
1

Software-Defined Perimeter (SDP): State of the Art
Secure Solution for Modern Networks

Abdallah Moubayed∗, Ahmed Refaey ∗†, and Abdallah Shami∗
∗ Western University, London, Ontario, Canada; e-mails: {amoubaye, abdallah.shami, ahusse7}@uwo.ca

† Manhattan College, Riverdale, New York, USA; e-mail: {ahmed.hussein}@manhattan.edu

Abstract—The boom in evolution and adoption of new technologies,
architecture, and paradigms such as cloud computing, software
defined networking (SDN), and network function virtualization
(NFV) in recent years has led to a new set of security and privacy
challenges and concerns. These challenges/concerns include proper
authentication, access control, data privacy, and data integrity among
others. Software defined perimeter (SDP) has been proposed as a
security model/framework to protect modern networks in a dynamic
manner. This framework follows a need-to-know model where a
device’s identity is first verified and authenticated before gaining
access to the application infrastructure. In this paper, a brief
discussion of the security and privacy challenges/concerns facing
modern cloud-based networks is presented along with some of
the related work from the literature. Moreover, the SDP concept,
architecture, possible implementations, and challenges are described.
Furthermore, an SDP-based framework adopting a client-gateway
architecture is proposed with its performance being evaluated using
a virtualized network testbed for an internal enterprise scenario
as a use case. To the best of our knowledge, no previous work
provided a quantitative performance evaluation of such a framework.
Performance evaluation results show that the SDP-secured network is
resilient to denial of service attacks and port scanning attacks despite
needing longer initial connection setup time. The achieved results ce-
ment the promising potential of SDP as a security model/framework
that can dynamically protect current and future networks.

Index Terms—Cloud Computing, Security, Privacy, Software-
Defined Perimeter (SDP), Internal Enterprise

I. INTRODUCTION

Recent years have seen a boom in the evolution and the pro-
liferation of technology in our daily lives. The number of smart-
phones, mobile-connected wireless devices, social networks, and
sensors being used has grown substantially due to the emergence
of the concept of Internet of Things (IoT). It was predicted by
the National Cable & Telecommunications Association (NCTA)
that the number of IoT devices will reach approximately 50
billion devices by the year 2020 [1]. To handle the increasing
number of devices, several technologies and paradigms have been
proposed. At the forefront of these technologies and paradigms
are cloud computing, software-defined networking (SDN), and
network function virtualization (NFV). Cloud computing has
become a main component of the current technology landscape
with more than 93% of organizations using cloud services in
some shape or form [2]. As the cornerstone of Internet-of-things
(IoT)-based infrastructures, cloud computing has advanced a wide
variety of applications such as patient monitoring and smart cities
[3]. Projections performed by Microsoft predicts that the market
size of cloud computing will reach 156.4 billion dollars by the

Corresponding author: Dr. Abdallah Shami
email: abdallah.shami@uwo.ca

year 2020 [4]. Similarly, the global market for SDN and NFV is
expected to reach 54 billion dollars by the year 2022 [5,6].

However, the adoption of such technologies and architectures
has presented a new set of challenges, in particular those having
to do with security. For example, McAfee reported that 52%
of the respondents surveyed for their report indicated that they
tracked a malware infection to a Software-as-a-service (SaaS)
application [2]. Moreover, it was reported that more than 6.1
million DDoS campaigns occurred in 2017 with both the Mel-
bourne IT registrar attack and DreamHost attack being the most
prominent [7]. Related challenges include having inadequate trust
and authentication models, vulnerability to jamming and sniffing
attacks, possibility of data loss or modification, and the possi-
bility of information leakage [8]–[10]. Furthermore, other notable
challenges facing such deployments are their vulnerability to man-
in-the middle attacks, having inadequate access control measures,
and the possibility of network intrusion [9,11]. As a result, an
exploration into new security measures to protect cloud-based
networks has commenced. This is because traditional perimeter
defense techniques have proven to be inadequate in protecting the
infrastructure from network attacks [12,13].

