
CHASE: Component High Availability-Aware
Scheduler in Cloud Computing Environment

Manar Jammal
ECE Department

Western University

London ON, Canada

mjammal@uwo.ca

Ali Kanso
Ericsson Research

Ericsson

Montreal Canada

ali.kanso@ericsson.com

Abdallah Shami
ECE Department

Western University

London ON, Canada

ashami2@uwo.ca

Abstract—Cloud computing promises flexible integration of the
compute capabilities for on-demand access through the concept
of virtualization. However, uncertainties are raised regarding
the high availability of the cloud-hosted applications. High
availability is a crucial requirement for multi-tier applications
providing business services for a broad range of enterprises.
This paper proposes a novel component high availability-aware
scheduling technique, CHASE, which maximizes the availability
of applications without violating service level agreements with the
end-users. Using CHASE, prior criticality analysis is conducted
on applications to schedule them based on their impact on
their execution environment and business functionality. This
paper presents the advantages and shortcomings of CHASE
compared to an optimal solution, OpenStack Nova scheduler,
high availability-agnostic, and redundancy-agnostic schedulers.
The evaluation results demonstrate that the proposed solution
improves the availability of the scheduled components compared
to the latter schedulers. CHASE prototype is also defined for
runtime scheduling in OpenStack environment.

Index Terms—High availability, applications, components, vir-
tual machines, outage tolerance, scheduling algorithms, recovery
time, criticality, OpenStack, filters.

I. INTRODUCTION

Cloud computing (CC) aims at transforming the data centers’

(DCs) resources into virtual services, where tenants can access

anytime and anywhere on a pay-per-use basis. CC promises

flexible integration of the compute capabilities for on-demand

access through the concept of virtualization [1] [2]. Using

this concept, a cohesive coupling between the cloud provider’s

infrastructure and the cloud tenant’s requirements is achieved

using virtual machines (VMs) mappings [3]. VMs are used

to manage software services and allocate resources for them

while hiding the complexity from end-users. However, un-

certainties are raised regarding the high availability (HA) of

cloud-hosted applications.

HA is a crucial requirement for multi-tier applications pro-

viding services for a broad range of business enterprises.

Planned and unplanned outages can cause failure of 80% of

critical applications [4]. According to [5], outages in DCs

have tremendous financial costs varying between $38,969

and $1,017,746 per organization. With these complexities, an

HA-aware plan that leverages the risks of applications’ or

hardware’s outage, upgrade, and maintenance is necessary.

This plan should consider different factors that affect the

application’s deployment in a cloud environment and the

business continuity. Therefore, it is important to develop an

HA-aware scheduler for the cloud tenants’ applications. This

scheduler should implement different patterns and approaches

that deploy redundancy models and failover solutions. Single

points of failure caused at the level of VM, server, rack,

or DC can be eliminated by distributing the deployment

of the application’s components across multiple availability

zones. However, if this placement does not consider the other

functional requirements constraining the interdependencies

between different application’s components, it can jeopardize

the application’s stability and availability.

In our previous work, a mixed integer linear programming

(MILP) model is developed as an optimal solution for compo-

nents’ scheduling in small-scale network [6]. However, this

paper follows a more pragmatic approach, where CHASE,

component HA-aware scheduler, is proposed. Using CHASE,

the availability of applications is attained while considering

capacity and delay requirements, applications’ criticality, in-

terdependencies, and redundancies. Also, this paper consid-

ers different failure scopes and introduces the application’s

criticality concept to the proposed approach. To achieve this,

an analysis is performed to give critical components higher

scheduling priorities than standard ones. The HA-aware sched-

uler evaluates component’s availability in terms of its mean

time to failure (MTTF), mean time to repair (MTTR), and

recovery time. The HA-aware scheduler is compared to the

MILP model and OpenStack Nova scheduler in a small data

center network [6] [7]. As for large networks, it is compared

to greedy HA-agnostic and redundancy-agnostic schedulers.

Evaluation results show that the proposed solution improves

the component’s availability while satisfying the delay and

capacity requirements.

