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Abstract— When humans repeat the same motion, the tendons,
muscles, and nerves can be damaged, causing Repetitive Stress
Injuries (RSI). If the repetitive motions that lead to RSI are rec-
ognized early, actions can be taken to prevent these injuries. As
Human Activity Recognition (HAR) aims to identify activities em-
ploying wearable or environment sensors, HAR is the first step
toward identifying repetitive motions. Deep learning models, such
as Convolutional Neural Networks (CNNs), have seen great success
in recognizing activities for participants whose data are used in the
model training; however, their accuracy drops for new participants
as people move in different ways. Moreover, most studies focus on
lower body movement, while upper body movements are the main
cause of RSI. On the other hand, in recent years, transformers have been dominating natural language processing, and
have the potential to improve modelling in other domains involving sequential data such as HAR. Consequently, this paper
combines a Transformer and CNN (Trans-CNN) for the recognition of upper and lower body movements. Transfer learning
was employed to personalize the generic model for the target participant. The experiments demonstrate that the generic
Trans-CNN outperforms the standalone transformer and CNN. The accuracy of the generic Trans-CNN for both upper and
lower body movements improved from 69.6% to 92.4% when personalization was introduced. All models, irrespective
of the algorithm, have more difficulty recognizing upper body than lower body movements. Nevertheless, the proposed
personalized approach for the detection of upper and lower body movements represents significant progress toward RSI
prevention.

Index Terms— human activity recognition, personalized models, convolutional neural network, transformer model,
transfer learning, deep learning

I. INTRODUCTION

HUMANS have a tendency to repeat the same motion over
and over, which can lead to Repetitive Stress Injuries

(RSI) [1]. According to the Occupational Safety and Health
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Administration, RSI affects about 1.8 million workers per year
[2], and in the USA, RSI costs $15 to $20 billion a year in
workers’ compensation [3].

Workers can perform the same job every day for years
leading to an increased risk of developing RSI in the lower
body, or even more commonly, in the upper body. Due to
the gradual development of RSI, the warning signs are often
ignored. As a result, if the symptoms are not treated, they may
eventually become chronic and be detrimental to the worker’s
job performance, or even to their ability to carry out activities
of daily living.

If a sensor system with a Machine Learning (ML) model
could watch over a person and monitor their activities, the
employee could be given advice as to how to adjust their
behaviour to prevent injury when they are repeating motions
that can lead to RSI. Human Activity Recognition (HAR)
models attempt to detect the activity that a human is carrying
out based on raw data from sensors [4], [5]. There are two
types of HAR: vision-based and sensor-based [6]. Vision-
based HAR uses video or image data, while sensor-based
HAR uses time series data collected from sensors, such as
accelerometers and/or gyroscopes [7]. Sensor-based HAR is
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more common, as vision-based methods require installation of
cameras, limiting the area that can be monitored and raising
concerns about privacy and intrusiveness.

Recognizing human activities has been done successfully
with different ML models [5] such as Hidden Markov models
[8], support vector machines [9], and deep learning [10].
However, these models rely on having all of the data upfront,
which means that they cannot adapt to new participants
without being retrained [11]. In general, these models perform
well when they are applied to participants on which they have
been trained, but their performance drops dramatically for new
participants. This limitation arises from the fact that people
move differently due to differences in body size, gender, age,
and other physiological characteristics. Model personalization
can address this problem by tailoring the model to a specific
participant [12].

While HAR approaches have been successful with person-
alization techniques by customizing the model for the target
subjects, they have not examined the recognition of upper body
movements. They have either used data from only the lower
body or data from both the upper and lower body together.
Since the majority of RSI cases are caused by upper body
movements, without a model that can accurately discriminate
between upper and lower body movements, it will be difficult
to prevent RSI using these methods.

Recently, transformers [13] have been dominating the Nat-
ural Language Processing (NLP) field, with applications such
as ChatGPT. With the use of a self-attention mechanism, the
transformers are capable of differentiating the significance of
each part from the input sequence, leading to state-of-the-art
results in NLP applications. In recent years, transformers have
been adapted for use with time series data in applications such
as fault detection [14], and therefore, they present a promising
opportunity for advancing HAR.

Consequently, this paper proposes a personalized hybrid
model, combining a Transformer with a Convolutional Neu-
ral Network (Trans-CNN), for the recognition of upper and
lower body movements. The Convolutional Neural Network
(CNN) model brings the ability to capture high-level spatial–
temporal features, while the transformer contributes by effi-
ciently capturing temporal dependencies. Personalization was
added to customize the model for the target person, and
the personalized model was examined on upper and lower
body movements. The main contributions of this work are (i)
combining transformer and CNN for HAR and personalizing
the model for new participants, (ii) examining the ability of the
HAR models to distinguish between various upper and lower
body movements, and (iii) demonstrating that Trans-CNN is
capable of recognizing upper and lower body activities.

The paper is organized as follows: Section II provides
background information and discusses related work, Section
III presents the methodology, Section IV explains the exper-
iments, and Section V discusses results. Finally, Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

This section first provides an overview of CNNs and trans-
formers. Then, recent work in sensor-based human activity

recognition and personalization approaches for HAR are re-
viewed.

A. Convolutional Neural Network and Transformer
Convolutional Neural Networks are a type of neural network

optimized for processing grid-like data, such as images [15].
CNNs are able to learn features or internal representations
of the input data (feature learning) automatically. In addition,
CNNs can process one-dimensional (1D) sequence data, such
as data from a gyroscope or an accelerometer. For sequence
classification tasks, CNNs have the advantage of learning
features directly from raw time series data, eliminating the
need for manually engineering features [16].