A promising solution is a Software-defined perimeter (SDP),
the concept proposed by the Cloud Security Alliance (CSA) as
a security model/framework that has the potential to protect net-
works in a dynamic manner [12,13]. This concept was developed
based on the Global Information Grid (GIG) Black Core network
initiative proposed by the Defense Information Systems Agency
(DISA) [14]. This model follows a need-to-know model where
the device’s/application’s identity is first verified and authenticated
before it is granted access to the application infrastructure [12,13].
Essentially, the infrastructure becomes “black”, meaning, it is
undetectable by infrastructures unauthorized to see it [12,13]. This
in turn can help mitigate many network-based attacks such as
server scanning, denial of service, password cracking, man-in-the
middle attacks, and many others [12,13].

In this paper, the security challenges/concerns facing mod-
ern networks are presented. Moreover, the SDP framework- as
a potential solution- is described in more detail in terms of
its concept, architecture, and possible implementations. Also,
the anticipated challenges facing the SDP framework are also
enumerated. Furthermore, an SDP-based framework adopting a
client-gateway architecture is proposed. The performance of the
framework is evaluated using an internal enterprise scenario in
terms of connection setup time and network throughput under
two types of network attacks, namely denial of service attack and
port scanning attack. To the best of our knowledge, no previous
work provides a quantitative performance evaluation of such a



2

Fig. 1: Challenges/Concerns in Modern Networks

framework. Therefore, the contributions of this paper can be
summarized as follows:

• Propose the SDP framework as a potential security solution
for modern networks in terms of its concept, architecture,
and possible implementations.

• Evaluate and analyze the performance of the SDP framework
in an internal enterprise scenario using a virtualized network
testbed.

The remainder of this paper is organized as follows: Section
II discusses the security challenges/concerns and describes the
SDP concept, architecture, and possible applications as a new
proposed solution. Section III then presents some of the challenges
facing the SDP framework. Section IV describes the SDP-based
framework. Section V evaluates the performance of the proposed
SDP client-gateway framework to secure an internal enterprise
network. Lastly, Section VI concludes the paper and presents some
future directions.

II. SOFTWARE DEFINED PERIMETER (SDP)

Despite the many advantages provided by adopting innova-
tive architectures such as both SDN-based architectures and fog
computing-based architectures to enhance the connection between
edge and cloud computing, several challenges/concerns arise in
such architectures [8]–[11]. As shown in Fig. 1, these chal-
lenges/concerns can be divided into three main categories: security
challenges/concerns, privacy challenges/concerns, and availability
challenges/concerns. More specifically, these categories include
challenges such as authentication, access control, data integrity
and privacy, and data availability. This results in added pressure
on providers to offer frameworks and services that address these
challenges. For interested readers, further details are available in
[8]–[11].

Software-defined perimeter (SDP) is a potential solution to
tackle many of the security and privacy challenges facing future
networks. SDP was originally proposed by the Cloud Security
Alliance (CSA) as a security model/framework having a dynamic
ability to protect networks [12,13]. This was part of the Global
Information Grid (GIG) Black Core network initiative proposed by
the DISA agency [14]. It adopts a need-to-know model where the

device’s/application’s identity is granted access to the application
infrastructure upon first being verified and authenticated [12,13].
Due to this selective process, the infrastructure is referred to as
“black”. This is because it cannot be detected by users who are
unauthorized to see it [12,13]. As a result, this can effectively
mitigate many network-based attacks including server scanning,
denial of service, and man-in-the middle attacks among many
others [12,13]. In what follows, the SDP concept, architecture,
and possible implementations are discussed in more details.

A. Concept:

The SDP concept is built on the notion of providing applica-
tion/service owner(s) with the power to deploy perimeter function-
ality as needed to protect their servers. This is done by adopting
logical components in place of any physical appliances. These
components are controlled by the application/service owner(s) and
serve as a protection mechanism. The SDP architecture only pro-
vides access to a client’s device after it verifies and authenticates
its identity. Such an architecture has been adopted by multiple
organizations within the Department of Defense in which servers
of classified networks are hidden behind an access gateway.
The client must first authenticate to this gateway before gaining
visibility and access to the server and its applications/services.
The aim is to incorporate the logical model adopted in classified
networks into the standard workflow (presented in more details in
Section II-B). Hence, the SDP architecture leverages the benefits
of the need-to-know model while simultaneously eliminating the
need for a physical access gateway. The general concept is that
client’s devices/applications are first authenticated and authorized
before creating encrypted connections in real-time to the requested
servers.

