how a particular prediction was made. In 
contrast, global explainability provides an overarching view of the mod-

el’s decision-making process, giving a broader understanding of the AI 
system’s behavior across its entire input space [41,42]. Both local and 
global explainability play important roles in making AI systems more 
transparent, accountable, and understandable, thereby enhancing trust 
and facilitating decision-making [42].

In this research, we focus on local explainability because it allows 
for a deeper understanding of individual anomalies detected within the 
data, assisting in determining the root cause of each anomaly. Both LIME 
and SHAP provide local explanations. LIME explains one prediction at 
a time by constructing a simple linear model around the data point, 
using random perturbation to create simulated data. However, this can 
lead to instability of explanations. Conversely, SHAP provides individual 
explanations by assigning feature importance based on Shapley values, 
offering a more stable approach [43].

3.2. Classic SHAP and Kernel SHAP

Shapley value estimation, based on cooperative game theory, calcu-

lates the contribution of each feature by comparing the model’s predic-

tions with and without that feature across all possible feature combina-

tions [18]. However, this is computationally expensive, especially with 
large feature sets. To address this, sampling methods approximate Shap-

ley values without requiring retraining for every combination of fea-

tures [44]. Despite these approximations, the process remains resource-

intensive for large datasets, leading to the development of more efficient 
methods such as Kernel SHAP.

Building on the classic Shapley value estimation, Kernel SHAP pro-

vides a more practical approach to approximate Shapley values by solv-

ing a Weighted Least Squares (WLS) problem. This weighted approach 
assigns different importance levels to each possible subset of features. 
Kernel SHAP utilizes sampling techniques to approximate Shapley val-

ues while reducing computational burden, thus making it feasible for 
models with many features while maintaining their theoretical integrity 
[18,21]. This balance of practicality and rigor makes Kernel SHAP well 
suited for energy applications; nevertheless, it still suffers from instabil-

ity. The Kernel SHAP estimates the contribution of each feature through 
the following WLS problem:

min 
𝜙0 ,…,𝜙𝐹

∑
𝑆⊆𝐹

𝑘(𝐹 ,𝑆)

(
𝑣(𝑆) −

(
𝜙0 +

∑
𝑗∈𝑆

𝜙𝑗

))2

(1)

Here 𝐹 represents the total number of features in the model, and 
𝑆 denotes a subset of features. The term 𝑣(𝑆) refers to the value of the 
predictive model when only the features in subset 𝑆 are considered. The 
term 𝜙0 is the base value representing the average prediction over the 
entire background dataset. The contribution of feature 𝑗 indicated by 𝜙𝑗

is calculated as part of the WLS optimization process by balancing the 
error terms across all feature subsets. The weights 𝑘(𝐹 ,𝑆) in Equation 
1, are given by:

𝑘(𝐹 ,𝑆) = (|𝐹 |− 1) (|𝐹 ||𝑆| ) ⋅ |𝑆| ⋅ (|𝐹 |− |𝑆|) (2)

Here 
(|𝐹 ||𝑆| ) is the binomial coefficient representing the number of 

ways to choose |𝑆| features from the total |𝐹 | features. A subset 
𝑆 refers to any possible combination of features from the full set 
𝐹 . For example, given three features {𝐴,𝐵,𝐶}, possible subsets in-

clude {𝐴},{𝐵,𝐶},{𝐴,𝐵,𝐶}, and the empty set {}. The kernel weights 
𝑘(𝐹 ,𝑆), defined in Equation 2, are derived from cooperative game the-

ory, where the contribution of each feature is evaluated by considering 
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Table 1
Summary of related works.

Reference Main Points Pros Cons

Moon et al. (2022) Proposed XELF methodology for educational 
buildings using SHAP to interpret energy 
load predictions.

Improved transparency and accuracy. Focused on educational buildings only, 
limited datasets.

Chung and Liu (2022) Compared LIME and SHAP for building load 
prediction: SHAP reduced variables while 
maintaining accuracy.

Reduced input features, maintained 
accuracy, improved interpretability.

Limited to LIME and SHAP comparison, 
excluding other methods.

Joshi et al. (2022) Benchmarked energy in Singapore buildings 
using ensemble trees and SHAP to analyze 
attributes.

Real data, enhanced interpretability, and 
benchmarking insights.

Limited to Singapore hotel and retail 
buildings.

Zhang et al. (2020) Used SHAP to explain deep reinforcement 
learning models for power system 
emergency control.

Quantified variable impact, improved 
decision transparency.

Focused on power systems, high complexity 
of variable interpretation.

Tan et al. (2022) An explainable Bayesian NN for probabilistic 
transient stability analysis in power systems 
using Gradient SHAP.

Global and local insights. Lacks comparison with alternative methods 
and validation of result reliability.

Leuthe et al. (2024) Explored XAI in building energy forecasting, 
applying XAI methods to ANN models with 
residential datasets.

Enhanced trust with transparent models, 
compared XAI techniques.

Limited to a single dataset, lacks diversity 
in building types.

Mueller et al. (2023) Applied XAI methods (ALE, PFI, LIME, 
SHAP) to vehicle power consumption in 
low-voltage systems.

Combined global/local insights, enhanced 
transparency for complex systems.

Lacks comparison of reliability between 
global and local insights.

Rožanec et al. (2021) Combined anomaly detection and XAI for 
time series forecasting, provided 
counterfactual explanations for poor 
forecasts.

Identified deviations, clarified anomalies 
with counterfactuals.

Lacks evaluation of broader explainability 
approaches.

Labaien Soto et al. (2023) A model-agnostic approach with 
autoencoders for counterfactual explanations 
in anomaly detection.

Real-time explanations, works across model 
types.

Lacks comparison to diverse deep learning 
architectures.

Freeborough and van Zyl (2022) XAI methods (e.g., ablation, integrated 
gradients, permutation) for financial time 
series with RNNs.

Effective feature attribution for RNNs, 
LSTMs, and GRUs.

Lacks assessment of XAI reliability and 
comparison across scenarios.

Schlegel and Keim (2023) Deep learning explainability for time series 
using gradient- and SHAP-based methods 
across multiple datasets.

Provided detailed attribution insights, 
effective perturbation analysis.

Limited robustness evaluation and 
consistency analysis of XAI methods.