In our previous work, the cloud provider’s resources and

the user’s applications were modelled as a unified modeling

language (UML) class diagram [6]. This paper puts this model

into practice as the basis for our model driven approach to

automatically transform the model information into an HA-

aware scheduling technique and design its prototype in an

OpenStack environment.

This paper is organized as follows. Section II describes the

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.70

477

cloud-application UML model. Section III defines the HA-

aware deployment problem and the proposed solution. Section

IV describes the simulation environment and the results of

this work. CHASE-OpenStack implementation is discussed

in Section V. Finally, the related work and conclusion are

presented in Sections VI and VII.

II. HA-AWARE DEPLOYMENT MODELLING

At the infrastructure as a service (IaaS) level, the cloud

provider may offer a certain level of availability for the VMs

assigned to the tenants. However, this does not guarantee the

HA of the applications deployed in these VMs. For instance,

Amazon EC2 has offered recently 3 nines of availability for

their infrastructure, which allows several hours of downtime

per year [8]. Moreover, the cloud provider is not responsible

for the monitory losses caused by the outage. Hence, ensuring

the HA of the services becomes a joined responsibility be-

tween the cloud provider and user. The provider should offer

the VM placement that accounts for the requirements of the

tenants’ application. As for the cloud tenants, they have to

deploy their applications in an HA manner, where redundant

standby components can take over the workload when a VM

or a server fails. To illustrate this point, we consider the

example of a multi-tier HA Web-server application consisting

of three component types: the front-end has the HTTP servers,

which handle static user requests and forward dynamic ones

to the App servers that dynamically generate HTML content.

The users’ information is stored in the back-end databases

(DBs). Fig. 1 illustrates a potential HA-aware deployment

of our application example. At the front-end, multiple active

(stateless) HTTP servers are deployed on VM1 and VM2.

They share the requests’ load in such a way that if one fails,

the other would serve its workload. Most likely, this will incur

a performance degradation. The (stateful) App server has a

(2+1) redundancy model with one standby backing up the two

active ones. At the back-end, one active database serves all the

requests, and it is backed up by one standby. The functional

dependency among the different component types is clearly

visible.

The notion of a computational path is defined as the path that

a user’s request must follow through a chain of dependent

components until its successful completion. For instance,

in order to process a dynamic request, at least one active

HTTP server, App server, and database must be healthy. The

components of each type are deployed in a redundant manner

forming a redundancy group. Upon failure, each component

can have a different impact on the global service depending

on how many active replicas it has.

The cloud can be modelled in terms of the cloud tenant’s

applications and the cloud provider’s infrastructure deployed

in geographically distributed DCs housing various physical

servers. We believe that a HA-aware scheduling in the cloud

should consider details of both the applications and the

cloud infrastructure. Therefore, the configurations of the cloud

infrastructure and applications are described in the UML

Fig. 1: Example of an application deployment in the cloud.

class diagram shown in Fig. 2 [6]. This diagram models

the interactions among many classes working together and

provides information required for scheduling the applications

in cloud environment. Once the relationships are extracted

from the existing diagram, they are translated into a java code.

At runtime, the classes are instantiated to give the scheduler

objects representing domain classes. Then CHASE performs

the scheduling based on an instance of this UML model.

A. Cloud Architecture
The cloud can aggregate a set of geographically distributed

DCs. Each DC has its own MTTF, MTTR, and recovery time.

The failure of the entire DC is mainly attributed to four factors:

a natural disaster causing a complete outage, a prolonged

power outage that may cause a switch over to other sites, a

human error causing a network interruption and consequently

service outage such as Dynamic Host Configuration Protocol

(DHCP) requests flooding, and finally a distributed denial of

service (DDoS). In each DC, there exists a set of servers

residing on different racks with different MTTF and MTTR.

A rack’s failure is typically caused by the failure of its power

distribution unit or the failure of the top of the rack (ToP)

switches that disrupt the rack connectivity. Similarly, each

server {S} has its own MTTF, MTTR, recovery time, and

available resources such as CPU and memory.

