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ABSTRACT In sentiment analysis, data are commonly distributed across many devices, and traditional
machine learning requires transferring these data to a central location exposing data to security and privacy
risks. Federated Learning (FL) avoids this transfer by training a model without requiring the clients/devices
to share their local data; however, FL performance drops when data are not Independent and Identically
Distributed (non-IID), such as when label distribution or data size vary across clients. Although techniques
for non-IID data have been proposed primarily in the image domain, the sensitivity of various deep learning
models to non-IID data needs to be examined. Consequently, this paper investigates the sensitivity of three
dominant techniques in sentiment analysis, feed-forward neural networks, LSTMs, and transformers to
common types of non-IID data, specifically data size and label imbalances. The scenarios were designed
with increasing degrees of imbalance in terms of data size and label distribution to investigate gradual
changes. The results revealed that label imbalance has a higher impact on accuracy than data size imbalance
irrelevant of the algorithm. Overall, the transformer achieved the highest accuracy, and, while all models
experienced a drop in accuracy with the increased label imbalance, this drop was smaller for the transformer,
making it well suited for non-IID data.

INDEX TERMS Federated learning, non-IID, Deep neural networks, Transformer, Natural language
processing, Sentiment analysis

I. INTRODUCTION

Natural language data are abundantly available in a wide
array of sources such as web pages, social media, mobile
applications, books, and newspapers. Devices are generating
massive quantities of data: for example, in 2017, there were
over 456,000 tweets sent on Twitter every minute [1]. To
analyze these vast data, Natural Language Processing (NLP)
plays a vital role in many domains such as psychology,
marketing, and healthcare. In marketing, for example, sen-
timent analysis can assess the effectiveness of the company’s
branding strategy [2].

Machine Learning (ML) approaches have demonstrated
great abilities in extracting valuable knowledge from natural
language data [3]: common applications of ML in NLP are
machine translation, summarization, named-entity recogni-
tion, query answering, and sentiment analysis [4]. Sentiment
analysis aims to detect and understand people’s sentiments or
emotions on a topic expressed in a segment of text. By ana-
lyzing unstructured data from sources such as social media

posts, customer feedback, and survey responses, sentiment
analysis provides insights for a variety of applications in-
cluding marketing, social media monitoring, opinion mining,
business intelligence, and drug reviews [5]–[7].

In traditional ML, training is carried out on a central-
ized server or the cloud. However, NLP data are typically
distributed across multiple locations, and stored in various
databases or files on different devices; thus, they require
transfer to the server or the cloud for ML. Although these
centralized ML approaches have been greatly successful in
many domains for diverse tasks, they result in increased
network congestion, data transfer latencies, and scaling chal-
lenges, while also exposing data to security and privacy risk
related to data sharing and transfer.

Federated Learning (FL) has emerged as an approach
for addressing those challenges by enabling distributed ML
training across multiple clients while allowing the clients
to retain control of their local data. As clients do not share
their local data, FL reduces the risk of private data disclosure
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[8]–[10]. In recent years, FL has demonstrated successes in
various domains including load forecasting [11], malware
detection [12], smart agriculture [13], and healthcare [14].

FL demonstrated great results with Independent and Iden-
tically Distributed (IID) data; however, in real-world sce-
narios, particularly those involving extensive data spread
across numerous clients, data are highly likely to be non-IID,
which results in performance degradation. Examples of non-
IID data include a different number of samples per device,
skewed distribution of data labels across clients, concept
shift, and others. It has been widely acknowledged that non-
IID data have negative effects on FL and that handling non-
IID is the core challenge that needs to be addressed for wider
adoption of FL across a diversity of real-world applications
[15]. Moreover, several techniques have been proposed for
handling different dimensions of non-IID [15], [16]. How-
ever, research is needed to understand the sensitivity of deep
learning algorithms to non-IID data and to understand the
implications of varied degrees of imbalance on sentiment
analysis tasks crucial for the selection of the algorithm and
for leveraging FL in practice.

Consequently, this paper investigates the impact of non-
IID data on the performance of deep learning models in
sentiment analysis to gain insights into their behaviour and
to provide guidance for sentiment analysis applications. Two
common types of non-IID data are investigated, differences
in the number of records per client (client size) and varia-
tions in label distribution among clients (label imbalance).
Scenarios were designed with varied degrees of imbalance in
both non-IID dimensions, including a concurrent imbalance
in both. On the algorithm side, a baseline model, Feed For-
ward Neural Network (FFNN), along with two deep learning
models dominant in sentiment analysis, Long Short-Term
Memory (LSTM), and transformer, were considered. The
main contributions of this work include:

• Quantifying the impact of non-IID data, commonly
present in real-world applications, on FL performance.
Although the challenges of non-IID data in FL have
been recognized, to the best of our knowledge, the ex-
tent of their impact has not been previously investigated.

• Examining and comparing the sensitivity of common
neural network architectures to various degrees of non-
IID data in FL settings.

• Demonstrating through extensive experiments that label
imbalance has a greater impact on accuracy than size
imbalance in FL scenarios.

• Revealing that transformer models exhibit superior han-
dling of non-IID data compared to LSTMs and FFNNs
in FL environments.

The remainder of the paper is organized as follows: Sec-
tion II reviews related work, Section III provides prelimi-
naries, Section IV describes the methodology, and Section
V presents results and discusses findings. Finally, Section VI
concludes the paper.