Roshan and Zafar (2021) SHAP for feature selection in unsupervised 
anomaly detection with autoencoders.

Improved anomaly detection accuracy, 
highlighted key features.

High computational, sampling bias in 
datasets.

Antwarg et al. (2021) SHAP to explain anomalies detected by 
unsupervised autoencoders, analyzing 
relationships between features.

Detailed insights into feature contributions 
and relationships.

Explanation stability and generalization 
across scenarios are unexamined.

Kim et al. (2021) Developed an explainable anomaly detection 
framework for maritime engine data 
combining SHAP and clustering.

Identified key variables, segmented 
anomaly patterns.

Does not evaluate the robustness of 
explanations across anomaly patterns.

Abououf et al. (2023) Proposed a two-layer patient monitoring 
system using Kernel SHAP for anomaly 
detection in healthcare data.

Improved anomaly interpretability for 
healthcare monitoring.

High computational cost, limited to specific 
healthcare applications.

Asutkar and Tallur (2023) Used Kernel SHAP in an unsupervised 
framework for fault detection in industrial 
machines.

Effective under varying conditions, scalable 
for Industry 4.0.

Limited exploration of explainability in 
multi-fault scenarios.

Choi and Lee (2022) Combined SAE and Kernel SHAP for 
explainable fault diagnosis in process 
monitoring.

Clear feature importance, high classification 
accuracy.

Limited to specific industrial process data.

all possible subsets 𝑆 of features. These weights 𝑘(𝐹 ,𝑆) ensure that each 
feature’s contribution is assessed in a balanced manner by giving differ-

ent levels of importance to subsets of different sizes. More specifically, 
the weighting ensures that features are not biased by their position in 
a subset and that smaller subsets are given fair consideration [21]. This 
weighting scheme balances the evaluation, ensuring that each feature’s 
contribution is assessed within a meaningful and fair context.

Both Classic SHAP and Kernel SHAP determine feature importance 
by excluding features from the model to observe their impact on pre-

dictions. Since the model is already trained and features cannot be 
physically removed, features are substituted with alternative values to 
reduce their influence. This substitution typically involves using values 

from a designated background dataset. When calculating the model’s 
prediction without a specific feature, the real value of that feature is 
replaced with a value from the background dataset. The background 
dataset can consist of either the entire training data or, in the case of 
large datasets, a representative subset. This allows the model to simu-

late the absence of the feature and assess its contribution by comparing 
changes in predictions when the feature is excluded.

4. Methodology

This section presents the proposed approach for explaining the 
anomaly detection model for energy consumption data by leveraging 
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Fig. 1. Methodology overview. 

variants of SHAP, such as Kernel SHAP, but improving stability and 
consistency through the targeted selection of the background dataset 
(baseline) using a weighted cosine similarity technique. The approach is 
specifically designed for prediction-based anomaly detection techniques 
where a black-box model is used to generate energy predictions, which 
are in turn compared to actual energy values. If the difference exceeds 
the threshold, the sample is deemed anomalous. After detecting anoma-

lies, we proceed to the explanation phase, which involves multiple steps 
to provide clear feature contributions for each anomaly. The overview 
of the complete process of detecting anomalies and explaining underly-

ing features is presented in Fig. 1, while the details of each component 
are presented in the following subsections.

4.1. Prediction model

This first step involves getting the prediction-based model ready for 
the anomaly detection. As seen from Fig. 1, it consists of feature engi-

neering, data preparation, and model training and tuning.

4.1.1. Feature engineering

Energy consumption data obtained from smart meters or other sen-

sors typically consists of energy consumption and the reading date-time 
recorded in hourly or similar intervals. For better anomaly detection, we 
extract the following features from the reading date-time: the hour of the 
day, the day of the week, the day of the month, the day of the year, the 
month, and an indicator for weekends. Weather-related features such 
as temperature, humidity, and wind speed are also incorporated, along 
with previous energy consumption readings as input features, while the 
energy consumption remains the target variable. Data are scaled using 
Min-Max scaling to bring all features to a similar range and avoid dom-

inance of large numbers:

𝑋′ =
𝑋 −𝑋min

𝑋max −𝑋min
(3)

where 𝑋 represents the original feature values, 𝑋min and 𝑋max are the 
minimum and maximum values of the feature, and 𝑋′ are the scaled 
values.

4.1.2. Data preparation

Next, the dataset is chronologically split, with the first 80% used 
for training, the next 10% for validation, and the final 10% for testing. 
To capture temporal dependencies, the sliding window technique is ap-

plied, moving a fixed-length window along the time series, advancing 
one record at a time. As shown in Fig. 2, this approach creates sequences 
of inputs and corresponding outputs for the model to learn temporal re-

lationships. For each window 𝑖, the input sequence is represented as a 
matrix of time steps and features:⎡⎢⎢⎢⎢⎣
𝑋1,𝑡1 𝑋2,𝑡1 … 𝑋𝐹,𝑡1
𝑋1,𝑡2 𝑋2,𝑡2 … 𝑋𝐹,𝑡2
⋮ ⋮ ⋱ ⋮

𝑋1,𝑡𝐼 𝑋2,𝑡𝐼 … 𝑋𝐹,𝑡𝐼

⎤⎥⎥⎥⎥⎦
(4)

where 𝐼 represents the number of time steps in the sliding window, 𝐹
is the number of features, and 𝑋𝑓,𝑡 is the value of feature 𝑓 at time 𝑡.

The output sequence for window 𝑖 is represented as:

𝑂𝑖 = [𝑌𝑡+1, 𝑌𝑡+2,… , 𝑌𝑡+ℎ] (5)

where ℎ is the forecasting horizon and [𝑌𝑡+1, 𝑌𝑡+2,… , 𝑌𝑡+ℎ] are the target 
energy consumption values for time steps 𝑡+1 to 𝑡+ℎ. In this paper, we 
used four time steps (𝐼 = 48) for inputs and one step ahead forecasting 
horizon (ℎ = 24) as shown in Fig. 2, but explanation only provided for 
first horizon (ℎ = 1). The prediction model supports anomaly detection 
through comparison of predicted and actual values.

