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Ethylene is produced in the largest volume among the monomers, and hence, any improvement
in its production process can bring important benefits to both industry and consumers. In the
present paper, an industrial ethylene reactor has been studied with a multiobjective optimization
technique to find a scope for further improvements and to detect a range of optimal solutions.
An industrial reactor unit using ethane as the feedstock was modeled, assuming a detailed free-
radical mechanism for the reaction kinetics coupled with material, energy, and momentum
balances of the reactant-product flow along the reactor. To carry out the multiobjective
optimization for two and three objectives, the elitist nondominated sorting genetic algorithm,
or NSGA-II, was chosen. Instead of a single optimum as in traditional optimization, a broad
range of optimal design and operating conditions depicting tradeoffs of key performance
parameters such as conversion, selectivity and ethylene flow rate was successfully obtained.
The effects of design and operating variables on the optimal solutions are discussed in detail,
and the generated results are compared with industrial data.

1. Introduction

Ethylene monomer is one of the base petrochemicals
that form the building blocks of the petrochemical
industry and is produced in the largest volume among
them. In 2001, the global production of ethylene
amounted to 90.4 million metric tons, valued at an
estimated $60 billion (in U.S. dollars),1 and by 2005, the
annual global production will reach 104 million metric
tons, with an estimated growth rate of 4% per year.2
The bulk of ethylene produced is used in the production
of plastics, primarily polyethylene. Moreover, it is an
ideal base material for many other petrochemicals, as
it is readily available at low cost and high purity and
usually reacts with other low-cost materials, such as
oxygen and water. From the above data, it can be
perceived that even a small improvement in the pro-
cessing of ethylene has the potential of bringing a high-
dividend to the petrochemical industry. This paper
presents a multiobjective optimization study carried out
to find a range of better operating conditions for
improving the performance of ethylene production units
based on ethane feed. This is perhaps the first study
on multiobjective optimization of an ethylene reactor.
The rest of this section briefly reviews ethylene produc-
tion; modeling of an ethylene reactor; and multiobjective
optimization, including the methods used in this study.

Ethylene Production. Ethylene is usually produced
through the steam cracking of feedstocks such as
ethane, naphtha, or gas oil.3 The choice of feedstock is
an important economic decision as it influences other
costs as well. Subject to availability, ethane is probably
the best feedstock, as it has higher yield and selectivity
of ethylene than heavier feedstocks and its processing
is relatively simple, involving lower capital costs. Steam
cracking is an endothermic process leading to the
breaking up of large molecules into smaller ones. The

cracking process is carried out in long tubular reactors,
known as radiant tubes, which are placed vertically in
a large, rectangular gas-fired furnace.4 The furnace
consists of convection and radiation sections (Figure 1),
where the feedstock first enters the convection section
so that the hot stack gas preheats the feed before it
enters the radiation section. Typical inlet temperatures
to the radiant tube range from 500 to 800 °C.4 At an
intermediate point in the convection section, steam is
introduced and is preheated together with the feedstock.
Steam lowers the partial pressure of high-molecular-
mass aromatics, reducing condensation reactions; in
addition, it contributes to the partial removal of coke
in the tubes. The radiant coil is directly heated by the
burners, leading the process gas to the cracking tem-
perature, which ranges from 700 to 900 °C. The tem-
perature at the outlet of the radiant coil typically ranges
from 775 to 885 °C.3 The reactor effluent is quickly
quenched to prevent further reaction; compressed; and
sent to a separation unit for the recovery of ethylene
and other products such as methane, ethane, propane,
propylene, butylenes, and pyrolysis gasoline.
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Figure 1. Simplified sketch of a typical furnace for the steam
cracking of hydrocarbons.

124 Ind. Eng. Chem. Res. 2005, 44, 124-141

10.1021/ie049953m CCC: $30.25 © 2005 American Chemical Society
Published on Web 12/03/2004



Reaction Mechanism and Modeling of Steam
Cracker. The reaction mechanism of steam cracking
of hydrocarbons to form ethylene can be formulated in
different ways, namely, according to overall, molecular,
and free-radical mechanisms, of which the last is the
most detailed and perhaps the most accurate.4 Froment
et al.5,6 proposed molecular schemes approximating the
free-radical nature of ethane cracking, where kinetic
parameters were estimated on the basis of pilot-plant
data. These models are easier to solve because they lead
to a set of nonstiff differential equations, whereas the
free-radical mechanism leads to stiff differential equa-
tions that are difficult to solve.7 Sundaram and Fro-
ment8 developed a free-radical scheme for ethane crack-
ing, where 49 reactions were proposed and products
heavier than C5H10, whose yields are usually very small,
were lumped together as the single component C5+ to
simplify the reaction scheme. Kinetic parameters were
mainly obtained through trial and error and by fitting
pilot-plant data. Other free-radical schemes have also
been proposed by several authors, using fewer reac-
tions.9,10 Rangaiah et al.11 evaluated several reaction
schemes for ethane cracking, including the molecular6

and the free-radical schemes8 by Froment and his group,
and concluded that the free-radical mechanism of
Sundaram and Froment8 provides more accurate pre-
dictions.