The SDP architecture is composed of and relies on five separate
security layers:

1) Single Packet Authentication (SPA): SPA is the cornerstone
of device authentication. The SDP uses this SPA to reject
traffic to it from unauthorized devices. The first packet is
cryptographically sent from the client’s device to the SDP
controller where the device’s authorization is verified before
giving it access. The SPA is then again sent by the device



3

to the gateway to help it determine the authorized device’s
traffic and reject all other traffic.

2) Mutual Transport Layer Security (mTLS): Transport layer
security (TLS) was originally designed to enable device
authentication and confidential communication over the In-
ternet. Despite the fact that the standard offers mutual device
authentication, it has typically only been used to authenticate
servers to clients. However, the SDP utilizes the full power
of the TLS standard to enable mutual two-way cryptographic
authentication.

3) Device Validation (DV): Device validation adds an extra layer
of security by ensuring that the cryptographic key used is held
by the proper device. This is because mTLS only proves that
the key has not expired nor has it been revoked. However,
it cannot prove that it has not been stolen. Therefore, DV
verifies that the device belongs to an authorized user and is
running trusted software.

4) Dynamic Firewalls: In contrast to traditional static firewalls
that can have hundreds or thousands of rules, dynamic fire-
walls have one constant rule which is to deny all connections.
The SDP adopts a dynamic firewall policy at the gateway by
vigorously adding and removing rules to allow authenticated
and authorized users to access the protected applications and
services.

5) Application Binding (AppB): Application binding refers to
the process of forcing authorized applications to use the
encrypted TLS tunnels created by the SDP. This is done
after the device and the user are properly authenticated and
authorized. This ensures that only authorized applications can
communicate through the tunnels while unauthorized ones
are blocked.

These protocols combined make it extremely challenging for
malicious users and attackers to access protected applications and
services. Consequently, the SDP framework can address many of
the aforementioned security, privacy, and availability challenges
including: authentication & trust, access control, data privacy, data
availability, and services availability.

It is worth mentioning that the complexity of this framework
is mainly based on that of the hash function used as part of
the encryption/decryption of the SPA packet since the other four
security layers of the framework already exist. For example, dy-
namic firewalls are used in layer 3. In contrast to traditional static
firewalls deployed in existing systems which can have hundreds
or thousands of rules, dynamic firewalls have one constant rule
which is to deny all connections. The proposed framework adopts
a dynamic firewall policy at the gateway by vigorously adding
and removing rules to allow authenticated and authorized users to
access the protected applications and services. This does not add
to or change the existing system’s complexity.

B. Architecture:

The SDP framework’s architecture consists of three main com-
ponents [12,13]:

a) SDP Controller: The SDP controller is the central ele-
ment in the SDP framework. It is responsible for all the control
messages exchanged by functioning as a trust broker between the
initiating SDP host and backend security controls. This includes
issuing certificates and authenticating devices (both initiating and

accepting hosts). Moreover, it determines the services that each
initiating host is authorized to access in the accepting host.
Furthermore, it helps configure both the SDP initiating host and
accepting host in real time to create the mutual TLS tunnel [12,13].

b) SDP Client/Initiating Host (IH): SDP Initiating Hosts are
the SDP-enabled clients that submit a request to connect to a ser-
vice or application. This request is submitted to the SDP controller
which will authenticate the IH by requesting information about
hardware or software within the IH. Once authentication using
the previously issued certificate, a mutual TLS tunnel is created
that connects the IH to the server or application for which it has
authorization. This helps improve the access control since the IH
only gets access to the server or application after being properly
authenticated [12,13].

c) SDP Accepting Hosts (AH): On the other hand, the
SDP Accepting Host (AH) is the device instructed to accept
authorized services or applications. It is originally set up to reject
all incoming packets and requests from all hosts except the SDP
controller. The SDP host is typically protected by an SDP gateway
which acts as the protector. This gateway is the termination point
for the mutual TLS tunnel from the IH. This is done after the SDP
controller provides the gateway with the verified and authenticated
IH’s IP address and certificates [12,13].

C. Potential Applications:

The SDP architecture can be implemented in several ways
despite the workflow remaining the same. This includes client-
to-gateway, client-to-server, server-to-server, and client-to-server-
to-client; making it suitable for a variety of applications as shown
in what follows.