A CNN model consists of three types of layers: convolution,
pooling, and fully connected. The convolution layer has a
matrix of learnable parameters, known as kernels or filters,
which move across the input and perform the dot product with
the input matrix to create the activation maps. The pooling
layer reduces the computational complexity and dimension-
ality by downsampling. The data can pass through multiple
convolution and pooling layer pairs as required before going
to the fully connected layers. The final output of the pooling
layer is then flattened such that all of the nodes of the fully
connected layers are connected to the previous layer. The
predictions are produced in the last classification layer. Lastly,
backpropagation with gradient descent updates the kernels and
weights in the convolution and fully connected layers.

The transformer model is an alternative approach for pro-
cessing sequential data, such as those present in NLP tasks
[13]. The self-attention mechanism allows the transformer
to understand the relationships between words and to learn
the importance of each word in the sequence, making it a
dominant technique in NLP. As seen in Figure 1, the model
consists of an encoder and a decoder, each one including multi-
head self-attention, normalization, and feed-forward layers. In
contrast to the encoder, the decoder starts with a masked multi-
head attention layer, which ensures that the prediction for the
current position only depends on the outputs of the previous
positions, allowing the transformer to adopt a teacher-forcing
learning procedure. Finally, a linear transformation with a
softmax function creates the output probabilities.

In many NLP applications, transformers have been out-
performing Recurrent Neural Networks (RNNs) and other
techniques in terms of accuracy and effectiveness [17]. In
recent years, models that have been successful in NLP have
also shown success in time series data [14]; therefore, the
transformer model has great potential in HAR.

B. Related Work in Sensor-based HAR
In the past, HAR required custom hardware to collect sensor

data. In comparison to other wearable devices, smartphones
and smartwatches have the advantage of non-intrusive and
convenient data collection [18]. This section presents an
overview of ML approaches for sensor-based, smartphone and
smartwatch HAR.

He et al. [19] used the discrete cosine transform, Principal
Component Analysis (PCA), and Support Vector Machine
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Fig. 1. Original transformer model for NLP tasks [13] consists of
an encoder and a decoder, each one relying on the self-attention
mechanism.

(SVM) to recognize human activity from a tri-axial accelerom-
eter sensor. The participants had the tri-axial accelerometer
sensor in their pocket and performed four activities for a
minute each: walking, jumping, standing still, and running.
After the data were collected, the discrete cosine transform
extracted features from the data while PCA reduced the
dimension of the features. The SVM model performed well
for different activities. Also, a study by Alsheikh et al. [20]
examined the differences between traditional models and deep
models for HAR using tri-axial accelerometers. They used
three datasets, which involved lower body activities, and
proved that deep learning models are more accurate than
traditional models, such as K-nearest neighbors and logistic
regression.

Several studies investigated deep learning models, including
CNNs and Long Short-Term Memory (LSTM). Chen et al.
[21] placed a single-axis accelerometer on an individual to
investigate HAR with CNN. The individuals performed seven
common activities and the CNN-based HAR model achieved
an accuracy of 93.8% without any feature extraction methods.
A study by Pienaar et al. [22] looked at LSTM deep neural
architecture for HAR. They used raw sensor data, and the
network was capable of detecting all activities with an accu-
racy of 94%. Another study by Hendry et al. [23] employed a
CNN model to take a closer look at the relationship between a
dancer’s training time and the dancer’s pain. Dancing involves
a lot of training such as jumping and landing, which can
cause injuries such as foot/ankle, knee, and lower back pain
if performed incorrectly. The authors proposed a CNN-based
model with six ActiGraph Link wearable sensors, and their
experiments showed that the approach can accurately detect

different movements (jumping and lifting the leg).
Staczkiewicz et al. [24] reviewed over 100 articles to

determine whether smartphone sensors were suitable for HAR,
and found that smartphones are well-suited for such research
in the health sciences. A study by Ronao et al. [25] looked
into using CNN and a smartphone for HAR. In their study, the
participants held a smartphone in their hand while performing
the following activities: standing, walking, going upstairs,
going downstairs, and running. For moving activities, CNN
was impressively accurate and achieved a performance of
94.79% on the test set of raw sensor data.

Mekruksavanich et al. [26] examined the benefits of using a
hybrid of LSTM and CNN for HAR. The participants carried
a smartphone and a smartwatch and performed 18 activities
of daily living. All of the models had their hyperparameters
tuned with Bayesian optimization. The hybrid deep learning
model outperformed other baseline models (only CNN and
only LSTM) with an accuracy of 96.2%.

Luptáková et al. [27] took a closer look at adapting the
transformer model for HAR. They used data from internal
sensors (accelerometer and gyroscope) from smartphones. The
activities considered in their study involved mainly lower body
movements. The study concluded that the transformer model
could identify the difference between the 18 activities with an
accuracy of 99.2%.

Wang et al. [28] proposed a deep multi-feature extraction
framework for recognizing human activities. Two feature ex-
traction layers were used: the Channel and Spatial Attention
Feature Extraction Layer (CSAFEL) and the Temporal At-
tention Feature Extraction Layer (TAFEL). CSAFEL, com-
prised of the convolutional block attention module and the
residual network (ResNet-18), extracts channel and spatial
features, while TAFEL, consisting of a bidirectional gated
recurrent unit and self-attention mechanism, captures temporal
features. These extracted features are fused and, after the
fully connected layer, a SoftMax layer recognizes human
activities. Their experiments show that the combination of
deep learning neural networks increases the diversity of the
extracted features and improves accuracy.