This architecture can divide the inter-DCs into latency zones

and the intra-DCs into latency and capacity (CPU and mem-

ory) zones. The inter-latency zone (D4) can place the re-

quested applications in any physical server in the cloud if the

other constraints are satisfied. The intra-latency zone can place

the applications either within a data center (D3), within a rack

(D2), within a server (D1), or within a VM (D0).

B. Application Architecture
Each application is composed of at least one component {C},
which can be configured in one application. Each component

belongs to one redundancy group that defines the number

of active and standby components. Also, it belongs to a

specific component type that defines component’s resources’

consumption, its functional dependencies, failure types, and

scopes.

Two types of dependency are defined; the sponsoring depen-

dency such as the one between the App server and the DB

478

Fig. 2: CHASE UML Model [6].

and the synchronization dependency between components of

the same type such as the one between the active and standby

replicas of the DB. The delay tolerance, outage tolerance,

and bandwidth define the interdependency and redundancy

relations between different component types.

C. Cloud-Application Integration
The proposed HA-aware scheduler searches for hosts that max-

imize the availability of components and their corresponding

application. Whenever the host is scheduled, a VM is mapped

to it and to the corresponding component. Therefore, each

component can reside on at most one VM. Also, each VM

can be hosed on one server. A failover group is defined

as the set of interdependent VMs (different VMs hosting

dependent components). It defines a set of VMs that must

failover together in case of unforeseen failure events [9].

III. CHASE: DESIGN AND IMPLEMENTATION

The tenant’s application is specified as a partial instance of

the UML class diagram, where the cloud tenant describes

the components forming the application and their require-

ments/constraints. CHASE performs a criticality analysis to

start scheduling components with the highest priority. Then it

applies a sequence of filters that starts by sifting out the servers

that do not satisfy the functional requirements and then selects

the ones that maximize the availability constraints. A brief

description of the functional and availability requirements is

provided below.

1) Capacity Requirements: They ensure that the selected

servers have enough resources (CPU in terms of number of

cores and memory in terms of MB) to satisfy the computation

demands of the components.

2) Network Delay Requirements: They ensure that the

selected servers are at a distance that allows components to

interact without interruptions.

3) High Availability Requirements: They are divided into

the following constraints:

a) Availability Constraint: It is satisfied by finding the

server with high MTTF and low MTTR.

b) Co-location Constraint: It is applied to dependent com-

ponents that cannot tolerate the recovery time of their

sponsor(s). Since the MTTF of a component is inversely

proportional to its failure rate λ, the dependent compo-

nents and their sponsors should be placed in the same

server.

c) Anti-location Constraint: It ensures that the components

should be placed on different servers. It is applied

to redundant components and dependent ones that can

tolerate the absence of their sponsors.

A. Criticality Analysis
Performing criticality analysis to applications is a significant

step in any emergency or disaster recovery plan. For instance,

the contingency plan in Health Insurance Portability and

Accountability Act (HIPAA) requires to “assess the relative

criticality of specific applications and data...” because they

are not equally critical [10]. This is also applicable in HA-

aware scheduling, where the highly critical components are

given the priority to reside on more reliable servers. In the

example shown in Fig. 1, there is only one active instance of

the DB; therefore, its failure affects all the incoming requests.

This gives the DB a higher impact where the failure of one

instance of DB server affects half the requests.

Each component has its own MTTF and MTTR, and therefore

479

Fig. 3: CHASE Flowchart.

its failure can cause either an outage (o) of the application or

a degradation (d) of the service. The criticality value escalates

when the failure scope of the component affects not only

itself but also its execution environment and its dependent

component(s). Generally, front-end (FE) components cause a

service outage as expressed in (1). If a dependent component

(DeC) can tolerate the outage of its sponsor (SC) until its

recovery, then the failure of SC causes service degradation as

shown in (2). Conversely, the failure of the sponsor causes not

only a service degradation but also an outage as expressed in

(3).

criticalityFE = (MTTF ×MTTR)o (1)

criticalityd = (MTTF ×MTTR)d (2)

criticalitydo =
∑
DeC

(Degradation+Outage) (3)

where

{
Degradation = (MTTFSC ×OTDeC)d
Outage = (MTTFSC × (OTDeC −MTTRSC))o

The redundancy relation influences the criticality calculation.