II. RELATED WORK
It has been well established that non-IID data cause chal-
lenges for FL often significantly reducing accuracy and slow-
ing convergence [17]. Therefore, several studies examined
non-IID issues in FL and proposed techniques for addressing
diverse non-IID dimensions. Hsieh et al. [18] examined the
skewed distribution of data labels across devices/locations
for the image classification and evaluated the presented ap-
proach on the mammals dataset from Flickr. Considering
three FL algorithms, Gaia, FederatedAveraging, and Deep-
GradientCompression, they showed that skewed data labels
are a fundamental and pervasive problem for decentralized
learning.

Wang et al. [19] proposed an experience-driven control
framework that intelligently chooses the client devices to
participate in each round of FL to counterbalance the bias
introduced by non-IID data and to speed up convergence.
Using deep Q-learning, a mechanism was designed to learn
device selection aiming to maximize a reward that encour-
ages higher validation accuracy while minimizing communi-
cation rounds. Results showed that the number of communi-
cation rounds can be reduced by up to 49% on the MNIST
dataset, 23% on FashionMNIST, and 42% on CIFAR-10, as
compared to the FedAvg algorithm.

A Bayesian nonparametric framework for FL with neural
networks was proposed by Yurochkin et al. [20]. They em-
ployed the Dirichlet distribution to generate unbalanced sub-
sets in terms of data size and labels and applied the proposed
approach to two image classification datasets, CIFAR and
MNIST. On both datasets, their approach achieved compa-
rable accuracy to federated averaging and Downpour SGD
(D-SGD) algorithms but with fewer communication rounds.

Similarly, Tang et al. [16] also considered image datasets:
they presented a novel decentralized parallel stochastic gra-
dient descent algorithm (D2) with the objective of achieving
robustness under high data variance. Decentralized workers
here only have the data pertaining to a subset of labels; in one
scenario each worker has data from only one class from 16
classes, while in another scenario, each worker has data from
two out of 10 classes. The workers exchange information
with their neighbors connected through a graph. Empirical
results showed that D2 algorithm on image classification
tasks outperforms the decentralized parallel stochastic gra-
dient descent.

Zhao et al. [15] used Convolutional Neural Network
(CNN) and FedAvg algorithm for a severely skewed dataset.
To increase FedAvg performance with non-IID data, they
proposed a data-sharing technique in which a restricted set
of samples is shared globally across all edge devices. The
IID setting was simulated by distributing the training dataset
evenly among 10 clients, while for the non-IID setting, the
dataset was partitioned to create two extreme cases: (a) 1-
class non-IID, in which each client received a data partition
from only one single class, and (b) 2-class non-IID, in
which each client was randomly assigned partitions from
two classes. The results of the experiments showed that the
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accuracy on CIFAR-10 dataset increased by approximately
30% by sharing globally only 5% of data.

Studies discussed so far primarily address image classi-
fication tasks; in contrast, the study conducted by Chen et
al. [21] specifically focuses on an NLP task. They designed
a character-level recurrent neural network for learning Out-
Of-Vocabulary (OOV) words under the FL setting. Here,
the vocabulary includes common words and phrases that the
Google keyboard (Gboard) recognizes and suggests to users
during typing. OOV words are not initially in the vocabulary
but need to be learned for better typing suggestions. The eval-
uation was carried out with the Reddit conversation corpus
considering 492 million comments split between 763 thou-
sand unique users. Their model was successful in learning
the top 105 unique words, leading to improvement in the
accuracy of word suggestions.

Zhu et al. [22] also considered text data; they investigated
the federated TextCNN model for the intent classification
problem and presented a differentially private FL technique
by introducing sample-level privacy protection. On clients,
for each batch, gradients are computed and applied to update
the local parameters, and then the accumulated difference of
parameter values is sent to the central server for cross-client
aggregation. To protect privacy, Gaussian noise is added
to the gradients before the parameters are updated. Results
showed that the FL model performance depends on the
sampling ratio (label distributions) among different classes.

A modular framework for assessing learning in feder-
ated environments, LEAF, was introduced by Caldas et al.
[23]. LEAF contains federated open-source datasets for the
evaluation of FL techniques, including FEMNIST, Sent140,
Shakespeare, CelebA, and Reddit. Some of these datasets,
such as Reddit, Sent140, and Shakespeare are text-based
while others are images. Each dataset has keys that refer to
particular devices/users, enabling the creation of clients and
providing the users with the ability to assess their approaches
for FL, meta-learning, and multi-task learning.

Several discussed studies [16], [18]–[20] focused on FL
with non-IID data for the image-based applications while our
work considers an NLP task. Other studies considered the
NLP domain and proposed techniques for addressing non-
IID data challenges [15], [21], [22] in FL or presented a
framework for the evaluation [23]. In contrast, our work ex-
amines the sensitivity of deep learning architectures to vary-
ing degrees of non-IID characteristics in sentiment analy-
sis, enhancing our understanding of architectures’ behaviour
with diverse non-IID characteristics.

III. PRELIMINARIES – FEDERATED LEARNING AND
NEURAL NETWORK ARCHITECTURES

This section provides a short overview of the FL process and
then presents three network architectures considered in this
work: FFNN, LSTM, and transformer.