Modeling the ethylene reactor, including the steam
cracking reactions, can be very complex; however,
certain assumptions simplify the task. The mass flow
inside the reactor, which has a large length-to-diameter
ratio and a high fluid velocity,12 can be taken as plug
flow. The heat transfer from the furnace gases to the
cracking reactor can be represented by a heat-flux
profile, thus uncoupling the reactions and thermal
phenomena occurring inside the tubes from those oc-
curring outside. Froment et al.5 successfully simulated
a steam cracker to study the cracking of ethane and
ethane-propane mixtures. By using an independently
simulated heat-flux profile, a good agreement with
industrial data was achieved. A one-dimensional model
was used for the mass, momentum, and heat-transfer
equations, as high turbulence in the reactor tubes would
effectively cancel out any flow profile over the cross
section.13 The external heat-flux profile is an important
factor in the cracking reaction, and there are successful
models of the mechanism14,15 investigating the effects
of different firing patterns on the reaction temperature
and product distribution. However, it was argued that,
to predict solely the effluent yield, an accurate heat-
flux profile is not crucial.16

Multiobjective Optimization. The real-life optimi-
zation problems faced in industry usually deal with
more than one competing objective. Traditionally, solv-
ing such problems involves taking a weighted average
of all of the objectives and treating it as a single-
objective optimization problem. However, the solution
then depends on the chosen weights, which, in turn, are
subject to individual perception and knowledge of the
process. This is quite arbitrary, and a deficiency is
always inherent in this method.17 The best way to solve
and represent the solution of a multiobjective optimiza-
tion problem is through the generation of a Pareto-
optimal set,18 which provides a spectrum of tradeoffs of
the competing objectives. All of the solutions in a Pareto-
optimal set are equally good, i.e., none of them is better
than the others in the set unless another criterion is

supplied to compare them. A Pareto-optimal set provides
a wide range of design and operational options to
designers and practitioners and, hence, enhances the
possibility of finding more efficient processes. Popula-
tion-based algorithms, such as genetic algorithms (GAs),
have the capability of finding a Pareto-optimal set in a
single run with only a marginal increase in the com-
putational time.

GA is a search technique based on the working
principles of genetics and natural selection; it employs
a population-based approach whereby the search for a
solution is performed with a group of estimated solu-
tions rather than a single one. Starting with a set of
randomly generated initial estimates of independent
variables, also called decision variables, GA tries to
reach the solution with the help of special operators.
Each iteration is called a generation in which new values
of independent variables are found through special
operations, namely, reproduction, crossover, and muta-
tion, on their old values. This is done in an attempt to
produce more desirable objective values until a preas-
signed number of generations is computed. Based on the
fundamentals of GA, Srinivas and Deb18 developed the
nondominated sorting genetic algorithm (NSGA) to find
the Pareto-optimal set of solutions for solving multiob-
jective optimization problems. Nondomination refers to
a solution being better in at least one objective than any
other solution in the population. The concept of non-
domination, first introduced by Goldberg,19 is necessary
to assign a fitness value to each solution that ultimately
determines its place in the Pareto-optimal set.

Although NSGA has been successfully applied to
many multiobjective optimization problems,20-23 Deb et
al.24 reported that its computational complexity can be
dramatically reduced, and by applying elitism, a method
of preserving good solutions, its performance can be still
increased. This revision in NSGA resulted in another
algorithm, which they named elitist NSGA or NSGA-
II. Deb et al.24 showed that NSGA-II is able to achieve
better convergence near the true Pareto-optimal front
and find a much better spread of Pareto-optimal solu-
tions. GA operators, designed to be applied to binary
numbers, require binary coding for the real values of
decision variables. However, it was noted25 that repre-
senting real numbers with binary coding leads to a
number of difficulties such as the finite-length binary
strings are unable to achieve high precision in the
decision variables. Moreover, in some strings, a transi-
tion to a neighboring point requires the alteration of
many bits, which, in turn, hinders the gradual search
in the continuous search space. This is also known as
the Hamming cliff problem. To counter these problems,
genetic operators that are capable of operating directly
on real numbers have been proposed. The simulated
binary crossover (SBX) operator proposed by Deb and
Agrawal25 is a successful example. The present authors
noted that the SBX operator, which actually mimics the
operation of binary crossover, is able to perform as good
as or even better than binary-coded GAs.26 This real-
coded operator was also incorporated in NSGA-II.24

Although binary-coded NSGA-II has been satisfactorily
used by other workers in optimizing chemical pro-
cesses,27,28 the present study employs real-coded NSGA-
II (with the SBX operator) for better results. The
authors could find only one contemporary work employ-
ing real-coded NSGA-II for a multiobjective optimization
study on an epoxy polymerization reactor;29 better
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results were also obtained in this case with real-coded
over binary-coded NSGA-II.