It adds a weight parameter to the criticality value, which

changes according to the number of active and standby in-

stances of the used redundancy model. To finalize the crit-

icality calculation, an impact equation is used to determine

the relation between the outage, degradation, and weighted

fallouts.

B. CHASE: Component HA-aware Scheduler
CHASE is based on a combination of greedy and pruning

algorithms and aims to produce locally optimal results. It is

divided into different sub-algorithms as shown in Fig. 3. Each

sub-algorithm deals with a specific set of constraints such as

capacity, delay, and availability constraints.

1) Capacity Algorithm: Once the most critical application’s

component is selected, CHASE executes the capacity sub-

algorithm. This algorithm traverses the cloud and finds the

Fig. 4: Availability Algorithm.

servers that satisfy the computation resources needed by

the requested components. In D0/D1 case, the application’s

components should reside on the same VM/server. Therefore,

this algorithm searches for a server that can host them all. If

no candidate host is found, the algorithm tries to divide the

application into multiple computation paths (if allowed). Then

it executes again the search for server(s) to host at least one

computational path of the application. Similarly, the algorithm

might repeat the above computational path analysis in case the

co-location constraints are satisfied for the other delay zones.

2) Delay Tolerance Algorithm: The set of candidate servers

satisfying the capacity constraints are fed into the delay sub-

algorithm. In this algorithm, a pruning procedure is executed

to discard the servers that violate the delay constraint. The

delay and availability sub-algorithms are applied to each delay

zone. For instance, in D3 case, this algorithm searches for

servers in the same DC to host the component’s applications

including the redundant ones. If there is not enough servers,

the algorithm deals with separate computation paths instead

of the whole application.

3) Availability Algorithm: After the delay pruning, commu-

nication performance is maintained between various compo-

nents. At this point, an availability baseline must be achieved.

This feature is captured by the availability sub-algorithm

shown in Fig. 4. In this algorithm, the servers undergo another

stage of pruning that tends to maximize the availability of each

component while finding the locally optimal deployment.

Before searching for the server with the highest availability,

this algorithm executes the co-location and anti-location algo-

rithms depending on the relation between the tolerance time of

a dependent component and the recovery time of its sponsor.

If the co-location constraint is valid, the capacity algorithm

must be executed again to find a set of servers that satisfies the

computational demands of a group of components. Then this

set is fed into the MaxAvailabilityServer algorithm to select

480

Fig. 5: Downtime of Components in Small-Scale Network.

the server with the highest availability (high MTTF and low

MTTR). If the capacity, delay, and availability algorithms in-

dicate that all components can be placed on servers satisfying

all the above constraints, the redundancy algorithm is executed

to generate placements for the redundant components based on

the anti-location constraints.

At this stage, the algorithm has found a host for each com-

ponent. However, a mapping should be generated among the

selected server, the component, and a VM. CHASE executes

a mapping sub-algorithm that creates VMs for the scheduled

components and then maps them to the chosen hosts.

IV. CHASE EVALUATION

To assess the proposed CHASE scheduler, small and large-

scale evaluations are conducted using different tiered appli-

cations and infrastructure data sets. The MTTF, MTTR, and

recovery time are the measures used to quantify the downtime

and availability of components.

A. Small-Scale Network Setup
The MILP model developed in our previous work [6], Open-

Stack Nova scheduler [7], and CHASE are evaluated on a

small-scale network. The same network setup in [6] is used

to evaluate CHASE. This setup consists of 20 components,

2 DCs, 4 racks, and 50 servers. Each server is configured

to have 20 to 30 GB of memory and 16 to 32 CPU cores.