Similarly, Zhang et al. [29] proposed a combination of
networks, specifically CNN and LSTM (DeepConvLSTM), for
HAR. Their approach integrates a Squeeze and Excitation (SE)
module and group convolutions to improve the extraction of
both temporal and spatial features. The SE module focuses
on recalibrating features by emphasizing informative ones and
suppressing less useful ones, while group convolutions reduce
the model’s parameter count and computational complexity.
The evaluation demonstrated improved accuracy and compu-
tational efficiency.

Finally, Imran et al. [30] integrated CNN and a Bidirectional
Gated Recurrent Unit (BiGRU) to classify human activities
based on inertial sensor data from smartwatches and smart-
phones. Their work emphasizes using the magnitude of three-
dimensional (3D) acceleration for minimizing input space
and enhancing computational efficiency. Evaluation on the
WISDM dataset demonstrated that employing the magnitude
of the signal, rather than the 3D signal itself, yields a reduction
in computational intensity with minimal impact on accuracy.
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While the reviewed studies made great strides towards
accurate HAR, they produce a generic model that exhibits
degradation when used by people not included in model
training. Moreover, these studies focus primarily on lower
body movement while RSI mainly results from repeating upper
body movements. Also, a review of deep learning techniques
for HAR [5] recognized the need to consider more complex
and diverse activities. To address this gap, our work proposes
the personalized Trans-CNN model for HAR by customizing
the generic model for the target participant, and examines the
ability of the model to distinguish upper body movements.

C. Related Work in Personalized Models for HAR

Personalization of the model is necessary since HAR tech-
niques currently rely on user-independent models, which have
difficulties in generalizing to new users. In other words,
generic or user-independent models only work well on the
participants on which they were trained, but their performance
decreases greatly with new participants. The first phase in
creating a personalized model is to create a generic model;
this generic model is trained on many different participants
to create a general understanding of the human motions that
are being detected. Once the generic model is created, the
personalization phase customizes the generic model to a given
participant using different techniques.

Amrani et al. [31] investigated the use of incremental learn-
ing to create personalized models. The procedure included
three phases: data preparation, training the generic model,
and personalizing the model. The models examined included
Learn++, ResNet, and CNN. They found that across all tested
models, the accuracy increased from the generic model to the
personalized model.

A study by Rokni et al. [11] looked at transfer learning
for personalizing a CNN model. They initially trained the
model on a group of participants to create the generic model.
Once the generic model was created, they fixed the weights
in all of the layers except the classification layer and further
trained the model with three labelled instances per activity
from the target participant. The evaluation was carried out
on two different datasets, consisting of common lower body
movements. Across both datasets, the personalized model
achieved higher accuracy as compared to models trained using
the traditional method.

Gholamiangonabadi and Grolinger [12] personalized a
trained CNN for a target participant by selecting the best-
suited model using a small fragment of the target participant’s
data. In their study, the frequency and time-domain features
were extracted with linear and non-linear signal decomposition
techniques. Personalization increased the accuracy from 85.2%
to 91.2%.

The studies discussed in this subsection demonstrated dif-
ferent ways of personalizing ML models; however, they still
focused on lower body movements without examining upper
body movements. Also, our Trans-CNN technique takes ad-
vantage of transformers to improve the quality of the model.

III. METHODOLOGY

This paper proposes a personalized Trans-CNN model, a
combination of a transformer and CNN, for detection of upper
and lower body movements. The selection of the transformer
is due to its self-attention mechanism that enables learning
to focus on different segments of the input sequence [14].
Meanwhile, the CNN model was chosen for its exceptional
generalization capabilities, feature extraction abilities, and
recent accomplishments in HAR [32].

Figure 2 presents the overview of the complete process,
while the remainder of this section provides details on the
three main components: data preparation, model structuring,
and model training.

A. Data Preparation

Data preparation is the process of transforming the raw data
into data that can be used for ML algorithms, helping the ML
model make better predictions. Here, data preparation consists
of applying a sliding window technique and normalization.

In activity recognition, the sliding window technique is
a widely employed technique to segment accelerometer or
gyroscope data [33]. With this technique, sensor data are
partitioned into fixed time slots [34]. The sliding window
technique transforms time series data into data windows of
w×f size, where w is the number of time steps, and f is the
number of features. The first window starts at the beginning
of the data and has a size of w × f . The window then slides
s time steps to create the next window, and so on. In other
words, the sliding window technique is applied to help the
model capture time dependencies.

After the sliding window technique, a standardization pro-
cess scales data to have a mean of 0 and a standard deviation
of 1. Standardization was selected to normalize the features
because, in contrast to min–max normalization, this technique
is not sensitive to outliers. Features are scaled as follows:

z =
x− α

σ
(1)

where x is the original feature value, α is the mean and σ is
the standard deviation of the features, and z is the normalized
value. Note that the normalization is carried out on the per-
subject level.

As seen from Figure 2, the sliding window technique
was applied first, followed by the separation of subjects:
one subject (Subject x) was reserved for personalization and
testing, while the remaining M − 1 subjects were used for
training. Data from M − 1 subjects underwent normalization
before being passed to the Model Structuring component for
the training of generic deep learning models. On the other
hand, data from Subject x underwent another split into two
portions, D1 and D2. The split was 1

3 of each class in D1,
and the remaining 2

3 in D2. Model Training used D1 to
personalize the model by further training the model, and D2
to assess the performance of each model. Each part, D1 and
D2, underwent normalization separately. For D1, the mean
and standard deviation were calculated with D1 data, and then
Equation 1 was applied. Normalization for D2 was carried
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Fig. 2. The process of creating personalized ML models for HAR involves three main components: data preparation, model structuring, and model
training. The same process is followed for each model: CNN, transformer, and Trans-CNN.

out with the mean and standard deviation calculated on D1 to
avoid data leakage. Additional details on data preparation for
the dataset used in the evaluation are provided in Section IV.