4.1.3. Model training and tuning

Here, the prediction model, regardless of which type of architecture 
is employed, is trained and tuned. The selection of hyperparameters that 
need to be tuned depends on the selected model, but the tuning process 
remains the same. Bayesian optimization, specifically using the Tree-

structured Parzen Estimator (TPE) [45], is employed for tuning due to 
its resource efficiency, although other techniques could be used as well. 
Tuning is carried out with the validation set.

The optimization process starts with defining the hyperparameter 
search space, outlining the ranges and types of hyperparameters to be 
optimized. The TPE algorithm is then initialized, and the model per-

formance is assessed based on the initial hyperparameters. After each 
evaluation, the model updates the hyperparameter probabilities, and 
new, more promising hyperparameters are selected. This cycle of evalu-

ation and refinement continues until the optimal set of hyperparameters 
is found. Once hyperparameters are selected through TPE, the model is 
trained using these hyperparameters on the training data. Finally, the 
trained prediction model is ready for anomaly detection.

4.2. Anomaly detection

As already mentioned, prediction-based anomaly detection meth-

ods, including those employed in this study, identify the anomalies by 
comparing the predicted values with the actual values. Normal data is 
expected to have small deviations, while anomalous samples are ex-

pected to result in larger discrepancies. As seen from Fig. 1, anomaly 
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Fig. 2. Illustration of the sliding window approach for sequence-to-sequence model training with 48 Input sequence and 24 output sequence. 

Fig. 3. Illustration of the anomaly detection process using IQR. 

detection involves calculating prediction error, determining an anomaly 
threshold, and classifying samples as anomalous or non-anomalous.

Next, we calculate the prediction error for the entire training dataset. 
The prediction error is defined as the difference between the actual and 
predicted values for each data point within a single prediction window. 
By computing the prediction errors across all data points in the training 
dataset, we obtain a comprehensive distribution of errors.

Next, the anomaly threshold is determined using the Interquartile 
Range (IQR) method calculated based on the prediction errors from all 
training data, as it is well-suited for identifying outliers in skewed data 
distributions [46]. The IQR method sets a range that defines normal data 
behavior, as shown in Equation 6:

𝑄1 − 1.5 × 𝐼𝑄𝑅 ≤ 𝑒 ≤𝑄3 + 1.5 × 𝐼𝑄𝑅 (6)

where 𝑄1 represents the first quartile (25th percentile) of the predic-

tion errors, 𝑄3 is the third quartile (75th percentile), and 𝐼𝑄𝑅 is the 
interquartile range, calculated as 𝑄3 −𝑄1. Fig. 3 illustrates this anomaly 
detection process using the IQR method.

Each prediction error is compared against the established threshold. 
If the prediction error exceeds this threshold, the data point is classi-

fied as an Anomalous Sample, suggesting that it deviates significantly 
from expected behavior. Conversely, if the prediction error falls within 
the threshold, the data point is classified as a Probably Normal Sample. 
This classification enables the identification of potential issues in energy 
consumption.

4.3. Background dataset selection for anomalies

In the context of SHAP value explanations, the background dataset 
serves as the baseline, representing the expected or average behavior 
against which individual predictions are compared. According to Chen 
et al. [22], selecting an appropriate baseline is crucial as it defines how 
absent feature values are handled during Shapley value calculations. 
Different baseline strategies, such as fixed baselines or distributional 
baselines (marginal and conditional), influence the resulting SHAP val-

ues in distinct ways. Our approach of selecting a similar background 
dataset using weighted cosine similarity aligns with the concept of distri-

butional baselines, where the background samples are chosen to reflect 
the statistical context of the anomalies being explained. By carefully se-

lecting neighbors that closely resemble the anomaly points, we ensure 
that the baseline accurately captures the relevant feature distributions 
and dependencies, thereby enhancing the interpretability and reliability 
of the SHAP value explanations. This method mitigates the arbitrariness 
associated with fixed baselines and preserves the integrity of feature 
relationships, particularly in complex, high-dimensional datasets. The 
process is presented in Algorithm 1 and detailed in the following sub-

sections.

4.3.1. Transforming data

As our approach leverages the SHAP algorithm, it is necessary to 
first transform the windowed time series data into a format compatible 
with this method, which operates on tabular datasets with row vectors 
as samples. This transformation process is the first step of Algorithm 1. 
For anomaly detection, the energy data is represented in a windowed 
format as shown in Equation 4. These data are transformed into a tabular 
format (1× 𝐼 ×𝐹 ), representing the multi-dimensional input into a one-

dimensional vector. The transformed data are expressed as follows:[
𝑋11,𝑋12,… ,𝑋1𝐹 ,𝑋21,𝑋22,… ,𝑋2𝐹 ,… ,𝑋𝐼𝐹

]
(1×𝐼×𝐹 ) (7)

For example, when the model uses inputs with a window length of 48 
and 10 features, this transformation results in a 480-dimensional vector 
representing the input, with explanations provided for each feature.

This paper focuses on explaining one-step-ahead predictions, cor-

responding to the first horizon of the output sequence 𝑂𝑖 = [𝑌𝑡+1]. By 
setting the output window ℎ to 1, this approach facilitates early anomaly 
detection. However, the same approach can be extended to explain pre-

dictions for multiple horizons. To do this, one only needs to substitute 
the first horizon with the desired horizon (e.g., the second horizon) and 
repeat the same transformation and evaluation steps to provide expla-

nations for subsequent horizons.

4.3.2. Global feature importance

After data are transformed into one-dimensional vectors, a surro-

gate model is used to calculate global feature importance (Step 2 of 
Algorithm 1). While various models can serve this purpose, we selected 
Random Forest due to its speed and computational effectiveness. In-

stead of using approaches that focus primarily on local explanations, 
such as SHAP, we employed Random Forest to provide faster global 
feature importance estimates. This is because it uses Gini importance, 
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which does not require calculating local feature importance for each 
individual training data point. This advantage makes it well-suited for 
large datasets while maintaining high accuracy [47]. Moreover, Ran-

dom Forest’s ability to handle high-dimensional datasets and robust 
performance across various datasets made it an excellent choice for this 
anomaly explanation step [48].

To further strengthen the feature importance derived from the Ran-

dom Forest model, the exponential transformation is applied to the 
importance scores, defined as 𝐺𝐹𝐼 ′

𝑖
= exp(𝐺𝐹𝐼𝑖). This transformation 

increases the differences in importance among features, giving more im-

portant features greater impact in subsequent analyses. As a result, the 
exponential scaling makes similarity measures, specifically cosine simi-

larity, pay more attention to important features, improving the selection 
of relevant neighbors for SHAP explanations.