VMs are configured in small, medium, and large sizes using

OpenStack options [11]. As for the availability measures, they

are generated according to distributions shown in Table 1

[12] [13]. To evaluate the interdependencies and redundancies

between components, the proposed approach is evaluated on

two Web applications. Each application consists of three active

databases, two active and two standby App servers, and three

active HTTP servers. As for the interdependency relation, App

Attributes Distribution Characteristics
(hours)

MTTFS−C Exponential μ=2000

MTTRS−C Normal μ=3,0.05; σ=1,0.016

RecoveryT imeS−C Normal
μ=0.05,0.08;
σ=0.016,0.002

ToleranceT imeC Exponential μ=10

TABLE I: Evaluation Parameters

server depends on a database server and sponsors an HTTP

server. The results of the small-scale evaluation are shown

below.

1) CHASE vs MILP: Fig. 5 compares CHASE with the MILP

model for different delay zones. There is a small gap between

the MILP and CHASE for all the delay zones. This gap

increases as the solution space expands, and it does not exceed

10%.

2) CHASE vs Nova Scheduler: Fig. 5 also compares CHASE

to the core and RAM filters in OpenStack Nova scheduler

for different delay zones. These types of filters select hosts

that can satisfy the resources of components regardless of

any other functionality or availability constraints. Therefore,

Nova scheduler generates the same results for all delay zones.

The Nova scheduler supports certain HA features, such as

the notions of availability zones, affinity, and anti-affinity

filters. However, it does not support the delay, criticality, and

interdependency analysis.

Using CHASE, the downtime of component is reduced by

48%, 34%, and 31% for D3, D2, and D0/D1 zones respec-

tively. Since D4 zone distributes the components between

DCs, the downtime is reduced by 94% using CHASE. In D4

zone, if the host, its rack, or DC fails, the hosted component

becomes inoperative until it is replaced by its redundant [6].

481

Fig. 6: Downtime of Components in Large-Scale Network.

However, in D3 zone for instance, the failure of DC affects the

hosted components and their redundant ones. Consequently,

end-users should wait an execution of a repair policy for the

DC or a migration plan for the components.

B. Large Scale Network
Since finding the optimal placement is an NP-hard problem,

the MILP solution is only feasible for small networks [14].

Therefore, CHASE is proposed to remedy this issue and

schedule cloud hosted applications with a more pragmatic

approach. In order to evaluate its scalability, a large-scale

network is conducted on CHASE for different delay zones.

This network consists of 100 components, 4 DCs, 16 racks,

and 1000 servers. The availability measures follow the same

statistical distribution shown in Table 1. For the large network,

CHASE is evaluated on ten Web applications.

For precision measurement, multiple data sets are generated

with the same mean values for the MTTF and MTTR of the

component and server shown in Table 1. The confidence level

exceeds 95%, which reflects the stability of the results as the

scheduling procedure is repeated for different delay zones.The

results of the large-scale evaluation are shown below.

1) CHASE vs Greedy HA-Agnostic Scheduler: Fig. 6 compares

the component’s downtime between CHASE and the greedy

HA-agnostic scheduler for different delay zones. The greedy

algorithm searches for hosts that satisfy the resources and

network delay constraints for components. It considers neither

redundancy models, anti-location, co-location, nor availability

constraints. Therefore, the gap between both algorithms is

large and due to the difference in the placement criterias.

CHASE filters the servers according to functionality and

availability constraints whereas the greedy algorithm sched-

ules a component on the first available server that satisfies

its resources’ demands. Although all components are hosted

Availability
Improvement (%) D0-D1 D2 D3 D4

CHASE 99.981 99.981 99.984 99.99

RAS 99.27 99.21 99.1 99.07

TABLE II: Availability Improvement using CHASE

on the same server in D0/D1 zone, the availability curve

fluctuates because each component type has different MTTF,

MTTR, and recovery time. For the other delay zones, the

solution space expands, and consequently the gap between

CHASE and the greedy algorithm increases. By comparing the

graphs, it can be concluded that the D4 delay zone generates

the lowest downtime per year compared to D3, D2, D1,

and D0. The difference between D4 and D2 exceeds 85%.