A. FEDERATED LEARNING
Federated Learning (FL) is a technique where multiple de-
centralized devices or servers collaboratively train a shared
model while retaining all data locally, thereby mitigating
privacy concerns associated with data sharing and network
transmission. As seen in Figure 1, in FL, the server first
initializes a global model and sends its copy to the selected
devices (Step 1). Each device trains its own model using its
local data (Step 2) and sends the updated model parameters
(Step 3) to the server. Notice that only the model parameters
are exchanged while the raw data remains local. The server
aggregates the received model parameters (Step 4) and sends
the new global model parameters to clients (Step 5) for
the next round of training. The process is repeated until
convergence, and finally, the trained model is deployed to all
clients (Step 6) for inference.

The objective of FL is to minimize the loss:

min
w

L(w),where L(w) =
1

K

K∑
k=1

ℓk(w) (1)

where K is the number of clients, w are the model weights,
and ℓk is the local objective function of node k which
describes how the model conforms to the dataset at node k.

Each client k, at each training step t, updates its local
weights wk based on its local data and gradient descent as
follows:

wt
k = wt−1

k − ηgtk (2)

where η is the learning rate and gt−1
k is the local gradient for

client k at time step t.
The clients send the updated weights to the server for

aggregation. FedAvg algorithm commonly used in FL, aggre-
gates locally trained models into a global model as follows:

wr =

K∑
k=1

nk

n
wr

k (3)

where wr are the global model weights at round r, K is the
number of clients, nk is the number of samples at client k,
n is the number of samples across all clients, and wr

k are the
weights from client k at round r.

B. NEURAL NETWORK ARCHITECTURES
This section provides a short overview of the three network
architectures considered in this work: FFNN, LSTM, and
transformer. FFNN is a simple network architecture widely
applied across diverse fields [24], [25], consisting of an input
layer, hidden layers, and an output layer. Information flows
from the input layer through one or more hidden layers to the
output layer.

Recurrent Neural Network (RNN) was specifically de-
signed for handling sequential data; however, standard RNNs
suffer from exploding and vanishing gradient problems [26].
LSTM was proposed to overcome these issues [27], enabling
the retention of information for longer periods of time. As
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FIGURE 1: Federated learning process.

FIGURE 2: The structure of LSTM cell.

seen in Figure 2, the main components of the LSTM cell are
the forget gate, update gate (input gate), and output gate. In
LSTM, the output of the LSTM cell yt can be expressed as
follows:

yt = f(xt, ht−1, Ct−1) (4)

where f is a non-linear function, xt is the input at the time
step t, and ht−1 and Ct−1 are the hidden state and cell state,
respectively, from the previous time step.

In recent years, transformers have achieved remarkable
success in the NLP field [28], including applications such as
ChatGPT. Like RNN, the transformer is designed for sequen-
tial data, but, while RNN employs recurrent connections to
capture temporal dependencies, the transformer incorporates
the self-attention mechanism, which enables the model to
concentrate on important parts of the input sequence. The
self-attention mechanism can be formulated as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5)

where Q (Query), K (Key), and V (Value) are matrices
derived from the input and dk is the dimensionality of the
key vectors [28].

As seen in Figure 3, the two main components of the trans-
former are an encoder and a decoder. Before entering the en-
coder block, the input text is converted into a vector through

FIGURE 3: Transformer Architecture.

input embedding, and the positional information is added.
The encoder simultaneously processes the inputs with the aid
of the multi-head self-attention block. The normalization and
feed-forward layers then produce an abstract representation
of the complex input patterns, which is sent to the decoder.
Similar to the encoder, the decoder takes advantage of multi-
head self-attention, feed-forward, and normalization layers.
In addition, the decoder employs a masked multi-head atten-
tion layer that maintains the auto-regressive characteristics of
the transformer. The output embedding represents the vector
representation of the generated tokens and shifted output
refers to the practice of shifting the target sequence by one
position to the right when feeding it into the decoder during
training, ensuring the model is always trying to predict the
next token in the sequence. After the decoder has completed
its processing, probabilities are produced through softmax
as the output.

IV. METHODOLOGY
This paper investigates the effect of non-IID data on the
sentiment analysis task in the FL setting with various deep
learning architectures, which is essential due to the preva-
lence of non-IID data in the real-world. Understanding the
performance and generalization ability of deep learning ar-
chitectures under various degrees of data skew will provide
the foundation for the wider adoption of FL across sentiment
analysis applications.
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To accomplish the objective of quantifying the effect of
non-IID data on FL-based sentiment analysis, three base ar-
chitectures were considered: FFNN, LSTM, and transformer.
The FFNN model is a relatively simple model included in the
examination as a baseline. LSTM was selected for its ability
to capture long-term temporal dependencies in sequential
data, its effectiveness in mitigating the vanishing/exploding
gradient problem inherent in vanilla RNNs, and its use in
sentiment analysis tasks [29]. Finally, the transformer archi-
tecture was chosen due to its remarkable successes across
a range of NLP tasks, including its recent prevalence in
sentiment analysis [30]. Although generative models can be
applied for sentiment analysis, their computational require-
ments make it impractical or even impossible to deploy them
in an FL setting on devices such as smartphones; thus, we do
not consider them in our study.

The task of sentiment analysis in general aims to determine
if the emotional tone of the text segment is positive or nega-
tive. In the FL setting, ML models for this task can be largely
affected by the differences among people: for example, some
people are overall more positive than others. The analysis was
carried out on the Sentiment140 Twitter dataset [31] which
contains 1.6M tweets on general topics, equally divided into
positive and negative tweets. This dataset is then manipulated
to generate different degrees of skew.