B. Model Structuring
The three models, CNN, transformer, and Trans-CNN, were

all examined for their potential use as personalized models
for HAR. While this section described the models, the tuned
hyperparameters for each of the models are provided in Table
I, Section IV.

1) CNN Structure: The CNN structure consists of different
layers as shown in Figure 3. The input layer is followed
by the convolutional block, which contains a convolutional
layer, a max pooling layer, and a dropout layer. For CNN
models, convolutional blocks are commonly stacked to ensure
that the model has a hierarchical decomposition of the input.
The convolutional layers have weights/kernels that are trained,
while the max pooling layers reduce the dimensions of the
feature maps. The dropout layer minimizes overfitting and
the generalization error. After the last convolutional block,
a flattening layer transforms the current output into a one-
dimensional vector. Next, three fully connected layers were
added to the CNN model to help interpret the features that
were learned in convolutional blocks. The output of the last
fully connected layer goes to the output layer. The output layer,
which is a fully connected layer, outputs the predictions using
softmax as the activation function.

2) Transformer Structure: The modified transformer archi-
tecture for HAR can be seen in Figure 4. While the orig-
inal transformer consists of an encoder and decoder, here,
only the encoder is used in order to learn latent semantic
representations and temporal dependencies. The traditional
transformer commonly used in NLP consists of an encoder
and a decoder. The encoder’s role is to understand and capture
temporal relationships within the input data while the decoder
leverages the information provided by the encoder to generate
the output sequence, such as a sentence in language translation
and text generation. In HAR, data from sensors inherently
contain temporal information, i.e., samples recorded over time,
and spatial information such as multiple features recorded by

Fig. 3. The CNN model structure consists of three convolutional blocks
followed by flattening and fully connected layers.

the same or different sensors; for example, an accelerometer
records x, y, and z acceleration over time. Therefore, the
input to the transformer is a multi-feature time series f × w,
as prepared with the sliding window technique, where f is
the number of features and w is the number of time steps in
the sliding window. The encoder learns to extract and inter-
pret temporal and spatial relationships from sensor readings,
providing information for activity classification. The decoder
is not necessary for HAR, as the nature of the classification
task differs greatly from typical NLP tasks, such as translation
or text generation, which involve generating sequences from
representations provided by the encoder. In HAR, the encoder
extracts information from multi-feature temporal data, and
subsequently, fully connected layers can be used for the final
classification.

The modified architecture starts with an input layer fol-
lowed by two stacked encoder blocks, each one consisting of
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Fig. 4. The transformer model structure consists of two encoder blocks,
followed by global average pooling, fully connected, and dropout layers.

normalization, multi head attention, dropout, normalization,
fully connected, dropout, and fully connected layers, as seen
in Figure 4. Following the mapping of the input to a higher
dimensional space by the encoder blocks, a global average
pooling layer is employed. Next, a fully connected layer,
similar to the one in the CNN model, serves as a buffer from
the learned features to the predictions. The output of the fully
connected layer is passed to a dropout layer, which is added to
help reduce overfitting. Lastly, the dropout layer is connected
to a fully connected layer, which uses the softmax function
as an activation function for predictions.

3) Trans-CNN Structure: Trans-CNN is a hybrid model
specifically designed for HAR in order to capitalize on the
advantages of both models. CNN models have the ability
to capture high-level spatial–temporal features, while trans-
formers are efficient at capturing latent semantics and global
dependencies [35]. By combing the two models, the Trans-
CNN structure contains the major components of both models:
the encoder block and the convolutional block.

The hybrid structure starts with an input layer, as seen in
Figure 5. Similar to the transformer model structure, Trans-
CNN has encoder blocks after the input layer. The output from
the last encoder block is the input to the first convolutional
block. Similar to the CNN model structure (Figure 3), in the
convolutional block, after each convolutional layer, there is a
max pooling layer. Unlike the CNN model structure, there is
no dropout layer after the max pooling layer. The dropout layer
was omitted since the encoders have two dropout layers inside
of them. Next, the output from the convolutional block goes
to a global average pooling layer. Similar to the transformer
structure, only one fully connected layer follows the global
average pooling layer. Lastly, a dropout layer and output layer
generate the network output.

C. Model Training

After determining the structure of the three models, the
models were trained. In traditional ML model training for

Fig. 5. The proposed hybrid Trans-CNN model structure consists of
encoder and convolutional blocks followed by global average pooling,
fully connected, and dropout layers.

HAR, some of the data from each participant are in the training
dataset. However, when this traditional model is used with new
participants, the performance of this model decreases, despite
the fact that they work well for participants on which they were
previously trained [32]. The decrease in performance with
new participants comes from the diversity in humans. People
can differ in body size, gender, age, and other physiological
properties, which leads to the same activity being carried out
by two participants in two different ways. As a result, the
model cannot be easily adapted to new participants without
retraining. In order to address this problem, ML models can be
personalized to a particular participant; here, personalization
involves learning how a particular participant moves. The
creation of the personalized models was split into two parts:
creating a general model and then personalizing that model to
a certain participant; therefore, the model training consisted of
two phases: the Generalization Phase, and the Personalization
Phase.

1) Generalization Phase: The Generalization Phase con-
sisted of training the three models, CNN, transformer, and
Trans-CNN, as generic models. For a given dataset with M
participants, the generic model was created by training the
model using data from all M − 1 participants (excluding the
target participant). This procedure was repeated with each of
the M participants as the target. After training, the models
became general models for human motion that provide a broad
understanding of movement patterns in all participants but are
less precise when it comes to a specific target participant.