2. Modeling and Sensitivity Analysis of the
Steam Cracker

In the present study, the industrial steam cracker
described by Froment et al.5 is used as the basis for
simulation and optimization of an ethylene reactor for
multiple objectives. A multiobjective optimization study
with NSGA-II requires execution of the steam cracker
model for each member of its population over a certain
number of generations. Because the number of popula-
tion typically ranges from 50 to 100 and the number of
generations needed to find a reasonably good Pareto can
be more than 200, a typical study involves computation
of the steam cracker model 10 000-20 000 times. Such
a huge computational load makes the molecular scheme
of cracking reactions look more attractive, as it results
in nonstiff differential equations and hence requires
lower computational times, although obtained in a
tradeoff with prediction accuracy. For the current study,
however, the free-radical mechanism proposed by
Sundaram and Froment8 was ultimately chosen for
reactor modeling. It was perceived that, with the present
powerful personal computers, the time penalty can be
brought down to a more acceptable level rather than
settling for a lower accuracy. The selected free-radical
mechanism for ethane cracking consists of 49 reactions
with 11 molecular species and 9 free radicals. Details
of this scheme can be obtained from the literature,8
where it was assumed that the reactions are elementary
and therefore the order of each reaction corresponds to
its molecularity. The molecular and free-radical species
and the governing equations of the steam cracker model,
including the material, energy, and momentum bal-
ances, are listed in Appendix A. The model was vali-
dated by comparison with industrial data, as shown in
Table A3.

Sensitivity Analysis of the Steam Cracker. A
sensitivity analysis was performed with the steam
cracker model to note the effects of some key variables,
which were identified as the decision variables in the
subsequent optimization study on the reactor perfor-
mance. The variables are the temperature (Tin) and
pressure (Pin) of the ethane-steam mixture at the inlet
to the radiation section; the coefficients of the heat-flux
profile, R, â, and γ in eq A13, that control the rate of
heat input to the cracking reactions; the steam-to-
ethane (mass) ratio (SR); the ethane flow rate (Fin) to
the reactor; the number of tubes (ntubes) defining the
reactor length; and the inner diameter of the reactor
tubes (din). The values of each of these variables were
varied within a preassigned domain, while the others
were kept constant, to note the effects of variation on
some calculated quantities that show the reactor per-
formance. These quantities are the conversion (X) of
ethane, the selectivity of ethylene (SC2H4), and the mass
flow rate of ethylene (fC2H4) at the reactor exit, which
together define the extent and the quality of reaction
process. The ethane conversion and ethylene selectivity
were defined as

It is known that any reaction is ultimately controlled
by the residence time, temperature, and pressure in the
reactor. Hence, the three additional variables residence
time, average reaction temperature, and average reac-
tion pressure were calculated along with the perfor-
mance variables to develop a clearer understanding of
the effects of the decision variables. These three vari-
ables were calculated in the following way

The range of each decision variable for sensitivity
analysis was determined on the basis of industrial
practice and numerical feasibility, a detailed account
of which is presented in the next section. The outcome
of the entire analysis is presented in Figure 2.

The sensitivity analysis of the inlet temperature
shows that an increase in temperature resulted in
increased ethane conversion and decreased ethylene
selectivity (Figure 2a). The ethylene flow rate, which is
favored by high conversion and high selectivity, in-
creased steadily with increasing temperature as the
selectivity decreased at a lower rate than the conversion
(Figure 2a). The main reason behind the sharp conver-
sion increment is the increase in average reaction
temperature and decrease in average pressure (Figure
2a). Low residence time and low pressure improve
selectivity, but in the present case, the influence of the
high reaction temperature, which reduces selectivity,
had a more dominant effect.

On the other hand, the effect of reaction pressure on
the cracker performance is not very substantial (Figure
2b). An increase in pressure slightly increased the
ethane conversion while decreasing the ethylene selec-
tivity. As the selectivity decreased at a rate similar to
the conversion increment, the variation in the ethylene
flow rate was negligible. An increase in pressure most
prominently influenced the residence time, as can be
seen in Figure 2b. It seems that high residence time
and high reaction pressure had contradictory effect on
the reaction, and so, the variations in the conversion
and ethylene flow rate were insignificant.

The heat-flux parameters R, â, and γ in eq A13, when
increased, resulted in increased ethane conversion and
decreased ethylene selectivity although with different
relative effects. The ethylene flow rate increased be-
cause the conversion increment was higher than the
selectivity decrement (Figure 2c-e). The effect of R was

conversion, X )
(mass flow rate of pure ethane fed -
mass flow rate of pure ethane at exit)/

(mass flow of pure ethane fed) (1)

selectivity, SC2H4
)

(mass flow rate of ethylene at exit -
mass flow rate of ethylene fed)/

(mass flow rate of pure ethane fed -
mass flow rate of pure ethane at exit) (2)

tr ) ∫x)0

L
(π

4
din

2) dx

[Fsteam(x) + ∑
j

Fj(x)]
RT(x)

P(x)

(3)

Tavg )
∫x)0

L
T(x) dx

L
(4)

Pavg )
∫x)0

L
P(x) dx

L
(5)
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the most prominent among the three parameters. As R
increased, the reaction temperature increased sharply,
and the residence time decreased. However, as the
influence of reaction temperature increment was more
dominant than that of the residence time decrement,
the net conversion increased substantially.