4.3.3. Selecting neighbors for anomalies

In step 3 of Algorithm 1, weighted K-Nearest Neighbor (KNN) is 
employed to select neighbors for each detected anomaly point under 
analysis. The similarity score between an anomaly point 𝑥𝑎 and each 
point 𝑥𝑐 in the training set is computed using the weighted cosine sim-

ilarity metric:

𝑆(𝑥𝑐, 𝑥𝑎) =
∑𝐹

𝑖=1𝐺𝐹𝐼 ′
𝑖
⋅ 𝑥𝑐𝑖 ⋅ 𝑥𝑎𝑖√∑𝐹

𝑖=1(𝐺𝐹𝐼 ′
𝑖
⋅ 𝑥𝑐𝑖)2 ⋅

√∑𝐹

𝑖=1(𝐺𝐹𝐼 ′
𝑖
⋅ 𝑥𝑎𝑖)2

(8)

Here, 𝑥𝑎𝑖 and 𝑥𝑐𝑖 represent the values of feature 𝑖 for the anomalous 
sample and another sample from the training dataset, respectively, and 
𝐹 denotes the total number of features. The wight of feature 𝑖, 𝐺𝐹𝐼 ′

𝑖
, 

is the global feature importance calculated determined as described in 
Subsection 4.3.2. For each anomaly point, the top 100 most similar sam-

ples are initially selected as the background dataset for calculating local 
SHAP values. Future work may explore the impact of varying the num-

ber of selected samples on both computational efficiency and the quality 
of SHAP explanations to further optimize the process.

Algorithm 1 Background dataset selection for anomaly explanation.

1: Input: Training data 𝑋train, Test data 𝑋test , Trained model 𝑀
2: Output: Background dataset 𝐵 for anomaly explanation

3: Step 1: Transform Windowed Data into 1D Format

4: Reshape windowed time series data from 𝑋 ∈ℝ𝑁×𝑇×𝐹 to 𝑋′ ∈ℝ𝑁×(𝑇×𝐹 )

5: Step 2: Calculate Global Feature Importance (GFI)

6: Train Random Forest regression on 𝑋train to obtain feature importances 
𝐺𝐹𝐼𝑖 for each feature 𝑖

7: Step 3: Select Neighbors for Anomaly Points

8: for each anomaly point 𝑥𝑎 ∈𝑋test do

9: for each candidate point 𝑥𝑐 ∈𝑋train do

10: Compute weighted cosine similarity:

11: 𝑆(𝑥𝑐, 𝑥𝑎) =
∑

𝑖 𝐺𝐹𝐼 ′
𝑖
𝑥𝑐𝑖𝑥𝑎𝑖√∑

𝑖 𝐺𝐹𝐼 ′
𝑖
𝑥2
𝑐𝑖

√∑
𝑖 𝐺𝐹𝐼 ′

𝑖
𝑥2
𝑎𝑖

12: where weights 𝐺𝐹𝐼 ′
𝑖
= exp(𝐺𝐹𝐼𝑖)

13: end for

14: Select top 𝐾 candidate points with highest 𝑆(𝑥𝑐, 𝑥𝑎)
15: Set 𝐵𝑥𝑎

= {𝑥𝑐 | 𝑥𝑐 is among top 𝐾 candidates}
16: end for

4.4. SHAP integration for anomalies

After the SHAP values are calculated, features need to be categorized 
into those that contribute to the anomaly (referred to as contributors) 
and those act as offsets. This categorization is based on the compari-

son between the actual observed output and the predicted value for a 
specific instance. Such categorization based on SHAP values helps us 
understand how much each feature pushes the model’s prediction away 
from or towards the real value. The prediction for a sample is expressed 
as [21]:

Prediction = BaseValue +
𝐹∑
𝑖=1 

𝜙𝑖 (9)

Here, the term BaseValue represents the average prediction made 
using the background dataset, and the SHAP value 𝜙𝑖 explains how 
much feature 𝑖 contributes to the prediction. It is important to note that 
SHAP values are not used during the training of the model but are com-

puted afterward to explain how features influence the final prediction.

The features are categorized according to the following logic:

• If Real > Predicted: This indicates that the model under-predicted 
the outcome. In this case:

Real > BaseValue +
𝐹∑
𝑖=1 

𝜙𝑖 (10)

Here, positive SHAP values (𝜙𝑖 > 0) indicate features that pull the 
prediction closer to the real value, thereby acting as offsets. Nega-

tive SHAP values (𝜙𝑖 < 0) indicate features that push the prediction 
further away from the true value, and these are considered contrib-

utors to the anomaly.

• If Predicted > Real: This indicates that the model over-predicted 
the outcome. In this case:

BaseValue +
𝐹∑
𝑖=1 

𝜙𝑖 > Real (11)

Positive SHAP values (𝜙𝑖 > 0) represent features that push the 
prediction further from the real value, contributing to the over-

prediction (contributors). Conversely, negative SHAP values (𝜙𝑖 <

0) pull the prediction closer to the real value, acting as offsets.

In the previous steps, we reduced the contribution of many less ef-

fective features to near-zero values. However, some features still require 
further filtering, as shown in Fig. 7. By applying this categorization, we 
focus on features with negative SHAP values, which contribute to the 
anomaly. In this case, since the prediction is lower than the true value, 
the negative features (blue) are the main contributors, allowing us to 
disregard the positive features (red) for a more streamlined analysis. 
This process of classifying SHAP values is a part of SHAP integration for 
anomalies process as illustrated in Fig. 1.

5. Results and discussion

This section presents the outcomes of our explainable anomaly de-

tection approach, including data preparation, model optimization, pre-

diction performance, and feature importance. The results highlight the 
improvements achieved through hyperparameter tuning, the impact of 
key features on model predictions, and the advantages of using our 
approach for enhancing model explainability. Statistical comparisons 
further support the robustness of our approach, demonstrating its effec-

tiveness in producing reliable and consistent results.