2) Personalization Phase: Personalization provides a way
to achieve better results for a particular participant. An in-
dividual’s movement can be more easily detected when the
model is personalized to that individual. Other studies such
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as Wu et al. [36] have successfully used transfer learning to
personalize models. One way of performing transfer learning
involves transferring the weights from the generic model to
a new model that will be personalized. Here, CNN, trans-
former, and Trans-CNN are used to create the generic models,
and these generic models provide the initial weights for the
personalized model. Next, all of the layers are frozen except
for the classification layer (last layer) to make sure that the
knowledge gained from the other participants is preserved.
Freezing layers during training prevents their weights from
being modified; hence, the knowledge inside the frozen layers
is untouched. Since the latter layers are typically learning task-
specific features, the classification layer is the only layer that
is not frozen. As described in Subsection III-A, 1

3 of each class
makes the D1 dataset, which is used to train the models after
the layers are frozen. During this training, only the weights of
the classification layer change, to help improve the precision
of the model for the target participant. The remaining 2

3 of the
data from the target participant makes the D2 dataset, which
is used to test each model. The complete process is repeated
M times for each of the M participants acting as the target.

IV. EVALUATION

In order to evaluate the proposed model, and to compare
it to standard models, this section introduces the dataset and
experiments.

A. Dataset
Several datasets [37], [38] are available for HAR; how-

ever, these datasets contain only lower body movements, and
therefore are not suitable for this study, as the goal is to
examine the detection of lower and upper body movements.
Therefore, the WISDM 2019 [39] open-source dataset was
chosen for evaluation, since it contains both upper and lower
body movement data.

The data in this dataset have been collected using both a
smartphone in the participant’s pocket and a smartwatch on
their dominant hand. Each device has a built-in gyroscope
and accelerometer, which were used to collect data from the
participants’ movements while carrying out various activities.
The data were collected from 51 participants who performed
18 different activities, including walking, sitting, and eating,
for a period of three minutes for each activity. Three readings
were collected from each sensor: the phone gyroscope, the
phone accelerometer, the watch gyroscope, and the watch
accelerometer. The three readings collected by each sensor are
x, y, and z axis coordinates; therefore, a total of 12 readings
(2 devices × sensors × 3 axes = 12) were available. The label
for each activity was identified by a letter from A–S (no ‘N’)
and each sensor collected the data at a rate of 20 Hz.

B. Experiments
The dataset was processed according to the methodology

described in Section III. This section provides details of the
data preparation as applied to the WISDM dataset, together
with the model tuning process for each CNN, transformer,
and Trans-CNN.

1) Data Preparation: Of 51 participants, 12 did not have
recordings from all of the sensors for all 18 activities. For
example, Participant 1607 had 18 activities recorded using the
watch and only 17 using the phone, while Participant 1642
had recordings for only 16 activities. Those 12 participants
were removed from the dataset, leaving 39 participants for the
analysis presented herein.

The width of the window was chosen to be 10 seconds,
since a human can carry out the activities present in the
dataset multiple times in that time period. The data were
sampled at a rate of 20 Hz; therefore, the width of the
window was 200 samples. Since there were 12 features in this
dataset, the dimension of the window was 12×200. A 75%
overlap was chosen, which indicates that the window moved
50 time steps each time it slid. After the sliding window, the
standardization method was applied to all of the participants’
features separately.

2) Model Structuring: The three ML models (CNN, Trans-
former, and Trans-CNN) discussed in Section III-B were
examined with respect to their use as personalized models for
HAR. For the three models, the hyperparameters, parameters
that are selected before the model is trained, were tuned using
grid search with 5-fold cross-validation. Since the dataset is
balanced, accuracy was chosen as the performance metric to
select the hyperparameters.

Table I shows the hyperparameters that were tuned for each
of the three models, together with the hyperparameter values
that were considered in the grid search. The hyperparameter
values that were selected with the grid search are shown
in the ’Selected’ column. For the kernel sizes, for example
[3,3,3], the first number represents the kernel size for the first
convolutional layer, the second number is for the second layer
and the last number is for the third layer.

3) Model Training: The Generalization Phase involved train-
ing with data from all 38 participants (removing the 39th, the
target participant) with the three models: CNN, transformer,
and Trans-CNN. For training the CNN model, 150 epochs
were used, as that was sufficient for the algorithm to con-
verge. For both the transformer and Trans-CNN model, 100
epochs were sufficient. During the Personalization Phase, the
algorithms converged after 100 epochs for all three types of
models. D2 ( 23 of the target data) was used after each phase to
evaluate each model with different data: all movement data,
only upper body, and only lower body. For all participants,
both phases were conducted with each of the three models.

The algorithms were implemented in Python with the Keras
and TensorFlow deep learning libraries. The experiments were
performed on a computer with Windows 10 OS, Intel(R)
Core(TM) i9 CPU, 32 GB RAM, and an NVIDIA GeForce
RTX 2070 graphics card.

V. RESULTS

The results are presented in three parts considering all
movements, upper body movements, and lower body move-
ments. For each part, comparison between generic and per-
sonalized models is conducted first. Next, the three generic
models, CNN, transformer, and Trans-CNN are compared, and
finally, the three personalized models are compared.
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TABLE I
HYPERPARAMETER TUNING FOR CNN, TRANSFORMER, AND

TRANS-CNN MODELS.