Therefore, expanding the solution space and minimizing the

delay requirements maximize the application’s availability.

2) CHASE vs Redundancy-Agnostic Scheduler: To show the

effect of redundancy on the availability analysis, CHASE is

compared to a redundancy-agnostic scheduler (RAS) based

on the distributions shown in Table 1. The latter searches

for the host that satisfies functionality and interdependency

constraints. However, it ignores redundancy models and their

effect on the availability analysis. Using CHASE, up to four

nines availability can be achieved whereas the redundancy-

agnostic scheduler could not exceed two nines availability as

shown in Table 2. Using RAS, when a failure occurs, the whole

application might become inoperative until a repair plan is

applied. Contrary, an inoperative component in CHASE fails

over to its redundant component to serve its workload.

Although the component’s availability is improved with the

increase in the number of available servers, the time complex-

ity of generating the scheduling plan also increases linearly

with the number of components.

482

Fig. 7: Architecture of CHASE.

V. PROTOTYPE IMPLEMENTATION

CHASE prototype is designed to perform scheduling in a real

cloud setting. The scheduler communicates with the Open-

Stack cloud management system, where certain capabilities of

the existing filters of OpenStack can be used to complement

with CHASE HA filters [15]. The scheduling tool is composed

of several complementary modules as shown in Fig. 7. The I/O

module is responsible for the information exchange. It com-

municates with the graphical user interface (GUI) to collect the

application information specified by the user. The GUI is used

to populate an instance of the cloud-application UML model.

It also communicates with the Nova DB of OpenStack, which

has been extended to support the notions of DCs and racks.

The existing DB table for the hosts is also extended to include

the failure and recovery information. The I/O module is also

responsible for triggering the CHASE algorithms, collecting

the scheduling results, and applying them using the Nova

command-line interface (CLI) commands.

Fig. 8 illustrates the CHASE GUI. The GUI contains multiple

panels that provide different views of the application’s com-

ponents and the cloud infrastructure. On the right hand side,

the user specifies the applications, their redundancy groups,

their components as well as their component types and failure

types. The user then schedules the applications. This triggers

the scheduling algorithm to define the VM placement. Then

the I/O module updates the Nova DB and the GUI’s left hand

side tree, which shows where the components are scheduled.

CHASE is implemented as an Eclipse plug-in project. We

use Papyrus to define CHASE UML model. Papyrus is an

EMF-based Eclipse plug-in, which offers advanced support of

UML modeling [16]. Since Papyrus has limited support for

the graphical modeling and Domain Specific Language (DSL)

representation, the proposed implementation uses the Java

Swing library to define the GUI. The scheduling algorithms

are implemented in Java.

VI. RELATED WORK

Application-aware VM scheduling is receiving a great at-

tention in the recent research studies. In [17], the authors

develop a placement technique to maximize the availability

Fig. 8: A screenshot of the CHASE GUI.

of applications while satisfying other quality of service (QoS)

constraints. The authors divide their solution into search and fit

algorithms. The search algorithm finds candidate placements

that satisfy delay constraints while maintaining an acceptable

reliability level for each application. As for the fit algorithm, it

finds the actual placement of the application’s component us-

ing CPU capacity. Despite the similarities with the objectives

of this study, the authors do not consider the interdependencies

between the VMs and their associated impact on the availabil-

ity of the applications hosted by the scheduled VMs.

In [18], the authors address deployment of cloud applications

that improves their availability and performance. Although the

experimental evaluation shows good results, but the suggested

availability analysis is based only on the failures between task

executors. However, the authors do not consider the effect of

the redundancy models, the dependency relations, and their

associated attributes such as the tolerance and recovery times

on the applications’ availability. Other attempts that address

availability of VM deployments are proposed in [19] [20].

While [19] shows the effect of redundancy on availability

analysis, both papers have overlooked the effect of dependency

models on that analysis.