5.1. Dataset description and preparation

To conduct a comprehensive analysis of the proposed method, we 
use energy consumption datasets from five different consumer types: 
a residence, a manufacturing facility, a medical clinic, a retail store, 
and an office building. A residence dataset provided by London Hy-

dro [49], comprises energy consumption records from a residence in 
London, Ontario, Canada, spanning from January 1, 2002, to Decem-

ber 31, 2004, with hourly energy consumption values. To enhance the 
predictive capabilities of anomaly detection and improve explanations 
as discussed in Subsection 4.1.1, we incorporated additional date-time 
and weather-related features from the Government of Canada’s histor-

ical climate data [50]. The remaining four datasets are from Building 
Data Genome Project 2 [51], covering January 2016 to December 2017. 
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Table 2
Summary of best hyperparameters and performance metrics for various models for the residential dataset.

Model Best Parameters MSE RMSE MAE SMAPE MAPE R2

LSTM 88 LSTM units, dropout rate 0.224, 2 LSTM layers, learning rate 
0.000279

0.09 0.30 0.15 9.23 8.98 0.41 

GRU 88 GRU units, dropout rate 0.257, 1 GRU layer, learning rate 
0.000997

0.07 0.26 0.14 9.04 8.84 0.53

BLSTM 109 LSTM units, dropout rate 0.285, 2 LSTM layers, learning rate 
0.000189

0.09 0.30 0.15 9.18 8.96 0.43 

BGRU 76 GRU units, dropout rate 0.272, 1 GRU layer, learning rate 
0.000907

0.10 0.32 0.22 14.37 15.59 0.33 

CNN 57 filters, kernel size 4, dropout rate 0.348, Adam optimizer, L2 
regularization 1.01e-06

0.08 0.28 0.16 10.20 10.35 0.45 

TCN 69 filters, kernel size 5, dropout rate 0.400, 5 TCN blocks, dilation 
base 3, L2 regularization 1.23e-06, Adam optimizer

0.08 0.28 0.17 10.95 11.41 0.46 

DCNN 42 filters, kernel size 3, dilation rate 4, dropout rate 0.115, 1 
convolutional layer, RMSprop optimizer, L2 regularization 7.37e-05

0.08 0.28 0.16 10.33 10.61 0.48 

WaveNet 61 filters, kernel size 2, dilation rate 4, 2 WaveNet blocks, dropout 
rate 0.386, L2 regularization 7.84e-04, Adam optimizer

0.07 0.26 0.14 9.04 9.12 0.53

TFT 255 hidden units, dropout rate 0.312, 1 LSTM layer, 3 attention 
heads, 3 attention blocks, L2 regularization 8.81e-06, learning rate 
0.000144, Adam optimizer

0.12 0.35 0.19 12.13 12.18 0.22 

TST Model dimension 65, 4 attention heads, 4 transformer layers, 
feed-forward dimension 471, dropout rate 0.306, learning rate 
5.54e-05, Adam optimizer

0.11 0.33 0.22 13.79 14.69 0.29 

Weather-related information for these datasets was already included in 
the repository.

The dataset was divided into training, validation, and test sets, fol-

lowing an 80-10-10 split. The model was trained based on windows 
sequences data. This configuration captures temporal dependencies and 
patterns within the data, significantly contributing to accurate anomaly 
detection in the analysis.

5.2. Optimization and training results

This study employs various deep learning architectures, including 
different variants of Recurrent Neural Networks (RNNs), Convolutional 
Neural Networks (CNNs), and Transformer-based models. The RNN vari-

ants utilized are Long Short-Term Memory (LSTM), Gated Recurrent 
Unit (GRU), and their bidirectional counterparts (BLSTM and BGRU), 
which effectively capture temporal dependencies in sequential data. 
Within the CNN category, we used one-dimensional CNN (1D-CNN), 
Dilated CNN (DCNN), Temporal Convolutional Networks (TCN), and 
WaveNet, which efficiently capture local temporal patterns and en-

hance feature extraction through convolutional operations. Addition-

ally, Transformer-based models such as the Temporal Fusion Trans-

former (TFT) and Time Series Transformer (TST) were employed, lever-

aging self-attention mechanisms to dynamically weigh the importance 
of time steps and features.

Hyperparameter optimization was conducted for all algorithms using 
the Tree-structured Parzen Estimator (TPE) from Bayesian optimization. 
A total of 50 trials were performed, with each trial representing a dif-

ferent set of hyperparameters evaluated on the validation set. The best 
combination was selected to minimize validation loss. A summary of the 
selected hyperparameters for models trained on the residential dataset 
and performance metrics is presented in Table 2. For the remaining 
datasets, the same process was followed, but selected hyperparameters 
are not included for conciseness and Table 3 only includes performance 
metrics.

Next, the models with the best hyperparameter combinations were 
selected, and their performance was evaluated on the test set. Evaluation 
metrics included Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Symmetric Mean Absolute Per-

centage Error (SMAPE), Mean Absolute Percentage Error (MAPE), and 
𝑅2. Table 2 highlights the reliability of the prediction models on the 
residential dataset, which is essential for generating trustworthy expla-

nations. Inaccurate models lead to unreliable explanations. The table 

Fig. 4. Prediction results for the LSTM model, showing 10% of the test resi-

dential dataset. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

presents various deep learning models with optimized hyperparame-

ters, ensuring a fair performance comparison. Most models achieved 
high accuracy with low error rates, particularly the GRU model, which 
demonstrated the lowest errors and highest R2 score. Fig. 4 shows an 
example of the LSTM model predictions compared to the actual values 
on 10% of the test data from the residential dataset, showing alignment 
between predicted and actual energy consumption.

To examine the performance of the anomaly detection models on 
the remaining four datasets, a manufacturing facility, a medical clinic, a 
retail store, and an office building, Table 3 presents the key performance 
metrics for each model type. Note that metrics such as MSE, RMSE, 
and MAE should not be compared among datasets and those are scale-

dependent metrics. No single algorithm outperforms all others across all 
performance metrics and datasets; nevertheless, TCN achieves overall 
excellent performance. We evaluate our explainability approach across 
all listed models.

5.3. Global feature importance

In this section, we present the global feature importance results for 
10 features across 48 time sequences, offering a comprehensive view 
of each feature’s contribution to model prediction. As detailed in the 
methodology, we applied an exponential transformation to the Random 
Forest results to better highlight the distinctions in feature importance. 
Based on Fig. 5 for the residential data, the previous hours energy con-
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Table 3
Summary of performance metrics for additional datasets.