Hyperparameters Considered Selected
CNN Dropout Rate 0.2, 0.25, 0.3 0.25

Filter Sizes 32, 64, 128 64
Kernel Sizes [3, 3, 3], [5, 5, 5], [3, 5, 11]

[11, 11, 11], [3, 5, 11]
Optimizer Adam, SGD Adam

Transformer Dropout Rate 0.2, 0.25, 0.3 0.25
Number of Heads 1, 2, 4, 8 4
Head Size 16, 32, 64 32
Number of Neurons 512, 1024, 2048 1024

Trans-CNN Dropout Rate 0.2, 0.25, 0.3 0.2
Filter Sizes 32, 64, 128 128
Kernel Sizes [3,3,3], [5,5,5], [3, 5, 11]

[11,11,11], [3,5,11]
Optimizer Adam, SGD Adam
Number of Neurons 512, 1024, 2048 2048

Note: For the kernel sizes, for example [3,3,3], the first number represents the
kernel size for the first convolutional layer, the second number is for the second
layer and the last number is for the third layer.

A. All Movements
In the evaluation of all movements, all of the activities were

included, regardless of whether the activities were related to
upper or lower body movements.

1) Comparison of Generic and Personalized Models for All
Movements: In order to compare the results of generic and
personalized models, the analysis focuses on accuracy as the
dataset is balanced; nevertheless, precision, recall, and F1
scores are also reported. To determine if there was a statisti-
cally significant difference between the models, statistical tests
were conducted.

Table II shows the average accuracy, precision, recall, and
F1 scores, with corresponding standard deviations calculated
across all participants for generic and personalized models,
for each of the three ML models. The generic Trans-CNN
model achieved an accuracy of 69.6%, which is the highest
average value among generic models; the transformer and
CNN achieved accuracies of 49.2% and 41.2%, respectively.
Similarly, in terms of precision, recall, and F1 score, Trans-
CNN also achieved better results than the remaining models.
Note that recall is equivalent to accuracy because this is a
balanced dataset. These results suggest that Trans-CNN is able
to take advantage of CNN and transformer models to capture
generic patterns better.

On the other hand, all personalized models performed much
better, with the accuracy in the low 90%. While all three
models greatly benefited from the personalization, the CNN
model benefited the most, achieving the highest accuracy of
94.1%. The remaining metrics – precision, recall, and F1
score – exhibit the same pattern, with CNN achieving the best
values.

To examine if the performance difference between the
models is statistically significant, a Shapiro–Wilk test was
conducted first to determine whether the data followed a nor-
mal distribution. Since personalized models were not normally
distributed, the Mann-Whitney (MW) test was used to compare
the generic and personalized models. Figures 6, 7, and 8
show the box plots of the generic and personalized CNN,
Transformer, and Trans-CNN. The MW test p values for all
CNN (3.075e−14), transformer (4.189e−14), and Trans-CNN

TABLE II
ALL MOVEMENTS: AVERAGE ACCURACY, PRECISION, RECALL, AND F1

SCORE, EXPRESSED AS PERCENTAGES WITH CORRESPONDING

STANDARD DEVIATIONS, ACROSS ALL PARTICIPANTS FOR EACH OF THE

THREE MODELS.
CNN Transformer Trans-CNN

Accuracy
Generic Model 41.2±8.9% 49.2±15.1% 69.6±15.1%
Personalized Model 94.1±4.7% 92.1±5.4% 92.4±4.8%

Precision
Generic Model 46.3±10.3% 48.4±16.4% 70.5±15.1%
Personalized Model 94.8±4.2% 93.3±4.6% 93.1±4.6%

Recall
Generic Model 41.2±8.9% 49.2±15.1% 69.6±15.1%
Personalized Model 94.1±4.7% 92.1±5.4% 92.4±4.8%

F1-Score
Generic Model 37.6±8.9% 45.5±15.7% 67.3±15.7%
Personalized Model 93.8±4.9% 91.6±5.7% 92.0±5.1%

(7.206e − 13) models were less than 0.05, meaning that the
difference between generic and personalized models is statis-
tically significant for each of the three models. Consequently,
we can conclude that the personalization improves the generic
model irrelevant of the ML technique. Note that ’∗’ in the
figures indicates that the difference between the methods is
statistically significant.

2) Comparison of Generic Models for All Movements: Next,
the generic models were compared, and statistical tests were
employed to find whether the difference among generic models
is significant. The Kruskal-Wallis test was chosen because the
comparison is done among three models and the data from the
generic Trans-CNN model are nonparametric. Figure 9 shows
the performance metric for all three generic models. Since the
resulting p value (3.74e − 11) is under 0.05, the differences
between the groups are statistically significant. To determine
where the difference was between the models, a Dunn test with
Bonferroni adjusted p value was performed. The p value for
(Trans-CNN, CNN) pair was 4.24e− 11 and for (Trans-CNN,
transformer) pair was 7.42e− 06. Since both values were less
than the significant level 0.05, it can be concluded that the
Trans-CNN performs better than the other two models. The
CNN model and the transformer model were not statistically
different (p value of 0.122).

3) Comparison of Personalized Models for All Movements:
While the previous subsection compared the generic model,
this section does the same for the personalized models. Figure
10 shows a comparison of the three personalized models.
Based on the Kruskal-Wallis test, there was no significant
difference between the three personalized models (p = 0.109).

B. Upper Body Movements
The evaluation of upper body movements examined the

performance of the three models on movements involving the
upper body: typing, brushing teeth, eating soup, eating chips,
eating pasta, drinking from a cup, eating a sandwich, playing
catch w/tennis ball, dribbling (basketball), writing, clapping,
and folding clothes. The evaluation process is the same as for
the combined upper and lower body study (Subsection V-A)
and the models are the same, but, here, the analysis is carried
out on test set D2 with removed lower body movements.
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Fig. 6. All movements: comparison of generic and personalized CNN.
Here, ∗ indicates significance at the 5% level.

Fig. 7. All movements: comparison of generic and personalized
transformer. Here, ∗ indicates significance at the 5% level.