The overall process for sentiment analysis with different
architectures is shown in Figure 4 while the details of data
preprocessing and considered deep learning models are pro-
vided in the following subsections. Next, Scenario Design
subsection describes the strategy used to create scenarios
evaluating the model behavior in the presence of non-IID
data.

A. DATA PREPROCESSING
Text segments (tweets) are first preprocessed to transform
them into a form suitable for the considered deep learning
models; specifically, the tweets are transformed into numeric
vectors, which are then used for training the deep learning
models. Figure 4 includes the six main preprocessing steps.
First, emojis in the tweets are replaced with meaningful
words: for example, the emoji ":-)" is substituted with the
word "smile.". Next, all words in the tweets are converted to

FIGURE 4: The overall process of sentiment analysis.

lowercase, and contractions such as "I’m" are expanded to
their full forms, such as "I am.". Tags, punctuation, special
characters, and numbers are removed from the tweets as they
can be disregarded without altering the meaning. Tokeniza-
tion is then applied to the tweets to split them into word
segments and enable subsequent text analysis. Following this,
the stop words are removed. It is important to notice that
the words "no, not, none", often considered a stop word,
are not eliminated from the tweets during this process as it
significantly impacts the sentence meaning.

After this, the text is ready to be converted into a numeric
form. A mapping function is applied to tweets to convert
each word to a unique integer and, to make all the tweets’
representations the same length, zero padding is applied.
These vectors are transformed into real-valued vectors using
the embedding layer which is the first layer of the neural
network. Although the embedding layer is often considered
a part of the network itself, here it is described in the prepro-
cessing as it is common for all considered architectures.

B. MODEL ARCHITECTURES
This section presents an overview of the three primary net-
work architectures: FFNN, LSTM, and transformer, and their
variants used in the experiments.

All architectures were trained using the Federated Aver-
aging (FedAvg) which is a common technique in FL for
aggregating parameters from the clients [32]. In FedAvg, the
model parameters obtained from the individual clients are
aggregated through weighted averaging. Thus, only the pa-
rameters are exchanged between the server and clients which
contributes to data privacy and security. For all architectures,
an embedding layer described in Subsection IV-A creates
word embeddings. Also, for all architectures, the number of
inputs is equal to the number of features, and the number
of outputs corresponds to the number of classes. As we
are considering positive and negative tweets, there are two
classes.

1) Feed Forward Neural Network (FFNN)
Two FFNN variants are considered in order to investigate the
impact of the network size on model accuracy in the presence
of non-IID training data.

• FFNN1: This FFNN architecture consists of three lay-
ers; an embedding, a flattening, and a dense layer. The
flattening layer gets the output from the embedding
layer and converts it into a one-dimensional vector,
allowing it to be passed into the subsequent dense layer
with two output neurons. This dense layer with softmax
activation function generates a probability distribution
over the two output classes.

• FFNN2: This FFNN architecture consists of four layers;
embedding, flattening, and two dense layers. This archi-
tecture is similar to the previous one, with an additional
dense layer with 64 neurons after the flattening layer to
improve model capacity.
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2) Long Short-Term Memory (LSTM)
As with FFNN, two LSTM architecture variants are con-
sidered to examine the impact of the network size on the
network sensitivity to non-IID data in FL.

• LSTM1: This model consists of an embedding layer,
flattening layer, LSTM layer, and dense layer. The
LSTM layer with 32 hidden units enables the model to
capture temporal (sequential) dependencies in the data.
The output from the embedding layer is flattened into a
one-dimensional vector with the flattening layer, and af-
ter the LSTM layer, a dense layer with two output units
and softmax activation generates output probabilities.

• LSTM2: This model is similar to the LSTM1, but with
an addition of a dense layer with 64 neurons after
the LSTM layer. This dense layer provides additional
capacity for non-linear transformations.

3) Transformer
Figure 5 shows the architecture of the transformer employed
in this study. The original transformer consists of an encoder
and decoder (Figure 3), whereas the transformer used here
only employs the encoder part. The encoder of a transformer
model is capable of extracting representations of the input
sequence needed for sentiment detection. Since sentiment
detection is a classification task, there is no need for se-
quential decoding to create sequences as done in tasks such
as machine translation or text generation. Using only the
encoder, the computational complexity is also reduced.

The input sequence is embedded along with positional in-
formation and passed to the encoder block. The self-attention
mechanisms in the encoder block and the positional encoding
are the same as in the original transformer. As seen in Figure
5, the transformer includes two encoder blocks, a global
average-pooling layer, dropout, dense, dropout, and dense
(output) layers. The global average pooling layer is added
as it helps summarize the encoded information from the
preceding encoder blocks into a single representation while
also reducing dimensionality. In each encoder block, there
are multi-head attention, dropout, normalization, dropout,
and dense layers.

C. SCENARIO DESIGN
FL commonly encounters statistical heterogeneity, where
data are not independent and identically distributed (non-
IID). This means that the distribution of data among different
sources or clients may differ, or the distribution of data from
a single client may change over time [33]. Kairouz et al.
[33] highlighted five ways in which data can be non-IID:
feature distribution skew (covariate shift), label distribution
skew (prior probability shift), concept drift, concept shift, and
quantity skew (unbalancedness). Label distribution skew and
quantity skew are common among different clients in FL,
therefore, this study focuses on those two types of non-IID
data [18], [34].