In [21], the authors propose a VM placement technique that

generates redundant configurations to avoid VM outages dur-

ing host’s failures. They aim to generate a minimum number of

VMs that could maintain the service performance and quality.

Despite the importance of redundancy model on the HA of ap-

plications, the authors ignore the effect of delay tolerance, in-

terdependency models, MTTF, MTTR, recovery, and tolerance

times on maintaining certain fault-tolerance level. Both [22]

and [23] propose a failover plan during the placement problem

using different approach schemes. While [22] exploits the co-

location and anti-location constraints between interdependent

applications, their capacity, and security constraints to provide

a pseudo-optimal failover plan for an application, [23] assigns

each VM a resiliency level that enables it to relocate to a new

host if its current host fails. It also uses the anti-location and

co-location constraints between VMs to create a backup for

them against any failure.

In [24], the authors propose a load balancing-aware scheduling

algorithm of VM resources. Using a scheduler controller and

483

a resource monitor, the algorithm collects historical data and

system state. This data is loaded into the genetic algorithm

to generate a mapping solution for each VM while minimiz-

ing the issues of imbalance load distribution and migration

cost. Similarly, [25] develops a dynamic and integrated load

balancing scheduling algorithm (DAIRS) for cloud DCs. The

authors provide an integrated measurement for the imbalance

level of a DC as well as its servers. Using the latter values,

they propose load-balancing aware VM scheduling and migra-

tion algorithms. Although the authors maximize the resource

utilization, they ignore the availability constraints and failure

impact on the VM scheduling and service continuity.

Each of the previous literatures has considered different strate-

gies to maximize applications’ availability. Some approaches

consider redundancy and failover solutions while others look

at MTTF and recovery time of components. However, this

paper proposes a novel scheduling technique that looks into

the interdependencies and redundancies between application’s

components, their failure scopes, their communication delay

tolerance, and resource utilization requirements. It examines

not only MTTF to measure the component’s downtime and

consequently its availability, but the analysis is based on the

MTTR, recovery, and outage tolerance times as well.

VII. CONCLUSION

With the broad range of business applications, high availability

is gaining a great attention in enterprises and information

technology (IT) sector. In order to deploy highly available

applications, a solid HA-aware scheduling strategy that con-

siders functionality requirements, real-time interdependencies,

and redundancies between applications is needed. Attaining an

always-on and always-available service was the main objective

of the proposed HA-aware scheduler. The algorithm was

evaluated for different delay zones and different communi-

cation relations between components. CHASE prototype was

designed to schedule components in real cloud environment

while communicating with OpenStack. In future work, the pro-

posed approach will be extended to capture dynamic scaling

and migration features to compensate any sudden changes in

the application’s behavior or infrastructure characteristics.

ACKNOWLEDGMENT

This work is supported by the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC-STPGP 447230)

and Ericsson Research. The authors would like to thank Philip

Kurowski for his contribution in the prototype implementation.

REFERENCES

[1] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of
the Art, Challenges and Implementation in Next Generation Mobile
Networks (vEPC),” IEEE Network, vol. 28, pp. 18-26, December 2014.

[2] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software Defined
Networking: State of the art and research challenges,” Elsevier Computer
Networks, vol. 72, pp. 74-98, October 2014.

[3] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource
allocation in a network-based cloud computing environment: design
challenges,” IEEE Communications Magazine, vol. 51, pp. 46-52,
November 2013.

[4] HP, “The High Availability challenge: 24x7 in a Microsoft environment,”
http://h71028.www7.hp.com/enterprise/downloads/4AA0-3147ENA.pdf,
November 2010. [February 5, 2015]

[5] NetMagic, “Data center outages impact, causes, costs, and how
to mitigate,” http://www.netmagicsolutions.com/uploads/pdf/resources/
whitepapers/WP Datacenter-Outages.pdf, 2013. [February 10, 2015]

[6] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Opti-
mization Digest for Applications Deployment in Cloud,” IEEE Interna-
tional Conference on Communications (ICC), June 8-12, 2015.