Steam reduces the reaction pressure in two ways: by
acting as a diluent, it decreases the partial pressures
of the reactants, and by increasing the overall flow rate
through the reactor, it increases the total pressure drop
as well. Consequently, as the SR increased, the conver-
sion decreased, and the selectivity increased slightly
(Figure 2f), resulting in a marginal decrease of the
ethylene flow rate. The net residence time decreased,
as the net flow rate through the reactor increased and
the reactor dimensions remained the same. Decreases
in the residence time and the reaction pressure coun-

teracted each other and resulted in little or insignificant
variation of the conversion and ethylene flow rate
values.

Increasing the ethane feed rate sharply decreased the
conversion (Figure 2g) while increasing the selectivity.
The main reason for the former is the sharp decrease
in residence time as flow rate increased. The rise in
selectivity resulted from the decreased reaction tem-
perature, reaction pressure, and residence time. The
ethylene flow rate increased initially because of the
initial sharp rise of selectivity; however, it gradually
stopped increasing and ultimately decreased because of
the sharp fall in ethane conversion.

Increasing the number of tubes or diameter increased
the reactor volume and thus the residence time in the
reactor (Figure 2h and i). On the other hand, increasing
the length resulted in a higher pressure drop along the

Figure 2. Sensitivity of ethane conversion, ethylene selectivity, ethylene flow rate, residence time, average temperature, and average
pressure in the reactor (shown on the y axis) to decision variables (shown on the x axis): (a) inlet temperature (Tin); (b) inlet pressure
(Pin); (c-e) R, â, and γ in the heat-flux profile, respectively; (f) steam-to-ethane ratio (SR); (g) ethane feed rate (Fin); (h) number of tubes
(ntubes); and (i) tube inner diameter (din). Note that the ranges of quantities on the y axis are not uniform for all decision variables, but
rather are scaled to amplify, for clarity, their variation against the decision variables.
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reactor, whereas increasing the diameter resulted in a
lower pressure drop. The reaction temperature stayed
almost invariant when the diameter was increased,
whereas it increased when the number of tubes was
increased, mainly because of the higher increase in the
heat-transfer area. As the number of tubes and diameter
increased, higher conversion and lower selectivity values
were noted because of the increased residence time and
reaction temperature. However, the decrease in pres-
sure as the number of tubes was increased moderated
the rate of change of the conversion and selectivity,
whereas for the diameter increase, the variations of
conversion and selectivity were monotonic.

3. Formulation of the Optimization Problem

For the optimization study of an ethane cracker unit,
the objectives depend on production preferences, which
are often based on profit. As the profit calculation
encompasses several factors, viz., demand and prices
that fluctuate with time and location, downstream
processing costs, etc., this study selected objectives that
increase the scope of making profit rather than maxi-
mizing the profit itself. From the reaction point of view,
the most pertinent objectives are to maximize the
ethylene production and minimize the production of side
products. Therefore, the conversion of ethane, selectivity
of ethylene, and flow rate of ethylene were chosen as
the objectives. In the sensitivity analysis section, it was
observed that the conversion and selectivity vary in
opposite directions, whereas the ethylene flow rate
depends on conversion and selectivity. Hence, initially,
the conversion of ethane and selectivity of ethylene were
chosen as the objectives, so that a nondominated set of
solutions could be obtained from a multiobjective opti-
mization. Subsequently, other objectives were consid-
ered.

Accordingly, the optimization problem was formulated
to maximize

and

The variables, which prominently affect the reactor
performance and can be adjusted in an industrial
reactor system, were chosen as the decision variables.
In the sensitivity analysis section, the effects of these
variables on the objectives are discussed in detail.
Following are the decision variables and the ranges used

Among the decision variables, the first seven are
continuous, whereas the last two (number of tubes and
tube inner diameter) are discrete. For representation
of the former, real coding option in NSGA-II was used,
whereas for the two discrete variables, binary coding
option with 3- and 2-bit sizes, respectively, was em-
ployed.