Label distribution skew refers to a situation where the
distribution of labels or target variables in the training data

FIGURE 5: Architecture of the transformer.

differs across the devices or clients. One instance of label dis-
tribution skew can be observed in the use of positive/negative
messages, when certain individuals consistently generate
more positive messages, while others predominantly produce
negative ones. It has been shown that label distribution skew
can have a significant impact on ML models, and can lead to
biased predictions and sub-optimal performance [35].

Quantity skew refers to the uneven distribution or imbal-
ance in the amount of data contributed by different clients
in a decentralized learning or FL setup. However, due to
variations in user populations, data collection capabilities, or
other factors, some clients may have more data available to
contribute than others. Clients with larger datasets may have
a large influence on the model’s training [36], potentially
leading to biased results.

Here, we use the term global dataset to refer to the training
dataset that encompasses data from all clients participating
in the FL system. This dataset is balanced in terms of labels,
meaning that each class contains an equal number of samples.
The term local datasets refers to each client’s dataset and can
be balanced or imbalanced in terms of labels. In other words,
the number of positive and negative records for each client
can be equal or unequal.

Table 1 shows the overview of the 36 scenarios designed
to examine the impact of imbalance in terms of labels and
data quantity on the model performance in the FL setting.
The rows represent the variations in terms of data size while
columns consider different unbalance levels in terms of label
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TABLE 1: Scenarios for the examination of non-IID impact on FL models.

Label Distribution (L)

Size
(S)

50-50
(L50)

45-55
(L45)

35-65
(L35)

25-75
(L25)

15-85
(L15)

5-95
(L5)

Size (Equal) S0 S0L50 S0L45 S0L35 S0L25 S0L15 S0L5
Size (Unequal) S10 S10L50 S10L45 S10L35 S10L25 S10L15 S10L5

S30 S 30L50 S 30L45 S 30L35 S 30L25 S 30L15 S 30L5
S50 S 50L50 S 50L45 S 50L35 S 50L25 S 50L15 S 50L5
S70 S 70L50 S 70L45 S 70L35 S 70L25 S 70L15 S 70L5
S90 S 90L50 S 90L45 S 90L35 S 90L25 S 90L15 S 90L5

distribution.
When considering a different number of samples across

clients, the objective is to examine the impact of quantity
skew on FL performance. In the table, the size of the local
dataset is denoted with S, and S0 indicating that all clients
have the same number of samples. Assuming N is the num-
ber of clients, the training dataset of size D is split equally
between these clients resulting in each client having D/N
samples.

The number following the symbol S indicates the degree
of quantity skew. For example, in scenario S10, the number
of records for each client is in the range D

N ±10%, determined
using a uniform distribution. This means the number of
records for each client is ±10% from the number of records
per client in the dataset balanced in terms of size. In the S10
scenario, each client can have a number of records between
0.9× D

N and 1.1× D
N while in S90 scenario, each client can

have a number of records between 0.1× D
N and 1.9× D

N .
Columns in Table 1 represent varying degrees of label

distribution skew. Although the global dataset in this study is
balanced, the local dataset can be balanced or imbalanced in
terms of labels. In the table, the label distribution is indicated
by L. Scenario L50 indicates that the local datasets (each
client dataset) are balanced in terms of labels: 50% of records
on each client are positive and 50% are negative. On the other
hand, when L is not 50, it implies that the local data are
imbalanced in terms of labels. For instance, in L35, the label
distribution for all clients is 35−65%, which means, for each
client, exactly 35% of records are negative and 65% positive
records, or the other way around.

Since the sentiment analysis is a binary classification task
and the dataset contains negative and positive records, the
number of positive records may be higher than the number
of negative records for some clients, and vice versa for other
clients. If L is close to 50, it indicates that the client’s dataset
is close to being balanced. For example, if a scenario is L5,
the datasets on clients are more imbalanced in terms of labels
compared to those in L45 scenario. The positive and negative
records for each client have been selected randomly without
substitution.

Assessing and characterizing the impact of the concurrent
presence of an imbalance in terms of size and labels is crucial
in order to examine their compounded effect. In real-world
scenarios, it is realistic to expect imbalances in both the size

and label distribution among clients. As shown in Table 1,
combinations of imbalances are examined. Consider S30L35
scenario: it has the number of records for each client in
the range D

N ± 30% while L35 indicates that the clients’
data are imbalanced, and for some clients, 35% of records
are negative and 65% are positive, whereas, for others, 35%
are positive and 65% are negative. In Table 1, when we
move from left to right, the label distribution imbalance is
increased, while moving through rows from the top to the
bottom, the difference between clients in terms of number of
records is increasing.

In total, 6 ∗ 6 = 36 different scenarios examine the effect
of non-IID data. Each of the 36 scenarios is examined with
five different neural network architectures (as described in
Subsection IV-B), including two FFNNs, two LSTMs, and
one transformer, to investigate the sensitivity of different
architectures to non-IID data. The performance of the FL ap-
proaches is compared to traditional centralized ML (without
FL) where the global dataset containing all data together is
used for training each of the five architectures in a traditional
(centralized) manner.

V. EVALUATION
This section begins by introducing the dataset and experi-
ments, followed by the results and a discussion of the find-
ings.