(a) Manufacturing Facility (b) Medical Clinic 
Model MSE RMSE MAE SMAPE MAPE R2

LSTM 254.49 15.95 9.18 11.21 11.42 0.9 
GRU 306.9 17.52 11.03 14.33 14.5 0.88 
BLSTM 291.82 17.08 9.93 12.13 12.63 0.88 
BGRU 318.79 17.85 10.6 12.96 13.08 0.87 
CNN 201.35 14.19 7.85 9.89 10.15 0.92

TCN 200.1 14.15 8.16 10.31 10.9 0.92

DCNN 209.39 14.47 8.07 9.88 10.27 0.92

WaveNet 188.73 13.74 7.8 9.88 10.15 0.92

TFT 449.58 21.2 10.98 12.61 13.01 0.82 
TST 1031.83 32.12 19 20.44 21.5 0.58 

Model MSE RMSE MAE SMAPE MAPE R2

LSTM 9.56 3.09 2.28 12.04 11.95 0.87 
GRU 9.04 3.01 2.25 11.83 12.08 0.88 
BLSTM 8.1 2.85 2.15 11.34 11.5 0.89 
BGRU 8.64 2.94 2.14 11.15 11.2 0.89 
CNN 12.09 3.48 2.51 12.36 11.65 0.84 
TCN 5.19 2.28 1.62 8.48 8.46 0.93

DCNN 7.23 2.69 1.97 10.19 9.87 0.91 
WaveNet 5.26 2.29 1.63 8.75 8.76 0.93

TFT 23.67 4.87 3.39 17.39 16.63 0.69 
TST 9.63 3.1 2.3 11.98 12.36 0.87 

(c) Retail Store (d) Office Building 
Model MSE RMSE MAE SMAPE MAPE R2

LSTM 0.49 0.7 0.45 15.45 16.45 0.84 
GRU 0.53 0.73 0.5 17.33 18.76 0.83 
BLSTM 0.55 0.74 0.47 15.8 16.46 0.82 
BGRU 0.49 0.7 0.47 16.41 16.97 0.84 
CNN 0.42 0.65 0.44 15.51 16.85 0.86

TCN 0.43 0.66 0.43 15.15 15.18 0.86

DCNN 0.41 0.64 0.43 15.44 16.24 0.86

WaveNet 0.42 0.65 0.43 15.6 15.96 0.86

TFT 1.04 1.02 0.66 21.7 24.46 0.66 
TST 0.47 0.69 0.44 14.89 15.96 0.84 

Model MSE RMSE MAE SMAPE MAPE R2

LSTM 44.42 6.66 4.81 11.5 12.11 0.86 
GRU 40.8 6.39 4.65 11.17 11.89 0.87 
BLSTM 48.7 6.98 5.13 12.68 13.75 0.85 
BGRU 38.19 6.18 4.5 10.94 11.36 0.88 
CNN 23.33 4.83 3.59 8.69 8.94 0.93 
TCN 20.99 4.58 3.35 8.12 8.26 0.93 
DCNN 26.19 5.12 3.8 9.4 9.49 0.92 
WaveNet 19.84 4.45 3.22 7.88 8.05 0.94

TFT 72.87 8.54 6.16 14.2 14.83 0.77 
TST 95.46 9.77 6.97 15.62 17 0.7 

Fig. 5. Global Feature Importance Line Plot of Sequence Windows for LSTM Model on residential dataset. 

sumption data emerged as the most significant predictor for the LSTM 
model. The energy consumption feature exhibited a consistently increas-

ing trend in importance over the last 48 hours, peaking at values of 1.352 
and 1.329 for the final time steps, highlighting its relevance near the pre-

diction window (e.g., sequence of 48 hours before prediction). The hour 
feature also exhibited notable influence, with peak values of 1.0068 and 
1.0064. Other features, while less influential, follow consistent tempo-

ral trends. These observations highlight the importance of key features 
in selecting a contextually relevant baseline for explainability. This pro-

cess was repeated for other deep learning models and other datasets, 
consistently revealing that energy consumption history and time-related 
features are critical for predictions due to the inherent temporal pat-

terns in energy consumption. These global feature importance results 
will guide the following sections, where we focus on selecting a back-

ground dataset that aligns with the most important features identified 

in the global model. This selection will enhance the explainability pro-

cess by concentrating on the features that play a key role in explaining 
anomalies.

5.4. Explanation step: comparing random background dataset and similar 
background dataset selection

In this section, we provide a detailed comparison between the ran-

dom and similar background dataset selection methods by analyzing a 
specific anomaly point identified using the LSTM model on the residen-

tial data, as shown in Figs. 6 and 7.

As discussed in Section 5.3, these feature importance scores have di-

mensions of 48×10, where the features are represented in the rows, and 
their sequences are displayed along the columns. The features are sorted 
by the absolute value of their SHAP values, with the most impactful fea-
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Fig. 6. SHAP value heatmap for random background dataset selection approach for LSTM Model on residential dataset. 

Fig. 7. SHAP value heatmap for similar background dataset selection approach for LSTM Model on residential dataset. 

tures positioned at the top. For example, in Fig. 6, the date and time 
features, such as the month, are identified as the most important in ex-

plaining the anomaly. In contrast, in Fig. 7, energy consumption and 
weather-related features are more significant contributors. This demon-

strates that the similar background dataset selection can capture differ-

ent aspects of the data, such as weather information, due to its temporal 
alignment.

Another important aspect of these heatmaps is their relevance to the 
reliability of the results. Before explaining this further, it is important 
to clarify the role of the line plots and the dotted horizontal line present 
at the top of each heatmap. As outlined in Equation 9, the prediction 
function 𝑓 (𝑥) (represented by the line plot) is the sum of the SHAP val-

ues, showing how each feature shifts the prediction either away from or 
towards the base value (dotted horizontal line). Given that the dataset 
consists of 10 features and 48 time steps, the prediction function is de-

fined as:

𝑓 (𝑥) = BaseValue +
48 ∑
𝑡=1 

10 ∑
𝑖=1 

SHAP𝑡(𝑖) (12)

Here, the Base Value represents the average prediction derived from 
the background dataset, and SHAP𝑡(𝑖) represents the contribution of 
feature 𝑖 at time step 𝑡. This breakdown provides a clear view of how 
each feature at each time step influences the overall prediction.