Bounds on the inlet temperature were selected ac-
cording to industrial practice. A low inlet temperature
indicates inefficiency in the convection section of the
firebox, leaving the heating of reactants to reaction
temperature to the radiation section. On the other hand,
a high inlet temperature can result the designed reac-
tion temperature in the radiation section being exceeded
causing failure of the radiant coils. The upper limit on
pressure depends on the upper limit on temperature and
the degree of degradation of the cracking pattern caused
by increasing pressure.3 A higher pressure tends to
decrease the yield of ethylene and also increases the rate
of coking, both of which are undesirable. The lower
bound, on the other hand, is limited by the suction
pressure of the cracked-gas compressor after the quench-
ing section, which should not fall below atmospheric
pressure to avoid any oxygen in-leak.3 Bounds on the
heat-flux parameters (in eq A13) were chosen to allow
maximum flexibility in the heat-flux profile. R is basi-
cally the heat flux at the beginning of the coil, and its
limits were determined by the usual range of heat flux
in a firebox, which is 54-96 kW/m2,7 whereas the
bounds on â were chosen to complement R, and the
bounds on γ were chosen to complement â. The values
of â and γ were chosen to form a monotonically decreas-
ing function. For the steam-to-ethane ratio (SR) and the
ethane feed flow rate, the industrially employed values
were used as the means for their ranges.

A typical ethylene reactor is formed of several straight
tubes connected in series with suitable bends to form a
long coil. In the present study, one tube in ntubes includes
a straight portion and a bend to facilitate a realistic
enhancement of the reactor length. The length of each
such tube (including bend) was taken as 9.5 m, and the
number of tubes was varied from 8 to 15 in the
optimization. The reactor length was thus varied from
76.0 to 142.5 m in steps of 9.5 m. The inside diameter
was also varied discretely as only tubes of specific
diameters are commercially available. In the present
study, diameters of 0.0953, 0.0991, 0.1080, and 0.1143
m were taken as the options. Limiting values of both
the number and the diameter of tubes were framed
following industrial practice.7

Realistic constraints should be included in any opti-
mization study. The following constraints were used in
the present study

The constraints were formulated in accordance with

J1 ) X (6)

J2 ) SC2H4
(7)

700 e Tin e 1100 K (8)

290 e Pin e 500 kPa (9)

50 e R e 100 kW/m2 (10)

-100 e â e 0 kW/m2 (11)

0 e γ e 50 kW/m2 (12)

0.3 e SR e 0.5 (13)

0.01 e Fin e 0.025 kmol/s (14)

ntubes ) 8, 9, 10, ..., 15 (15)

din ) 0.0953, 0.0991, 0.1080, and 0.1143 m (16)

T e 1300 K (17)
P g 120 kPa (18)

2γ e -â (19)

q g 40 kW/m2 (20)
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industrial practice. The upper limit of the reaction
temperature is bound by the metallurgy of the radiant
coil, which is designed to operate at 1250-1300 K when
internally clean. If the temperature exceeds 1300 K, the
coil can rupture without warning, so the upper limit of
temperature at any point along the reactor length was
fixed at 1300 K. The outlet pressure constraint was
guided by the suction pressure of the cracked-gas
compressor. Because the cracked gas has to go through
a transfer line exchanger (TLE) for quenching after
coming out of the reactor, which involves an additional
pressure drop, the outlet pressure of the reactor was
limited to 120 kPa. As mentioned earlier, the heat-flux
profile is closely linked to the rate of coking, and the
profile should be a decreasing function so that the heat
input does not increase near the end of the coil and
accelerate coking. The relation between â and γ in eq
19 ensures a heat flux that decreases with length. The
bound on the lowest heat flux to the radiant coil (eq 20)
was made to generate a realistic heat flux in the
radiation section. The NSGA-II algorithm used in the
present study employs a tournament-selection-based
constrained nondominated sorting method for handling
constraints.

Input Data for NSGA-II. The selected optimization
routine, NSGA-II, for the multiobjective optimization is
based on solving a minimization problem. Because the
present purpose was to maximize the objective func-
tions, the maximization problem was transformed to a
minimization one as follows

and

The constraints were normalized as well, to keep the
constraint violations within the range [-1, 0], for a
fairer comparison of constraint violations for the indi-
vidual objectives. The normalized constraints are as
follows

As with many optimization methods, NSGA-II requires
a set of parameters to carry out the optimization. A seed
for random number generations (Rs) is required, as
NSGA-II is a stochastic process. A crossover probability
(pc) and a mutation probability (pm or pm,b), which
determine whether the crossover and mutation opera-
tion will be performed, are two other parameters that
have to be supplied. The real-coded NSGA-II requires
two more parameters, the distribution index for the
simulated crossover operation (ηc) and the distribution
index for the simulated mutation operation (ηm). Both
of these values are used to define probability distribu-
tions, which ultimately determine the location of the

resulting or child solution with respect to the parent
solutions. Detailed descriptions of all of these param-
eters and real-coded NSGA-II are available in ref 25.
All optimization studies were carried out with a popula-
tion size of 50 and for 200 generations. The average
computational time taken for each study was 3 h and
40 min, on a 2.4-GHz P4 computer with 512 MB of
SDRAM.