A. DATASET AND EXPERIMENTS
The experiments were carried out with Sentiment140 dataset
[31], a balanced dataset containing 1.6 million tweets with
their labels: 800K positive tweets and 800K negative tweets.
The dataset contains six features including target label, id,
date, flag, user, and text. For sentiment analysis in this study,
the target label and text features are used. The text is the tweet
itself while the target label indicates the target sentiment,
positive or negative.

Stratified sampling was applied to split the dataset into
70% for training and 30% for testing ensuring the balance
in terms of labels for both the training and test datasets.
This equal representation of different labels provides a fair
and unbiased evaluation of the model’s performance. The
training dataset, before it is divided and distributed to clients
is referred to as the global dataset. From this dataset, subsets
for clients are created with different degrees of imbalance
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as described in Subsection IV-C and Table 1 to quantify the
effect of non-IID data on the model performance under the
federated setting. For all experiments, the trained models are
evaluated on the test dataset.

All FL experiments considered 250 clients and in each
round 20 clients were randomly selected for training. The
number of FL rounds for training was 100, the number of
epochs for local training in each round was 10, the learning
rate was 0.05, and the batch size was 32. To prevent overfit-
ting and enhance the generalization, early stopping was used
to halt the training process when the model’s performance on
the validation set stops improving. The FL settings can vary
among studies as they explore different configurations and
tune the models to suit specific applications and experimental
setups; however, in the context of our work, these settings
are fixed for all experiments as the focus is on examining
the impact of non-IID data, and not on finding the best
hyper-parameters for FL or the ML models. Nevertheless,
two FFNN and two LSTM variants with different numbers
of layers and neurons (key hyperparameters) were examined
to evaluate the impact of network complexity on the FL
performance in the presence of non-IID data.

The analysis of the preprocessed tweets showed that the
majority of tweets have fewer than 30 tokens; therefore,
the embedding layer was set to a maximum input sequence
length of 30. The word embedding technique represented
each word with an 8-dimensional vector.

The experiments were implemented in Python and for
training deep neural networks in the federated setting, the
tensorflow-federated library was utilized. The experiments
were conducted on a computer running Ubuntu operating
system, equipped with an AMD Ryzen processor 4.20 GHz,
128 GB DIMM RAM, and four NVIDIA graphics cards. To
handle the computational demands of training the proposed
deep learning models, GPU acceleration was employed.

B. RESULTS
This section first presents results for FFNNs, LSTMs, and
the transformer, followed by a comparison among these deep
learning models.

1) FFNN
Here, results pertaining to FFNN1 and FFNN2 architectures
described in Subsection IV-B are presented and analyzed.
Tables 2 and 3 show the results of FFNN1 and FFNN2
respectively for FL scenarios presented in Table 1, together
with results for traditional centralized ML. For both, FFNN1
and FFNN2, the best accuracy in the federated setting is
achieved in scenario S0L50: 75.98% for FFNN1 and 77.11%
for FFNN2. This is to be expected as scenario S0L50 is
balanced in terms of both labels as well as data size.

The lowest value observed for FFNN1 is 72.64% which
was achieved for S50L5 configuration. On the other hand,
the lowest accuracy for FFNN2 was 74.35% which was
recorded for scenario S90L5. As scenario S90L5 is the most
imbalanced, it is to be expected that it will lead to the lowest

accuracy. Although for FFNN1, the most imbalanced sce-
nario did not lead to the lowest accuracy, its value of 72.69%
is very close to the lowest value of 72.64%. This could be
explained by the randomness in the training process; for
example, the random selection of clients in training rounds
could lead to some variations in performance.

Comparing the results of FL to the traditional centralized
training, which achieved 78.53% for FFNN1 and 78.65% ac-
curacy for FFNN2, it can be observed that balanced (S0L50)
or almost balanced scenarios (e.g., S10L50, S0L45, and
S10L45) yield results slightly lower than traditional training.
Comparing averages and standard deviations between the
two tables, it can be noticed that FFNN2 achieves better
performance than FFNN1 in terms of averages and standard
deviations across the scenarios with the same imbalance in
terms of size (averages for rows) as well as across the sce-
narios with the same imbalance in terms of labels (averages
for columns). More parameters in FFNN2 than in FFNN1
allow FFNN2 to better capture the complexities of sentiment
detection.

Figures 6 and 7 show the same data as Tables 2 and
3, but graphical representation allows for observations of
trends. Within those plots, accuracy values are shown for
extreme scenarios S10 and S90, while other numbers are
omitted for clarity. It can be observed that changes in the label
distribution (indicated by L values) have a more noticeable
effect than changes in data quantity (S values). The drop in
accuracy is especially pronounced when transitioning from
a L25 label distribution to a L5 distribution. In contrast, for

TABLE 2: FFNN1 - Accuracy in percentages for FL scenar-
ios and traditional centralized training.

Federated learning
L50 L45 L35 L25 L15 L5 Avg. Std.

S0 75.98 75.92 75.71 75.49 75.03 72.92 75.18 1.16
S10 75.91 75.83 75.67 75.47 75.04 72.88 75.13 1.15
S30 75.64 75.88 75.6 75.38 74.92 72.71 75.02 1.18
S50 75.66 75.62 75.75 75.28 74.78 72.64 74.96 1.19
S70 75.77 75.65 75.64 75.25 74.98 72.73 75.00 1.15
S90 75.83 75.62 75.67 75.3 74.66 72.69 74.96 1.19

Avg. 75.8 75.75 75.67 75.36 74.9 72.76
Std. 0.14 0.14 0.05 0.1 0.15 0.11

Traditional centralized training: 78.53

TABLE 3: FFNN2 - Accuracy in percentages for FL scenar-
ios and traditional centralized training.