From the heatmaps in Figs. 6 and 7, which correspond to the same 
anomaly detected by the LSTM model, the prediction, true value, and 
error are 1.60, 4.75, and -3.15, respectively. Since the model’s prediction 
is lower than the true value, positive SHAP values (red cells) represent 
features that adjust the prediction closer to the true value (offsets), while 
negative SHAP values (blue cells) correspond to features that push the 
prediction further from the true value, contributing to the anomaly.

In the following, we compare the random and similar background 
dataset selection based on these aspects:
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Fig. 8. Density plots of SHAP values for similar vs. random background dataset across 10 features, based on anomalies detected by the LSTM model on residential 
dataset.

• Random Background Dataset (Fig. 6): This heatmap shows signif-

icant variability in the SHAP values across the sequence of features, 
with many features showing large positive (bright red) or negative 
(bright blue) impacts. This variability causes fluctuations in the pre-

diction function 𝑓 (𝑥) around the base value (dotted line), making 
it difficult to clearly identify the most important features. The high 
variability suggests that the randomly selected background dataset 
may not align closely with the anomaly point, potentially overes-

timating the importance of less relevant features, such as date and 
time attributes.

• Similar Background Dataset (Fig. 7): In contrast, the heatmap 
from the similar background dataset shows a more stable pattern 
(fewer fluctuations of 𝑓 (𝑥) around the base value), with energy 
consumption and weather-related features emerging as the primary 
drivers of the model’s predictions. This approach reduces the noise 
caused by less relevant features (more features near zero as most of 
them with light red or blue colors), offering a clearer identification 
of the factors contributing to the anomaly. For instance, energy con-

sumption functions as an offset, correcting the model’s prediction 
towards the true value, while weather features such as humidity, 
temperature, and wind speed reflect genuine variations that con-

tribute to the anomaly.

These observations underscore the effectiveness of using similar 
background dataset selected according to the proposed similarity met-

rics in enhancing the interpretability of SHAP values. By focusing on 
a relevant background dataset, we can better isolate the features that 
genuinely influence the model’s predictions, reducing the impact of 
unrelated features. This approach is especially valuable given the com-

plexity of the dataset, which includes 480 features (48 sequences × 10 
features). Using appropriate background dataset allows for more focused 
and meaningful explanations of the model’s behavior.

5.5. SHAP density plot analysis

As seen from the density plots in Fig. 8, based on anomalies detected 
by the LSTM model on residential dataset, a notable reduction in the 
variation of SHAP values is observed for date and time-related features 

(Hour, DayOfWeek, DayOfMonth, Month, DayOfYear) when utilizing 
similar background dataset. This reduction underscores the ability of 
this approach to filter out less relevant features, thereby allowing the 
model to focus on factors more closely linked to the detected anomalies, 
such as weather information. However, while the variation is signif-

icantly reduced, these features are not entirely disregarded. In cases 
where energy consumption is unusual at specific times, these features 
still contribute to the model’s prediction, albeit with less fluctuation.

This behavior indicates that the similar background dataset essen-

tially serves as a filter, helping to emphasize the most impactful features 
while minimizing noise from less relevant ones. This filtering effect 
is particularly beneficial when working with high-dimensional data, 
where many features may not be directly related to the anomalies. 
By concentrating the SHAP values near zero for these date and time 
features, the model can more effectively highlight the key drivers of 
unusual energy consumption, such as weather conditions or specific pat-

terns in energy use.

5.6. Stability of SHAP explanations across multiple datasets and 
explainability approaches

Analysis of results so far focused on a residential dataset, demon-

strating the benefit of our technique for achieving robust explanations. 
Building on this, here we expand the analysis to the remaining four 
datasets– a manufacturing facility, a medical clinic, a retail store, and 
an office building–to examine the portability of our technique across 
diverse energy consumer types. Additionally, for each dataset, we con-

sider diverse XAI algorithms to illustrate the wide applicability of our 
technique.

Moreover, to further evaluate the impact of our approach for back-

ground dataset selection methods on SHAP values, we conducted a com-

parison between random and similar background dataset approaches 
across different deep learning models and datasets from diverse en-

ergy consumer types. This analysis explored various explainability al-

gorithms, including SHAP variants (Kernel, Partition, and Sampling), as 
well as LIME and Permutation, applied across all five datasets.

Table 4 presents the results. For each dataset and each XAI method, 
the table reports the mean and standard deviation (Mean ± SD) of 
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Table 4
Comparison of variance reduction and statistical results across datasets and XAI methods.

Dataset XAI methods Random Baseline 
(mean ± sd) 

Proposed Baseline 
(mean ± sd) 

Statistical Test 
(P-Value) 

Reduction 
(%) 

Residential Kernel 0.050 ± 0.110 0.028 ± 0.034 27.851 (0.009∗) 44.0 
Lime 0.077 ± 0.192 0.040 ± 0.075 27.773 (0.119) 48.1 
Partition 0.023 ± 0.064 0.017 ± 0.026 219.271 (0.138) 26.1 
Permutation 0.045 ± 0.105 0.024 ± 0.031 27.326 (0.029∗) 46.7 
Sampling 0.045 ± 0.105 0.024 ± 0.031 27.646 (0.001∗∗) 46.7 

Manufacturing facility Kernel 1.214 ± 1.932 0.360 ± 0.667 23.598 (0.000∗∗) 70.3 
Lime 0.478 ± 1.233 0.377 ± 1.015 8.857 (0.243) 21.1 
Partition 0.238 ± 0.766 0.047 ± 0.113 59.502 (0.000∗∗) 80.3 
Permutation 0.759 ± 2.046 0.328 ± 0.681 25.524 (0.000∗∗) 56.8 
Sampling 0.739 ± 2.037 0.313 ± 0.667 24.407 (0.000∗∗) 57.6 