4. Results and Discussion

In the preceding section, the objectives, decision
variables, and constraints used in the optimization
study were discussed in detail. In the current section,
the results generated from the study are presented
along with a critical analysis of the same. The objective
and decision variable values were plotted suitably and
were compared with the corresponding industrial data
predicted by providing the industrial design and operat-
ing conditions (Table A2) to the same simulation
program as was used for optimization. The predicted
data, although different from the measured data, were
used for comparing optimal solutions to avoid any bias
arising from model limitations. The primary outcome
of multiobjective optimization is the Pareto-optimal set
of solutions depicting tradeoffs between the competing
objectives. In addition, values of the decision variables
and the trends of variation of these variables with
respect to the objectives are important as well. For each
multiobjective optimization study, Paretos were gener-
ated with different initial populations and various
combinations of the NSGA-II parameters. The best
results obtained from these studies are presented and
discussed in this section.

Maximizing Ethane Conversion and Ethylene
Selectivity. The Pareto-optimal set obtained by maxi-
mizing the ethane conversion and the ethylene selectiv-
ity is presented in Figure 3, which shows that the Pareto
set generated by NSGA-II was smooth and well distrib-
uted over a wide range. Of the solutions in the initial
population, 24 were infeasible, but the constrained
nondominated sorting method brought the entire popu-
lation into the feasible region by the fourth generation.
Figure 3 shows only the feasible solutions of the initial
population. It can be noted that the feasible solutions
are not far from the final Pareto set, from the initial

Figure 3. Pareto-optimal set obtained from the simultaneous
maximization of ethylene selectivity and ethane conversion. Only
the feasible points of the initial population are plotted. Also
included is the Pareto of simultaneous minimization of selectivity
and conversion, which represents the lower boundary of the
feasible selectivity-conversion points. Industrial data point is
shown by 2.

I1 ) 1/(J1 + 1) (21)

I2 ) 1/(J2 + 1) (22)

1.0 - T
1300

g 0 (23)

P
120

- 1.0 g 0 (24)

- â
2γ

- 1.0 g 0 (25)

q
40

- 1.0 g 0 (26)
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population itself. This is because of the starkly contra-
dictory nature of the objectives, for which simultaneous
decreasing of both objectives is not possible below a
certain limit. This limit, the Pareto of simultaneous
minimization of selectivity and conversion, is also
presented in Figure 3. The final Pareto set found by
maximizing the objectives was identified as early as the
165th generation, after which only minor variations
were noted.

The Pareto presented in Figure 3 was the best-
obtained from experimentation with different combina-
tions of NSGA-II parameters. The Paretos obtained from
all of these studies ultimately reached the same front,
albeit with minor variations mainly in Pareto ranges.
Some of these Paretos are plotted in Figure 4, and the
parameters of NSGA-II used for generating them are
listed in Table 1. To further verify the fidelity of these
Pareto fronts, the conversion and selectivity were
optimized individually. The maximum selectivity and
conversion obtained from these single-objective optimi-
zation studies perfectly lie on the two extremes of the
Pareto fronts (Figure 4). An ε-constraint method was
also applied to verify the true extent of the Pareto
between the extreme values of conversion and selectiv-
ity. It was done by considering one of the objectives as
a constraint and putting a lower bound on its value
while maximizing the other. The study with ε-constraint
method was carried out with both objectives, and the
obtained solutions were found to be perfectly lying on
the Paretos obtained by NSGA-II (Figure 4).

Among the Paretos in Figure 4, the one representing
set 5 was found to be the widest and was plotted in
Figure 3. It shows that, whereas the maximum ethane
conversion had reached very close to 1.0, the maximum

achievable selectivity was about 0.93. It can also be
observed in Figure 3 that, whereas high conversion was
achieved with moderate sacrifice in selectivity, achiev-
ing high selectivity needed a much higher sacrifice in
conversion. For a continuous process, the unreacted
ethane can be separated and recycled back, but if ethane
is converted to any undesirable product, a loss is
incurred. Thus, lower conversion is perhaps more ac-
ceptable than lower selectivity. On the other hand, if
the process can be designed to recover side products,
such as propylene and butadiene, that are higher-value
products, even high conversion might become a profit-
able option. The best operating point can thus be
determined after additional information, viz., the value
of byproducts, the capital and operating costs, the
controllability of the process variables, the results of
hazard and safety analyses, etc., is made available and
analyzed in a comprehensive way. The Pareto (Figure
3), however, brought out the intended outcome of
multiobjective optimization, i.e., a wide range of com-
peting options for design and/or operation.

The industrial point seems to represent a good
tradeoff between selectivity and conversion, as the
extreme objective values are avoided (Figure 3). Al-
though it is close to the Pareto, some improvement is
still possible with respect to ethane conversion and/or
ethylene selectivity. Figure 5 represents the selectivity
vs conversion Pareto of Figure 3 by plotting the selectiv-
ity and conversion values against the ethylene flow rate.
The ethylene flow rate versus selectivity of the indus-
trial point is also shown in the same plot. It can be seen
in the figure that ethylene flow rates higher than the
industrial value can be achieved with a negligible
sacrifice of selectivity. Ethylene production is the pri-
mary source of profit, and if higher ethylene flow rates
can be generated without affecting the selectivity or
requiring a markedly different ethane flow rate, the
results in Figures 3 and 5 are likely to provide better
solutions than the industrial one.