1) Core Networks:
Despite the appeal of NFV for core networks in terms of

dynamically creating, managing, and adjusting security zones due
to the automated placement of virtualized firewalls and creation
of dedicated software firewalls on-demand, it is prone to several
security vulnerabilities such as resource exhaustion, service hi-
jacking through the self-service portal, and service insertion. For
example, due to the sharing of the physical servers’ resources
among different VMs, severe resource exhaustion can occur that
can negatively impact VM availability. An SDP framework can
tackle this by defining and implementing a VM throttling detection
mechanism by the controller and having it instantly propose a
remedy. Another example is the service hijacking through the
self-service portal. Once again, the SDP proves its vital role in
eliminating this risk by using administrative controls selectively,
based on users’ roles and needs.

2) Mobile Networks:
The emergence of Internet of Things (IoT) and machine-to-

machine (M2M) technologies due to the deployment of a billion-
plus smart connected devices worldwide have positively impacted
businesses. However, the protocols used in IoT raises a real
concern regarding aspects in security. Despite most of these
protocols being designed for wireless sensor networks, they have
had a sudden and unanticipated role in the core of the IoT
solution. Message Queuing Telemetry Transport (MQTT) is a
good example of a viable transport layer for wireless networks
in the IoT era. When the MQTT protocol was designed, its
security was not a priority because it had been typically deployed



4

in secure, back-end networks for application-specific purposes.
Moreover, due to the two-way handshake mechanism adopted,
the protocol is vulnerable to hijacking and man-in-the-middle
attacks. The SPA packet mechanism used in an SDP framework
can replace the username/password login mechanism. Moreover,
the “blackening” of receiving devices is an added security layer to
protect against hackers since they become undetectable to them.
Also, all SPA packets are encrypted and authenticated with an
HMAC signature. This leads to malicious users having to first
steal the SDP credentials to be able to spoof an SPA packet.
The combination of this with the logging of all validated SPA
packets by the SDP gateway creates a broker immune to faked
and replayed SPA packets.

3) Internal Enterprises Networks:
Given the continued adoption of the Bring your own device

(BYOD) concept and the increased number of mobile workers,
the traditional perimeter concept becomes obsolete and uncontrol-
lable. Hence, securing the internal enterprise network became a
tedious task with system administrators having to take aggressive
decisions just to avoid the threats. Virtual private networks (VPN)
have provided secure access to virtual local area networks for
remote users. However, such legacy VPNs were designed for the
1990s networks and thus are obsolete due to their lack of agility in
protecting digital businesses [15]. In contrast, an SDP framework
allows organizations and enterprises to keep cloud resources
dark to unauthorized users. This helps protect against a variety
of attacks including network flood attacks, brute-force attacks,
and TLS vulnerabilities. Hence, by having a “dark net” around
the servers, an SDP framework can facilitate the management
and security of organizations’ cloud resources. Therefore, SDP
can provide an ideal VPN solution for any size organization
as it provides cloud-based controllers, gateways, and up-to-date
software defined security perimeters to deliver secure, dynamic
virtual connectivity.

This work focuses on the internal enterprise case and proposes
an SDP-based framework to protect it. Since the SDP framework
adopts a zero-trust architecture by authenticating and verifying a
host for every session, it can address the potential lateral threat
model often found in such environments. The performance of the
framework is evaluated for both the SDP and non-SDP case to
show the potential of SDP as a security model and alternative to
VPNs for internal enterprise networks.

III. SDP OPEN CHALLENGES

Despite the many advantages that the SDP architecture pro-
vides with respect to protecting against various network security
breaches and attacks, it faces several challenges:

• Possible Network Disruption: Since the SDP architecture
is different than traditional security measures deployed in
networks, integrating a complete SDP solution can lead to
network and infrastructure disruption. This can be problem-
atic due to the size of the services that may be off during
such a disruption.

• Configuration Updates: A second challenge is updating all
the applications and system configurations in such a manner
that they become aware of the SDP. This will allow them to
access the workflow and the secure tunnels created within
the SDP.

Fig. 2: Proposed SDP Framework For Internal Enterprise Network

• Controller Vulnerability: Because the SDP controller has a
major role in the architecture and hence the overall security
of the network, protecting it becomes paramount. Moreover,
given that it is a possible centralized point of failure, it needs
to be made highly available and secured.