Fig. 8. All movements: comparison of generic and personalized Trans-
CNN. Here, ∗ indicates significance at the 5% level.

1) Comparison of Generic and Personalized Models for Up-
per Body Movements: Considering only upper body move-
ments, Table III shows the average performance metrics and
standard deviations across all participants for the generic and
the personalized models. Among the three models, the Trans-
CNN model as a generic model achieved the highest average
value in terms of all four metrics. As with All Movements,
all personalized models performed much better, with CNN
benefiting the most from personalization.

Figure 11 shows the boxplot of the generic and personalized
Trans-CNN models. Boxplots for CNN and transformer are
omitted, as they follow the same pattern. Since the data for
both personalized models were nonparametric, the MW test
was chosen. As the p value (1.985e−12) for this test is below
0.05, there is a statistically significant difference between the
generic and personalized Trans-CNN models.

Comparing to when all movements were evaluated, there is
a drop in accuracy when considering upper body movements

Fig. 9. All movements: comparison of generic models. Here, ∗ indicates
significance at the 5% level.

Fig. 10. All movements: comparison of personalized models.

TABLE III
UPPER BODY MOVEMENTS: AVERAGE ACCURACY, PRECISION, RECALL,
AND F1 SCORE, EXPRESSED AS PERCENTAGES WITH CORRESPONDING

STANDARD DEVIATIONS, ACROSS ALL PARTICIPANTS FOR EACH OF THE

THREE MODELS.
CNN Transformer Trans-CNN

Accuracy
Generic Model 36.6±11.7% 42.5±17.9% 65.9±18.4%
Personalized Model 93.7±5.5% 92.0±6.6% 91.3±6.0%

Precision
Generic Model 47.5±13.2% 48.7±18.1% 72.4±15.1%
Personalized Model 95.5±3.8% 94.5±4.6% 93.5±4.6%

Recall
Generic Model 36.6±11.7% 42.5±17.9% 65.9±18.4%
Personalized Model 93.7±5.5% 92.0±6.6% 91.3±6.0%

F1-Score
Generic Model 35.6±11.5% 41.7±17.3% 65.9±17.7%
Personalized Model 93.7±5.6% 92.2±6.6% 91.4±6.0%

Fig. 11. Upper body movements: comparison of generic and personal-
ized Trans-CNN. Here, ∗ indicates significance at the 5% level.
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Fig. 12. Upper body movements: the confusion matrix displays the results from the generic Trans-CNN model.

Fig. 13. Upper body movements: the confusion matrix displays the results from the personalized Trans-CNN model.

only. To identify which activities were confused with other
activities, Figures 12 and 13 show confusion matrices for
the generic and personalized Trans-CNN, respectively. It can
be observed that the generic model, Figure 12, often con-
fuses many upper body movements with other lower body
movements as well as with upper body movements. For
example, many upper body movements are confused with
Eating Sandwich or Sitting.

In contrast, the personalized Trans-CNN, Figure 13, per-
forms much better and does not confuse upper body move-
ments as often as the generic Trans-CNN model. However,
the personalized Trans-CNN still has difficulties distinguishing
between different eating activities.

2) Comparison of Generic Models for Upper Body Move-
ments: Figure 14 compares the three generic models for upper
body movements. A Kruskal-Wallis test p value of 3.35e− 9
indicates that there is a significant difference between the three
generic models. Next, a Dunn test with Bonferroni adjusted
p value was performed to find where the difference was.

The Trans-CNN model compared to CNN and transformer
achieved p values of 1.18e − 08 and 5.99e − 6, respectively.
Therefore, the Trans-CNN is significantly better than the
remaining two models, as indicated with * in Figure 14.
Results also showed that there is no significant difference
between the generic CNN and the transformer (p = 0.771).

3) Comparison of Personalized Models for Upper Body
Movements: While Figure 14 compared generic models for
upper body movements, Figure 15 compares personalized
models. For these three models, the p value for the Kruskal-
Wallis test was 0.771, meaning that there is no statistically
significant difference among them.

C. Lower Body Movements
The evaluation of lower body movements included six

activities that involve only lower body movements: walking,
jogging, stairs, sitting, standing, and kicking (soccer ball). The
process is the same as in the upper body movements evaluation
but including only the lower body movements in D2.
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Fig. 14. Upper body movements: comparison of the three generic
models. Here, ∗ indicates significance at the 5% level.

Fig. 15. Upper body movements: comparison of the three personalized
models.

1) Comparison of Generic and Personalized Models for
Lower Body Movements: Table IV shows the average perfor-
mance metrics and standard deviations across all participants
for the generic and personalized models, considering only
lower body movements.

Again, generic Trans-CNN with an accuracy of 76.9% was
better than the remaining generic models, while all three
personalized models achieved an accuracy of over 90%. In
terms of precision, recall, and F1 score, generic Trans-CNN
was also better than the remaining generic models. Examining
the normality of the data using the Shapiro-Wilk test, showed
that the generic models follow the normal distribution while
the other models do not. Therefore, the MW test was used to
compare between generic and personalized models for each of
the three algorithms. The test results confirmed that the differ-
ence between generic and personalized models are significant:
comparison of the generic and personalized CNN models had a
p value of 3.02e−14, for generic and personalized transformer
the p value was 3.587e − 12, and, finally, the p value was
2.06e− 8 for Trans-CNN.

Figure 16 shows the boxplot for the generic and per-
sonalized Trans-CNN models, while the remaining two are
omitted as they follow the same pattern. The accuracy of the
generic Trans-CNN model was 76.9%, while the personalized
Trans-CNN model achieved around 92.9%, and the p value
(2.061e − 08) for the MW test confirmed that the difference
is significant.