Whereas the Pareto portrayed the competing nature
of the objectives, the decision variables can be plotted
against selectivity (Figure 6) to quantify their role in
realizing the objective values. Moreover, they can be
used to establish the fidelity of the optimization results
as well. Figure 6a shows a clear decrease in the inlet
temperature of the ethane-steam mixture with increas-
ing selectivity, a behavior that was expected in light of
the sensitivity analysis results. The inlet pressure also

Figure 4. Pareto-optimal fronts obtained from the simultaneous
maximization of ethane conversion and ethylene selectivity,
obtained with different combinations of NSGA-II parameters. The
parameters for sets 1-8 are listed in Table 1. Also included is the
result obtained from single-objective optimizations of maximizing
selectivity (9) and maximizing conversion (2). Two additional
single-objective optimization results, obtained from the ε-con-
straint method, are also plotted and shown as ×, marked by circles.

Table 1. NSGA-II Parameters Used in Figure 4

NSGA-II parameters

set
no. of

generations
population

size pc pm ηc ηm Rs

1 200 50 0.85 0.05 10 20 0.6
2 200 50 0.55 0.05 10 20 0.6
3 200 50 0.95 0.05 10 20 0.6
4 200 50 0.85 0.05 10 20 0.41
5 200 50 0.85 0.01 10 20 0.6
6 200 50 0.85 0.12 10 20 0.6
7 200 50 0.85 0.05 25 20 0.6
8 200 50 0.85 0.05 10 30 0.6

Figure 5. Ethylene flow rate versus ethylene selectivity (0) and
ethylene flow rate versus ethane conversion (O) obtained from the
simultaneous maximization of ethane conversion and ethylene
selectivity. Ethylene flow rate versus selectivity of the industrial
point is shown by 2.
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has high values at lower selectivity and higher conver-
sion. However, the sharp decrease and subsequent
constant values (Figure 6b), from a selectivity of 0.6
onward, suggest that the pressure facilitates the two
objectives equally. The high-pressure values toward very
high conversions were probably chosen to increase the
residence time and, as a result, the conversion. Among
the coefficients of the heat-flux function, values of R
were selected very close to the upper limit (Figure 6c),
whereas â and γ (Figure 6d and e) were chosen to
generate a high heat flux but obey the constraint on the
â and γ relation (eq 25). Values of R, â, and γ were such
that heat flux was maintained high and nearly constant;
the inlet temperature, on the other hand, varied to
generate the Pareto. The values chosen for SR were
mostly toward its upper limit (Figure 6f) to boost higher
selectivity. The nature of the variation of the inlet
ethane flow rate (Figure 6g) complies with the findings
in the sensitivity analysis section, with relatively lower
values for high conversion and higher values for high
selectivity. Regarding the reactor dimensions, Figure 6h
shows that the largest available reactor diameter was
chosen uniformly for the entire Pareto. Note that the
discrete values used in the optimization study for
reactor inside diameters were replaced by numbers 1-4
in ascending order in the plot of the diameter values in
Figure 6h and in all other subsequent cases. The
number of reactor tubes (Figure 6i), on the other hand,
decreased to reduce the residence time, thus facilitating
the selectivity increment.

A comparison of the industrial design and operating
conditions with those obtained by the optimization study
reveals that, whereas the inlet pressure, ethane flow
rate, and number of tubes used in the reactor were
similar in the two cases, the values of the other decision
variables varied widely. The inlet temperature values

are often far lower than their industrial counterpart
(Figure 6a). Whereas the R values are similar in the two
cases, the â and γ values differ widely, forming very
different heat-flux profiles for the two cases. The aver-
age reaction temperature (Figure 6j), however, shows
that the industrial reactor operates at a slightly higher
temperature. As lower-temperature operation is more
desirable from material- and energy-savings points of
view, the decision variable values suggested by the
optimization seem to be better. The steam-to-ethane
ratio (SR) used in industry is lower than the study-
generated values. A lower SR value is more desirable
as it reduces the volume of material handling and affects
all related costs. The reactor diameter, on the other
hand, was chosen larger than the industry value. A
larger reactor diameter, although it increases the
residence time and facilitates conversion, involves a
higher capital investment.