Federated learning
L50 L45 L35 L25 L15 L5 Avg. Std.

S0 77.11 77.01 76.99 76.92 76.61 74.59 76.54 0.97
S10 77.03 76.98 76.94 76.89 76.58 74.48 76.48 0.99
S30 76.94 76.94 76.84 76.84 76.56 74.5 76.44 0.96
S50 76.93 76.91 76.88 76.78 76.47 74.58 76.43 0.92
S70 76.83 76.93 76.86 76.78 76.5 74.49 76.4 0.95
S90 76.91 76.82 76.83 76.65 76.48 74.35 76.34 0.99

Avg. 76.96 76.93 76.89 76.81 76.53 74.5
Std. 0.1 0.07 0.06 0.1 0.06 0.09

Traditional centralized training: 78.65
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FIGURE 6: FFNN1: Comparison of the network behavior for
different degrees of non-IID data in terms of quantity and
label distributions.

FIGURE 7: FFNN2: Comparison of the network behavior for
different degrees of non-IID data in terms of quantity and
label distributions.

both networks, changes in the quantity distribution have very
little impact on the accuracy as evident from the proximity of
the lines representing scenarios S10 to S90.

2) LSTM

Moving to the LSTM evaluation, Figures 8 and 9 show the
results for LSTM1 and LSTM2, respectively. For FFNN,
tables were provided, but we omitted tables for LSTM as the
same information is shown in Figures 8 and 9. Again, within
the plot, only the accuracy numbers for extreme scenario S0
and S90 are shown for clarity. Similarly to FFNNs, Figures
6 and 7, for both LSTM networks, Figures 8 and 9, there is a
downward trend observed when imbalance in terms of labels
increase (moving from L50 towards L5).

For LSTM1, the line corresponding to S0 is mostly above
the remaining lines indicating that this balanced scenario in
terms of data quantity on average achieved better accuracy
than imbalanced scenarios. The accuracies of S0L50 and
S10L50 are relatively close to each other, while there is a
distinct gap between these scenarios and the others. However,
when the label distribution changes towards L35, the gap
between scenarios diminishes, and in the L35 scenario, all
results become more closely aligned. When the label distri-
bution changes to L5, there is a drop in accuracy, and the gap

FIGURE 8: LSTM1: Comparison of the network behavior
for different degrees of non-IID data in terms of quantity and
label distributions.

FIGURE 9: LSTM2: Comparison of the network behavior
for different degrees of non-IID data in terms of quantity and
label distributions.

between the S0/S10 and other scenarios appears.
For LSTM2, there is more difference among scenarios

with different levels of data size imbalance (lines further
apart) than for LSTM1 or FFNNs: more balanced scenarios
in terms of data size archive better accuracy, and the balanced
scenario S0 achieves the highest accuracy. Again, the effect
of the label distribution has a higher impact on the model
performance compared to the size differences among clients.

The traditional centralized training achieved an accuracy
of 80.01% for LSTM1 and 80.05% for LSTM2. In the
federated setting, the best accuracies in the federated setting,
78.39% for LSTM1 and 79.81% for LSTM2, are close to the
traditional training.

3) Transformer
Figure 10 shows the results for the transformer, for all FL
scenarios. The same as in the previous figures, only numbers
for S0 and S90 are shown within the plot for clarity.

Similar to previous models, FFNNs and LSTMs, there is
a drop in accuracy when imbalances increase in terms of
labels – moving from L50 to L5. S0 scenario mostly achieves
higher accuracy than other imbalanced scenarios in terms of
data size. Once again, it is obvious that the effect of label
distribution is more prominent than the impact of data sizes.

With traditional centralized training, the transformer
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FIGURE 10: Transformer: Comparison of the network be-
havior for different degrees of non-IID data in terms of
quantity and label distributions.

achieved an accuracy of 80.37%. FL, as expected, achieved
the best accuracy of 80.21% for the balanced dataset, sce-
nario S0L50, which is very close to the accuracy of tradi-
tional centralized training with the advantage of FL facil-
itating security and privacy. Moreover, slightly imbalanced
scenarios, such as S0L45 or S10L50 achieved results very
close to the balanced scenario.

4) Comparison among deep learning models
This section contrasts different deep learning architectures,
FFNN, LSTM, and the transformer to compare their sensi-
tivity to non-IID data. Figure 11 depicts the results of the
five architectures for varied label distribution while keeping
the balance in terms of data sizes (S0). Through all scenar-
ios, the transformer performs the best, followed closely by
LSTM2. In contrast, FFNN1 performs worse than the other
models. Overall, more complex models perform better than
their simple counterparts: FFNN2 is better than FFNN1, and
LSTM2 is better than LSTM1.

As we move from a L50 to L5, the increase of imbalance
in terms of labels results in a drop of accuracy for all models.
Notably, transitioning from L15 to L5 results in a sharper
drop of accuracy for most models than when transitioning
between other L scenarios.

Figure 11 considered clients balanced in terms of data size
(S0), whereas Figure 12 depicts results for clients balanced in
terms of labels (L50). Again, the transformer achieves better
accuracy than the other models through all scenarios, and
FFNN1 shows the lowest accuracy. Increasing imbalance in
terms of size from S0 to S90 results in a mostly negligible
decrease in accuracy indicating that the imbalance in terms of
the size has a minimal impact. One possible reason for this
pattern is that clients with a larger data size compensate for
the impact of other clients with smaller datasets.