IV. PROPOSED FRAMEWORK

As mentioned earlier, the SDP is composed of three main
components: client, gateway and controller. For the purpose of
this work, the SDP architecture proposed and implemented is the
client-gateway architecture as shown in Fig. 2 which can faithfully
describe an internal enterprise network scenario. In this case, the
gateway also acts as the application server and hosts the service
to be accessed. The functions of the three components are as
described below:

• Controller: The controller is the main component of SDP.
It contains the details of the authorized clients and servers,
provides the details of rules to the gateway and controls the
authentication of each component. The controller proposed in
this work makes use of a database for all the above purposes.
The database contains the details of all the hosts involved,
which is then sent to the gateway. It authenticates these hosts
with the help of certificates.

• Gateway: The gateway enforces the rules which prevent
any unauthorized access to the service hidden behind it. By
default, the gateway blocks all traffic. However, once the
controller provides the list of authorized initiating (clients)
and accepting hosts (servers) and the list of services, it sets
up rules which allow a connection to be established between
the two while preventing all other traffic. This includes any
attempt by the authorized hosts to establish a connection to a
service they are not authorized to access. In this work, these
rules are setup using the iptables.

• Client: The client is the machine trying to access a service. In
SDP, the client first connects to the controller and informs it
about the service it wishes to access. Once the verification is
complete, it attempts to connect to the service hidden behind
the gateway. The gateway will allow the connection request
to go through and thus, the client-server data transfer can take



5

place. Ideally, once the connection is established it should not
be reset until specifically requested.

The whole process of SDP, as shown in Fig. 3, involves the
following steps:

1) The gateway initiates a TLS connection to the controller and
sends an SPA packet.

2) The controller verifies the gateway using a certificate present
in the gateway.

3) The controller establishes a mTLS secured connection be-
tween itself and the gateway.

4) The controller then proceeds to send all the information about
the initiating and accepting hosts as well as the authorized
services to the gateway.

5) The client initiates a TLS connection to the controller and
sends its own SPA packet.

6) The controller verifies the client using a certificate present in
the client.

7) The controller establishes a mTLS secured connection be-
tween itself and the client.

8) The client sends another encrypted authentication SPA packet
to the gateway.

9) The packet is decrypted with the keys provided by the
controller.

10) The information in the decrypted packet is then crosschecked
with the information it received from the controller.

11) The gateway sets up the corresponding firewall rules after a
positive crosscheck.

12) The client attempts to connect to the service.
13) The connection is established once the gateway allows the

connection request to pass and data transfer can take place.

V. PERFORMANCE EVALUATION

A. Virtualized Network Testbed Description:

Waverly Labs’ OpenSDP project was used to implement the
proposed framework with the previously discussed components
being programmed using C, Python, and NodeJS. Each component
was set up on a separate virtual machine with a fourth acting as
an unauthorized host.

A mySQL database was implemented in the controller to form
the basis of the list of authorized hosts and services. Within this
database, several tables have been created including: sdpid, ser-
vice, service gateway and sdpid service. The first table contains
the details of each component within the SDP-enabled setup, the
SDP ID assigned to each component, their decryption and HMAC
keys, and timestamps of the last update done on the keys etc. The
second table is used to define the service ID for each service
authorized to be accessible by a host SDP ID while the third
defines the gateway ID which protects a particular service. Finally,
the fourth table specifies the mapping of the service ID to the
protocol and port number of the service. The controller creates a
hash of this information and sends it to the gateway to be used
as a verification mechanism. Once the authentication is complete,
a SSL connection is established, and the keys are updated. These
connections are persistent as long as both sides keep them open.
The controller also informs all gateways about any changes made
in the SDP network and immediately transmits it to them.

On the other hand, the gateway sets up the forwarding rules
for successful transmission of authorized packets by making use

of the iptables. Another available option is firewalled wherein the
gateway makes use of the FireWall KNock OPerator (FWKNOP)
mechanism for packet authorization. Using this mechanism, the
client sends the Single Packet Authorization (SPA) packet, a spe-
cially craft encrypted packet, to the gateway. To authenticate the
packets, the gateway first connects to the controller and downloads
all the necessary information. Note that the firewall’s default rule
is drop-only. Iptables consists of three tables: INPUT, OUTPUT
and FORWARD. Their functions are self-explanatory. FWKNOP
creates another table called FWKNOP INPUT which contains the
details of the source and destination IP of the authorized packet.
It also contains details of the protocol and port number of the
service. The gateway attempts to decode the packet as soon as it
receives it with the keys obtained from the controller. Once the
packet is decoded, it verifies the details such as the SDP ID of the
sending host and the service ID requiring access among others.
Ensuing the verification of the packet, the gateway then creates a
rule in iptables which allows the client to connect to the service.
This rule is present for a limited amount of time (default value of
10s). The established connection is a mutual TLS connection and
persists even after the expiry of the rule. The gateway goes back
to its original state of blocking all packets. As soon as a packet
from an authorized machine arrives, it opens the firewall, allows
the packet to pass through it and then closes the firewall again.