[7] OpenStack, “Filter Scheduler,” http://docs.openstack.org/developer/
cinder/devref/filter scheduler.html#costs-and-weights, Februray 2013.
[January 18, 2015]

[8] Amazon EC2, “Amazon EC2 Service Level Agreement,” http://aws.
amazon.com/ec2/sla/, 2014. [January 18, 2015]

[9] P. Bodik, F. Armando, et al., “Characterizing, modeling, and generating
workload spikes for stateful services,” 1st ACM symposium on Cloud
computing, pp. 241-252, June 10-11, 2010.

[10] HIPAA, “Contingency Plan: Applications and Data
Criticality Analysis-What to Do and How to Do It,”
http://www.hipaa.com/2009/04/contingency-plan-applications-and-
data-criticality-analysis-what-to-do-and-how-to-do-it/, 2014. [February
9, 2015]

[11] OpenStack, “OpenStack Operations Guide,” http://docs.openstack.org/
openstack-ops/openstack-ops-manual.pdf, 2015. [February 17, 2015]

[12] Reliability HotWire, “Availability and the Different Ways to Calculate
It,” http://www.weibull.com/hotwire/issue79/relbasics79.htm, September
2007. [December 20, 2014]

[13] EventHelix, “System Reliability and Availability,”
http://www.eventhelix.com/realtimemantra/faulthandling/system
reliability availability.htm#.VL62B0fF83n, 2014. [January 16, 2015]

[14] O. Kone, C. Artigues, P. Lopez, and M. Mongeau, “Event-based MILP
models for resource-constrained project scheduling problems,” Comput-
ers and Operations Research, vol. 38, pp. 313, January 2011.

[15] OpenStack, “OpenStack Cloud Software,” http://openstack.org. [Febru-
ary 10, 2015]

[16] Papyrus Eclipse Project, https://www.eclipse.org/papyrus/. [February 10,
2015]

[17] G, Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, and C. Pu,
“Performance and availability aware regeneration for cloud based mul-
titier applications,” IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 497-506, June 28-July 1 2010.

[18] J. Li; Q. Lu, et al., “Improving Availability of Cloud-Based Applications
through Deployment Choices,” IEEE Sixth International Conference on
Cloud Computing (CLOUD), pp. 43-50, June 28-July 3 2013.

[19] Q. Lu, X. Xu, et al., “Incorporating Uncertainty into In-Cloud Appli-
cation Deployment Decisions for Availability,” IEEE Sixth International
Conference on Cloud Computing (CLOUD), pp. 454-461, June 28-July
3 2013.

[20] W. Wenting, C. Haopeng, and C. Xi, “An Availability-Aware Virtual Ma-
chine Placement Approach for Dynamic Scaling of Cloud Applications,”
9th International Conference on Ubiquitous Intelligence & Computing
Conference on Autonomic & Trusted Computing (UIC/ATC), pp. 509-
516, September 4-7, 2012.

[21] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” IEEE Network
Operations and Management Symposium (NOMS), pp. 32-39, April 19-
23, 2010.

[22] R.E. Harper, R. Kyung, et al., “DynaPlan: Resource placement for
application-level clustering,” IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops (DSN-W), pp. 271-
277, June 27-30, 2011.

[23] E. Bin, O. Biran, et al., “Guaranteeing High Availability Goals for Vir-
tual Machine Placement,” 31st International Conference on Distributed
Computing Systems (ICDCS), pp. 700-709, June 20-24, 2011.

[24] H. Jinhua, G. Jianhua Gu, S. Guofei, and Z. Tianhai, “A scheduling
strategy on load balancing of virtual machine resources in cloud com-
puting environment,” IEEE third International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), pp. 89-96, Decem-
ber 18-20, 2010.

[25] T. Wenhong, Z. Yong, Z. Yuanliang, and X. Minxian, “A dynamic and
integrated load-balancing scheduling algorithm for Cloud datacenters,”
IEEE International Conference on Cloud Computing and Intelligence
Systems (CCIS), pp. 311-315, September 15-17, 2011.

484