To examine the relative change in accuracy as the label
imbalance increases, Figure 13 shows the accuracy reduction
with respect to label-balanced scenario L50 considering only
scenarios balanced in terms of size (S0). Here accuracy
reduction for L45/L50 is calculated as (accuracyL50 −
accuracyL45)/accuracyL50 ∗ 100%. It can be observed that

FIGURE 11: Comparison among models: clients balanced in
terms of size (S0) but imbalanced in terms of labels.

FIGURE 12: Comparison among models: clients imbalanced
in terms of size but balanced in terms of labels (L50).

for L45 there is hardly any change in accuracy compared
to L50 for all models: accuracies for L45 are very close to
those for L50. However, when tipping the scale toward the
higher label imbalance, the accuracy decline for all models is
indicated by the increase in accuracy reduction. For severely
imbalanced data L5, the transformer experienced a smaller
drop in accuracy than the other models.

Figure 13 considers only scenarios balanced in terms of
size (S0), while Figure 14 includes all imbalance levels in
terms of size. The boxes in the plot indicate the range of
the accuracy reduction for all levels of size imbalance: for
example, the box for L45/L50, FFNN1, shows the range of
values for S0, S10, to S90. A distinctive trend for each deep
learning model shows that the accuracy reduction increases
with an increase in imbalance. Again, the transformer is less
affected by an imbalance in labels than the remaining models.

C. DISCUSSION
The main objective of this work is to examine the sensitivity
of the FL models in sentiment analysis to data imbalance in
terms of size and labels. To achieve this, we created sce-
narios involving varied degrees of size and label imbalance
and consequently, evaluated the three architectures, FFNN,
LSTM, and transformer. Across all deep learning models, the
imbalance in terms of label distribution has a much higher
impact on the accuracy than the imbalance in terms of data
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size. The size imbalance has small effects even with large
imbalances as seen from Figures 6 to 10 and 12. On the
other hand, the impact of label imbalance changes with the
increase of imbalance: for small imbalances (L45 and L35),
the reductions in accuracy are minimal but there is a sharp
drop in accuracy when moving from L15 to L5 as seen from
Figures 6 to 10 and 11.

Overall, the transformer achieved higher accuracy than
FFNNs and LSTMs for almost all degree of size and label im-
balance. Moreover, the transformer was less sensitive to such
imbalances than other approaches as demonstrated through
a lower drop of the accuracy with the increase of imbalance
seen in Figures 13 and 14.

To compare the behaviour of the algorithms in the FL
setting with the traditional ML, Figure 15 shows the accuracy
of four models: traditional centralized training, FL with bal-
anced data S0L50, FL with slight imbalance S10L45, and
very imbalanced FL S90L5. Overall, both, the transformer
and LSTM2 demonstrate excellence in sentiment analysis;
however, the transformer exhibits a slightly better perfor-
mance in all settings, traditional and federated.

Overall, the results show that the transformer is better
suited for the FL setting than FFNNs or LSTMs. Moreover,
in the FL setting, the transformer archives performance very
similar to traditional centralized ML even with some imbal-
ance in terms of data size and labels. However, FL has the

FIGURE 13: Comparison among models in terms of relative
change for clients balanced in terms of size (S0).

FIGURE 14: Comparison among models in terms of relative
change including a range of size imbalances.

tremendous advantage of not requiring clients to share their
local data, therefore reducing privacy and security risks.

VI. CONCLUSION
Federated learning in sentiment analysis and many other
domains has the potential to address several challenges posed
by traditional centralized ML including security and privacy
risks associated with sharing and transferring local data to
a centralized location. However, it is well known that FL
performance degrades in the presence of non-IID data.

This study investigates the sensitivity of ML algorithms
to data imbalances in the sentiment analysis task with the
objective of understanding the algorithms’ behaviors in the
FL setting with imbalanced data. Three sentiment analysis al-
gorithms – FFNN, LSTM, and transformer – we investigated
considering the impact of data size and label imbalances,
which are common types of non-IID data. To investigate the
impact of the degree of imbalance, scenarios were designed
considering different levels of imbalance in terms of data
size and labels. The findings from Figures 6 to 10 reveal
that the label imbalance has a much higher impact on the
model accuracy than the data size imbalance irrelevant of
the algorithm. From Figures 11, 12, and 15, we can draw
this conclusion that the transformer achieved higher accuracy
than the other algorithms for almost all degrees of imbalance.
Although all algorithms experienced a drop in accuracy with
the increase of label imbalance, for large imbalances, the
drop was the lowest for the transformer based on Figures 13
and 14. This makes the transformer well suited for FL-based
sentiment analysis with higher resiliency to non-IID data
than FFNNs and LSTMs. In domains where explanations
for decisions are required, such as in many medical tasks,
deep learning-based solutions may not provide the desired
outcome and might need to be extended with explainability
techniques.

Future work will explore the presence of other types of
non-IID data in sentiment analysis and investigate the sen-

FIGURE 15: Comparison of traditional centralized machine
learning with FL in the presence of balanced and imbalance
data.
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sitivity of the algorithms to those variations. Moreover, the
applicability of image domain non-IID handling techniques
for sentiment analysis will be examined.
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