In contrast, the client creating the SPA packet to send it to the
gateway for verification includes the following fields within the
packet:

1) SDP ID
2) Service ID
3) Gateway IP
4) Timestamp
5) Random 16-byte data

The first two fields are used to disclose the clients identity and
inform the gateway of the service it wishes to connect to. The third
field is the specific gateway’s IP address that the client wishes
to establish a connection to. The timestamp, used to verify the
“age” of a packet, is another authentication mechanism of SDP. If
the timestamp of the packet exceeds a pre-determined limit, then
the packet is rejected. This, combined with the random 16-byte
data, is used to ensure that the replay attacks cannot be used on
the network. The gateway establishes rules in itself as soon as it
verifies the SPA packet to allow packets from client to travel to
the destination service. Then the client establishes a connection
to the service and data transfer can take place.

B. Results Analysis & Discussion:

The connection setup time and the overall network throughput
are the two metrics considered when evaluating the performance
of the proposed framework. This is done for both the SDP and
non-SDP scenarios. Moreover, two attacks are simulated, namely
a distributed denial of service (DDOS) attack and a port scanning
attack. The DDoS attack was chosen as it represents a threat to
the data and services availability for modern networks. Similarly,
the port scanning attack represents a threat to the data privacy.
Therefore, these two attacks were considered as they represent
two threats and concerns within modern networks that the SDP
framework aims to address. The results reported are the average
of ten different runs.



6

Fig. 3: Proposed Framework’s Process Workflow

1) Connection Setup Time: The first performance metric con-
sidered is the connection setup time. This metric refers to the time
taken by a client to connect to a service with and without SDP.
In this experiment, the time needed to setup a SSH connection
between the client and the gateway is determined. The results are
shown in Table I. It can be observed that a higher setup time is
needed when adopting SDP. This is expected given the decryption
and verification process of the SPA packet as well as the setup
rules for the firewalls needed before the client connection can
attempt to go through. On the other hand, none of these steps
occur in the non-SDP case, therefore allowing for a significantly
faster connection process.

2) Distributed Denial of Service Attack:
The second performance metric considered is the network

throughput which refers to the measured network speed at the port
where a connection is being established in case of a DDoS attack,
with and without SDP. To simulate the DDoS attack, one VM is
set up as an authorized client, while the other as an unauthorized
client. The unauthorized client runs a software to emulate the
DDoS attack by attempting to establish multiple connections to
the port and hence attempting to consume all of the network
bandwidth available. The experiment involved sending both TCP
and UDP traffic. For the TCP case, the available bandwidth was
kept at 2 Gbps whereas for UDP, the bandwidth was kept at
10Mbps. This is because when using UPD in such a setup, it
is extremely difficult to consume the entire 2 Gbps bandwidth.
The average network throughput results are shown in Table I.

The connection was attempted on port 5000. Ideally, the SDP
is assumed to block all unauthorized traffic and only allow
authorized traffic. This keeps the bandwidth value as the one set
up for the connection. However, this is not the case in practice.
The firewall opens up once it receives an authorized packet to
allow it to pass while also allowing all other traffic through before

TABLE I: Performance Evaluation Results

Criterion Without SDP With SDP
Connection Setup Time 0.09 sec 1.02 sec
Average Network
Throughput

TCP 6.86 Mbps 1.51 Gbps
UDP 1.7 kbps 8.8 Mbps

it closes up again. Hence, the available bandwidth to the client
slightly decreases. However, the results clearly show the impact
of SDP when using both TCP and UDP protocols. When using
TCP, the average throughput without SDP falls to around 0.343%
of the available bandwidth whereas in the case of SDP, it hovers
around 75.5%. Similarly, when using UDP, the average throughput
without SDP falls to around 0.017% while that of the SDP is
around 88% range. This further highlights the fact that SDP works
fairly well in protecting networks from DDoS attacks.