Medical clinic Kernel 0.126 ± 0.267 0.081 ± 0.125 17.410 (0.028∗) 35.7 
Lime 0.117 ± 0.290 0.096 ± 0.226 2.562 (0.242) 17.9 
Partition 0.043 ± 0.134 0.035 ± 0.084 12.215 (0.198) 18.6 
Permutation 0.116 ± 0.264 0.074 ± 0.121 17.969 (0.039∗) 36.2 
Sampling 0.115 ± 0.262 0.073 ± 0.121 17.622 (0.015∗) 36.5 

Retail store Kernel 0.034 ± 0.046 0.023 ± 0.036 2.662 (0.567) 32.4 
Lime 0.024 ± 0.037 0.023 ± 0.030 2.391 (0.453) 4.2 
Partition 0.015 ± 0.014 0.010 ± 0.000 757.685 (0.000∗∗) 33.3 
Permutation 0.031 ± 0.049 0.024 ± 0.036 2.938 (0.530) 22.6 
Sampling 0.031 ± 0.047 0.023 ± 0.036 2.856 (0.563) 25.8 

Office building Kernel 0.219 ± 0.410 0.105 ± 0.182 24.249 (0.002∗∗) 52.1 
Lime 0.244 ± 0.577 0.156 ± 0.306 15.670 (0.038∗) 36.1 
Partition 0.019 ± 0.033 0.017 ± 0.024 38.760 (0.133) 10.5 
Permutation 0.195 ± 0.426 0.104 ± 0.183 26.349 (0.000∗∗) 46.7 
Sampling 0.201 ± 0.448 0.105 ± 0.184 28.660 (0.000∗∗) 47.8 

∗∗ indicates significance at the 1% level; ∗ indicates significance at the 5% level.

SHAP/LIME value variability for random baseline and our baseline, cal-

culated as the standard deviation of feature importance across detected 
anomalies. For all datasets and all XAI methods, our technique achieves 
lower variability than the random baseline, highlighting its ability to 
provide more stable and reliable explanations compared to the random 
baseline. Additionally, the table includes the percentage reduction in 
variability, calculated as the relative decrease in the similar baseline’s 
mean compared to the random baseline, to quantify the effectiveness 
of the proposed method. Bartlett’s test results (P-Value) [52] are also 
presented to assess the statistical significance of the differences in vari-

ability between the two approaches, random baseline and our baseline. 
A single * indicates significance on the 5% level and ** denotes signifi-

cance on the 1% level.

For the residential dataset, significant reductions in variability were 
observed with Kernel (44%, 𝑃 = 0.009), Permutation (46.7%, 𝑃 =
0.029), and Sampling SHAP (46.7%, 𝑃 = 0.001), while LIME (48.1%, 
𝑃 = 0.119) and Partition (26.1%, 𝑃 = 0.138) showed notable reductions 
without statistical significance. In the manufacturing facility dataset, 
the proposed method achieved particularly strong results, with Partition 
(80.3%, 𝑃 < 0.001), Kernel (70.3%, 𝑃 < 0.001), Permutation (56.8%, 
𝑃 < 0.001), and Sampling SHAP (57.6%, 𝑃 < 0.001) all demonstrat-

ing significant variability reductions. LIME, although less impactful, still 
achieved a reduction of 21.1% (𝑃 = 0.243).

The medical clinic dataset showed significant improvements for Ker-

nel (35.7%, 𝑃 = 0.028), Permutation (36.2%, 𝑃 = 0.039), and Sampling 
SHAP (36.5%, 𝑃 = 0.015), with LIME (17.9%, 𝑃 = 0.242) and Parti-

tion SHAP (18.6%, 𝑃 = 0.198) exhibiting modest reductions. The retail 
store dataset presented mixed results, with statistical significance only 
achieved for Partition SHAP (33.3%, 𝑃 < 0.001). Kernel (32.4%, 𝑃 =
0.567), Sampling (25.8%, 𝑃 = 0.563), and Permutation SHAP (22.6%, 
𝑃 = 0.530) demonstrated modest reductions without significance, while 
LIME showed minimal impact (4.2%, 𝑃 = 0.453). Finally, for the office 
building dataset, significant improvements were observed with Kernel 
(52.1%, 𝑃 = 0.002), Permutation (46.7%, 𝑃 < 0.001), and Sampling 
SHAP (47.8%, 𝑃 < 0.001), while LIME (36.1%, 𝑃 = 0.038) also achieved 

a statistically significant reduction. Partition SHAP, however, showed 
limited impact with a reduction of 10.5% (𝑃 = 0.133).

Overall, our approach reduced the variability of the explanations 
across all datasets and across all XAI methods, with most differences 
being statistically significant. Particularly good improvements were ob-

served for Kernel, Permutation, and Sampling SHAP. For some datasets 
and XAI methods, the reduction was larger than for others, but it was 
present for all datasets. These findings underscore the robustness of the 
baseline selection strategy in reducing variability and enhancing the sta-

bility of SHAP explanations across multiple datasets and XAI methods.

6. Conclusion

This study presents a comprehensive methodology for explaining 
deep learning-based anomaly detection in energy consumption data. 
Through a systematic approach that integrates advanced anomaly detec-

tion techniques and innovative explanation methods leveraging a novel 
approach for selecting the background dataset (baseline) for model-

agnostic explainability algorithms, the study provides improved explain-

ability of detected anomalies applicable across a diverse range of deep 
learning models, SHAP variants, and energy consumption datasets. The 
key innovation lies in the selection of context-relevant information for 
the baseline employed in explaining anomalies. Moreover, we guide the 
explanations toward features highly relevant in the deep learning model. 
This strategy ensures more consistent explanations, enabling a deeper 
understanding of the factors driving anomaly detection.

The evaluation conducted on five datasets, with five XAI approaches 
(Kernel SHAP, Partition SHAP, Sampling SHAP, LIME, Permutation) 
demonstrated that our baseline approach significantly reduces vari-

ability in feature attributions, with reductions ranging from 26.1% to 
80.3%, depending on the dataset and a SHAP variant. The statistical 
analysis validated that our approach, compared to the random baseline, 
achieves a significant reduction in variability for Kernel, Permutation, 
and Sampling SHAP across most datasets. Although LIME and Partition 
SHAP did not always achieve statistical significance, they still exhibited 
reductions in variability.
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Future work will examine developing additional metrics for evaluat-

ing the quality of explanations as well as examining human perception 
of the evaluations. Moreover, the approach will be examined with dif-

ferent use cases.
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