2) Comparison of Generic Models for Lower Body Move-
ments: Figure 17 compares the three generic models for lower
body movements. A Kruskal-Wallis test with a p value of
8e− 11, showed that there was a significant difference within
the group. Again, as when evaluating all movements and lower

TABLE IV
LOWER BODY MOVEMENTS: AVERAGE ACCURACY, PRECISION, RECALL,
AND F1 SCORE, EXPRESSED AS PERCENTAGES WITH CORRESPONDING

STANDARD DEVIATIONS, ACROSS ALL PARTICIPANTS FOR EACH OF THE

THREE MODELS.
CNN Transformer Trans-CNN

Accuracy
Generic Model 50.4±10.9% 62.8±17.6% 76.9±13.0%
Personalized Model 93.5±7.6% 92.7±7.3% 92.9±8.0%

Precision
Generic Model 62.9±12.4% 73.3±17.5% 84.7±11.7%
Personalized Model 97.2±4.4% 97.0±4.0% 97.1±3.9%

Recall
Generic Model 50.4±10.9% 62.8.2±17.6% 76.9±13.0%
Personalized Model 93.5±7.6% 92.7±7.3% 92.9±8.0%

F1-Score
Generic Model 49.4±11.0% 63.5±18.1% 77.8±13.0%
Personalized Model 94.3±7.0% 93.9±6.2% 94.1±6.8%

body movements, a Dunn test with a Bonferroni adjusted p
value confirmed that the Trans-CNN model outperformed the
CNN (p = 2.76e−11) and transformer (p = 1.58e−03) models.
With lower body movements, there was also a significant
difference between the CNN and the transformer models (p =
0.00241) with the transformer model achieving better accuracy
than CNN.

3) Comparison of Personalized Models for Lower Body
Movements: Finally, Figure 18 compares the personalized
models for lower body movements. Based on the Kruskal-
Wallis test, there was no significant difference between the
three models since the p value of 0.743 was over 0.05. Thus,
all three models perform similarly on lower body movements.

VI. DISCUSSION

In this study, combined data (both upper and lower move-
ments) were used to train the model, since the activity labels
in a real-world application are unknown beforehand. The
same models were evaluated with all movements, upper body
movements, and lower body movements. When evaluating
all movements, Table II demonstrated the value of person-
alization, since the performance metric increased for all three
models: for example, from the 40s to the 90s for the CNN
model. The same trend can be seen for the upper (Table III)
and lower (Table IV) body movements. The accuracy increased
for all three models when personalization was applied.

For the generic models, the Trans-CNN model outperformed
the other two models in each of the three analyses, as seen in
Figures 9, 17, and 14. Statistical tests confirmed that the results
from the generic Trans-CNN are significantly better than the
remaining two generic models. These results show that the
Trans-CNN is capable of providing better generic models than
the CNN model, which has been the dominant HAR model in
recent years.

Figures 10, 15, and 18 show that after personalization the
three models achieved an accuracy in the 90s for all three
analyses. Moreover, there was no statistical difference between
the three models. The CNN and transformer models benefited
more from the personalization than Trans-CNN. Based on this
finding, any of the three models can be used for personalizing
the models.

All generic models had a harder time distinguishing upper
body movement, as observed from the drop in accuracy in
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Fig. 16. Lower body movements: comparison of generic and personal-
ized Trans-CNN. Here, ∗ indicates significance at the 5% level.

Fig. 17. Lower body movements: comparison of the three generic
models. Here, ∗ indicates significance at the 5% level.

Fig. 18. Lower body movements: comparison of the three personalized
models.

Table Tables III compared to II and IV. As seen from the
same tables, when models are personalized, the accuracy of
detecting lower body movements comes closer to the accuracy
of all or upper body movements. As long as the model was
personalized, the model performed similarly well with any
type of data, irrelevant of the base model, CNN, transformer,
or Trans-CNN.

VII. CONCLUSION

This paper proposed a hybrid ML method, Trans-CNN,
combining a transformer and CNN, for recognition of human
activities, including both lower and upper body movements.
CNN brings the strengths of spatial–temporal modelling,
while the transformer enhances temporal-dependency mod-
elling through self-attention. The personalization was added
to customize the generic model to the target person. In
contrast to other studies, the behaviour of the models on
upper and lower body movements was examined. Experiments
using the WISDM data show that the proposed Trans-CNN

achieves much better generic model accuracy results than
the transformer or CNN alone, demonstrating the benefits of
merging the two techniques. Personalization results in much
better models for all three, CNN, transformer, and Trans-
CNN, and after the personalization, all three models achieve
similar accuracy. Moreover, after personalization, the accuracy
of detecting upper body movements becomes closer to the
accuracy of detecting all movements. Examining upper body
movements showed that occasionally those movements are
confused with lower body movements, but mostly, various
eating and drinking activities are confused.

While this study presents steps toward recognition of upper
and lower body movements, it is important to recognize the
challenges. The scarcity of datasets that include both upper
and lower body movements, together with the limited diversity
of upper body movements in existing datasets, limit research
progress in this domain. The practical use of personalized
models requires obtaining some data from the target person,
which necessitates the implementation of data acquisition and
labeling on the wearable device. Moreover, continuous data
acquisition and monitoring will be needed to adapt the model
to the changes in the participants’ movement over time.

Consequently, as new datasets become available, future
work will evaluate the presented approaches with different data
sets and with data from different wearable sensors instead of
smartphones and watches from the WISDM dataset. Moreover,
the minimal amount of data needed from the target participant
for personalization will be explored, the scalability of the
training for a large number of participants will be investigated,
and the continuous adaptation of the model will be examined.
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