Fig. 4 shows the impact of a DDoS attack on the performance
of the network without SDP by plotting the throughput over time.
It is observed that the data transfer could not happen in one shot
due to the DDoS attack clogging up the network. It is worth noting
that since the attack is being perpetrated from one host, its overall
impact may be quite limited. However, it is enough to disrupt
the data transfer by not allowing the full transfer to take place.
The average throughput during the entire data transfer process
is around 6.86 Mb/s. This is a significant drop from the 2 Gb/s
bandwidth actually available within the network. In contrast, the
positive impact of adopting SDP is highlighted. In this case, the
data transfer was completely successful and the average bandwidth
during the process is 1.51 Gb/s. Since the DDoS attack is running
from a single host, the impact on the bandwidth is minimal. Note
that if the same attack was launched with multiple hosts, the
bandwidth may fall even further. However, it will still be enough
for the application to function normally.



7

Fig. 4: Network Throughput Over Time

3) Port Scanning Attack:
The second attack simulated is the port scanning attack. This

attack involves running a check and listing all the available ports.
Such an attack is an active form of attack, where using a tool can
be used to discover the hosts and services on a network. It can
further be used to execute attacks on specific ports such as port
80 (HTTP) etc. This experiment uses nmap, a free port scanning
utility. Nmap ran from the unauthorized host on the gateway, with
and without SDP. The results of this attack are presented in Figs.
5a and 5b for the non-SDP and SDP scenarios respectively. Note
that the scan ran on ports 1-1000, covering some of the more
important services such as HTTP, FTP, SSH etc.

a: Without SDP

b: With SDP

Fig. 5: Port Scanning Attack Results

It can be clearly seen that without SDP, the scan report
shows that an SSH connection is open and available. In contrast,
SDP gives no information whatsoever about the number of open
ports and the service hosted on them. This enforces the security
of the application and confirms the unavailability of access to
unauthorized clients.

VI. CONCLUSION

This paper described the SDP framework as a potential
solution to the different security challenges/concerns facing mod-
ern networks in terms of its concept, architecture, and possible
applications. Also, the challenges facing the SDP framework
were briefly presented and discussed. Furthermore, an SDP-based
framework adopting a client-gateway architecture was proposed
and its performance was evaluated using an internal enterprise

scenario in terms of connection setup time and network throughput
under two types of network attacks, namely distributed denial
of service attack and port scanning attack. The performance
evaluation of the implemented virtualized network testbed showed
that an SDP-secured network is more resilient to port scanning
and distributed denial of service attacks by not providing any
information and maintaining a high average network throughput
respectively despite needing longer time to initially establish the
connection. These results cement the promising potential of SDP
in protecting current and future networks.

Despite the early promise of SDP, more open research ar-
eas exist. In particular, exploring how to integrate SDP with
other paradigms such as SDN and NFV is essential since these
paradigms will play a significant role in future networks.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Palash Kumar for his
help in the implementation of the proposed framework. His
contributions have been extremely valuable for the completion
of this work.

REFERENCES

[1] National Cable & Telecommunications Association (NCTA),
“Behind The Numbers: Growth in the Internet of Things,”
Mar. 2015. [Online]. Available: http://www.ncta.com/whats-new/
behind-the-numbers-growth-in-the-internet-of-things

[2] McAfee, “Building Trust in a Cloudy Sky: The State of Cloud Adoption
and Security,” Jan. 2017. [Online]. Available: http://www.mcafee.com/us/
solutions/lp/cloud-security-report.html

[3] C. Esposito, A. Castiglione, F. Pop, and K. K. R. Choo, “Challenges of
connecting edge and cloud computing: A security and forensic perspective,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 13–17, Mar. 2017.

[4] Microsoft, “Digital Transformation at Work: Empowering Together,” Mar.
2017.

[5] N. Bannerman, “SDN and NFV Market to be Work 54 $ billion by 2022,”
Aug. 2017.

[6] H. Hawilo, L. Liao, A. Shami, and C.M. Leung, “NFV/SDN-based vEPC
Solution in Hybrid Clouds,” in 2018 IEEE Middle East and North Africa
Communications Conference (MENACOMM), April 2018, pp. 1-6.

[7] A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “DNS Typo-squatting
Domain Detection: A Data Analytics & Machine Learning Based Approach,”
in IEEE Global Communications Conference (GLOBECOM’18), December
2018, pp.1-7.

[8] G. Kulkarni, J. Gambhir, T. Patil, and A. Dongare, “A security aspects in
cloud computing,” in IEEE International Conference on Computer Science
and Automation Engineering (CSAE’12), June 2012, pp. 547–550.

[9] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A
survey,” in International Conference on Wireless Algorithms, Systems, and
Applications (WASA’15). Springer International Publishing, 2015, pp. 685–
695.

[10] R. von Solms and J. van Niekerk, “From information security to
cyber security,” Computers & Security, vol. 38, pp. 97 – 102,
2013, cybercrime in the Digital Economy. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167404813000801

[11] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Federated Conference on Computer Science and
Information Systems (FedCSIS’14), Sep. 2014, pp. 1–8.

[12] Software Defined Perimeter Working Group-Cloud Security Al-
liance (CSA), “Software Defined Perimeter,” Dec. 2013. [On-
line]. Available: http://downloads.cloudsecurityalliance.org/initiatives/sdp/
Software Defined Perimeter.pdf

[13] P. Kumar, A. Moubayed, A. Refaey, A. Shami, and J. Koilpillai,
“Performance Analysis of SDP For Secure Internal Enterprises”, in IEEE
Wireless Communications and Networking Conference (WCNC’19), April
2019.

[14] Department of Defense, “Department of Defense Global Information Grid
Architectural Vision,” Jun. 2007.

[15] SAIFE, “SAIFE Extends the Software Defined Perimeter,”
Jun. 2017. [Online]. Available: https://www.saife.io/press-releases/
saife-extends-software-defined-perimeter/



8

Abdallah Moubayed received his B.E. degree in Electri-
cal Engineering from the Lebanese American University,
Beirut, Lebanon in 2012, his M.Sc. degree in Electrical
Engineering from King Abdullah University of Science
and Technology, Thuwal, Saudi Arabia in 2014, and his
Ph.D. in Electrical & Computer Engineering from the
University of Western Ontario in August 2018. Currently,
he is a Postdoctoral Associate in the Optimized Com-
puting and Communications (OC2) lab at University of
Western Ontario. His research interests include wireless
communication, resource allocation, wireless network

virtualization, performance & optimization modeling, machine learning & data
analytics, computer network security, cloud computing, and e-learning.

Ahmed Refaey received his B.Sc. and M.Sc. degrees
from Alexandria University, Egypt in 2003 and 2005,
respectively; and Ph.D. degree from Laval University,
Quebec, Canada in 2011. Currently, he is an Assistant
Professor at Manhattan College as well as an adjunct
research professor at The University of Western Ontario.
Previously, Dr. Hussein’s positions included: Sr. Embed-
ded Systems Architect, R&D group, Mircom Technolo-
gies Ltd from 2013-2016; and as a Postdoctoral Fellow
at ECE department, The University of Western Ontario
from 2012-2013. His research interests include Adap-

tive Communication Systems and Networks Security, IoT/Emerging Communi-
cations/Computing Technologies and Applications, and Embedded Systems/FPGA
Prototypes Implementation.

Abdallah Shami received his B.E. degree in Electrical
and Computer Engineering from Lebanese University
in 1997 and his Ph.D. degree in Electrical Engineering
from the Graduate School and University Center, City
University of New York, in September 2002. Further, in
September 2002, he joined the Department of Electri-
cal Engineering at Lakehead University, Thunder Bay,
Ontario, Canada, as an Assistant Professor. Since July
2004, he has been at Western University, where he is
currently a Professor and Acting Chair in the Department
of Electrical and Computer Engineering. His current

research interests are in the areas of network optimization, cloud computing, and
wireless networks.



Fig. 1: Challenges/Concerns in Modern Networks



Fig. 2: Proposed SDP Framework For Internal Enterprise Network



Fig. 3: Proposed Framework’s Process Workflow



TABLE I: Performance Evaluation Results

Criterion Without SDP With SDP
Connection Setup Time 0.09 sec 1.02 sec
Average Network
Throughput

TCP 6.86 Mbps 1.51 Gbps
UDP 1.7 kbps 8.8 Mbps



Fig. 4: Network Throughput Over Time



a: Without SDP

b: With SDP

Fig. 5: Port Scanning Attack Results