The decision variable values in Figure 6, although
having clear trends, are relatively scattered in nature
when compared to the smooth variation of the Pareto
set they generated (Figure 3). There are two plausible
causes for this scattering: first, the objective functions
are weakly dependent on the decision variable(s), so that
even a considerable variation in decision variable values
did not affect the former significantly, and second, more
than one combination of multiple decision variables had
similar effects on one or more of the objective values.
During the sensitivity analysis, it was found that all of
the decision variables have a strong influence on at least
one of the objectives; this refutes the plausibility of the
first cause. However, to investigate further, decision
variables corresponding to the Paretos of sets 1, 3, and
6 (Figure 4) were plotted simultaneously in Figure 7. It
can be seen in this figure that, although their respective
Pareto-optimal fronts coincide, the corresponding deci-

Figure 6. Decision variables and other calculated variables corresponding to the Pareto in Figure 3. Industrial data point is shown
by 2.
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sion variables are different from one another. The most
noticeable variations are in the values of inlet temper-
ature (Tin) (Figure 7a); â (Figure 7d); γ (Figure 7e);
ethane flow rate (Fin) (Figure 7g); and to some extent,
number of reactor tubes (ntubes) (Figure 7i), all of which
have significant individual influences on the objectives
(Figure 2). Interestingly, for all three sets, values of the
average temperature (Figure 7j), which is strongly
dependent on the values of Tin, â, and γ, show similar
trends with very close values. In fact, values of all of
the main controlling variables, i.e., average temperature
(Tavg), residence time (tr), and average pressure (Pavg),
show clearer trends compared to the scattered values
of the decision variables (Figure 7j-l); whatever minor
scattering is observed can be attributed to their com-
pensatory effects on one another. In other words,
different combinations of these three variables can
produce very similar conversion and selectivity values.
For example, a lower residence time can be compensated
by a high average temperature or a high average
pressure, to result in the same conversion. The scatter-
ing in the values of the decision variables (Figure 6a-
i, on the other hand, are much wider because the
degrees of freedom of the decision variables are more
than those of the controlling variables.

For further verification, we carried out a series of
multiobjective optimization studies with different num-
bers and different sets of decision variables, the results
of which are presented in Figures 8 and 9. In all of these
studies, decision variables that are not varied take the
industrial reactor values, except for the inlet pressure
and ethane flow rate, which were taken as 350 kPa and
0.025 kmol/s, respectively. It was observed that, with
inlet temperature as the only decision variable, there
was no scattering of either the Pareto or the decision

variable values (Figures 8 and 9a), even when the study
was carried out with four different combinations of
NSGA-II parameters and initial populations. The Pareto
formed by this study, however, was short (Figure 8)
compared to the original Pareto (Figure 3), producing
high selectivity values and conversion values lower than
65%. Similar results were obtained from the studies
with inlet temperature and inlet pressure as the deci-
sion variables (Figures 8, 9b, and 9c), although there
was slight improvement of the Pareto (Figure 8), but
that was not significant compared to the Pareto of
Figure 3. It can be noted in Figure 9b and c that, even
with the highest available temperature and pressure,
the conversion could not be taken above 70% (Figure
8). Even introduction of R as the third decision variable
could not improve the Pareto (Figure 8), even though
mild scattering in the decision variable values was
registered (Figure 9d-f). Adding reactor inside diameter
as the fourth decision variable could improve the Pareto,
taking the conversion up to 82% (Figure 8), although it
caused more scattering (Figure 9g-i) in the decision
variables. The selected reactor diameter was generally
the highest available option (Figure 9i).

The trends of the decision variables as seen up to
Figure 9i provide a clear hint that, unless the reactor
volume is increased sufficiently, even the highest tem-
perature and pressure cannot take the conversion
higher. To implement this change, the number of reactor
tubes was added as the fourth decision variable, replac-
ing the diameter. This was done because ntubes had more
volume increment options. It can be seen in Figure 8
that using ntubes as a decision variable could generate a
broader Pareto and took the conversion up to 100%. The
decision variables, however, are scattered (Figure 9j-
l). To see the potential of Tin and ntubes as decision

Figure 7. Decision variables and other calculated variables corresponding to the three Paretos of Figure 4 represented by set 1 (O), set
3 (2), and set 6 (×) of Table 1.
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variables, a two-variable optimization study was carried
out with them. The results (Figure 9m-o) show that
they could take the conversion very close to 100%, but
the Pareto generated was far inferior to the original
Pareto (Figure 8). The main reason for this difference,
as understood, was the choice of very high value (500
kPa) for the fixed inlet pressure of the study. High
pressure was chosen to allow the optimizer to select a
higher number of reactor tubes, and thus increase the
reactor volume, without getting rejected by the pressure
constraint (eq 18). This study brought out a clearer
picture regarding the individual contributions of Tin,
ntubes, and Pin in generating selectivity-coversion Pare-
tos. When a five-variable study was carried out, includ-
ing diameter with the previous set, no significant
difference was observed in the Pareto or the trends of
the decision variables (Figure 8). It can be concluded
from this study that, when sufficient volume increment
option, are provided to the optimizer along with high
temperature and pressure options, scattering in decision
variable values is sure to creep in. This is because a
high reactor volume can easily compensate lower reac-
tion temperature to achieve high conversion and vice
versa, so different combinations of reactor volumes and
reaction temperatures (which themselves result from
multiple combinations of Tin, R, â, and γ) can achieve
the same result.

The above analysis clearly shows that the scattering
in decision variable values is due to the high number
of degrees of freedom in the studied problem. It also
indicates that, after the Pareto-optimal set is identified,
a systematic approach to finding the most desirable sets
of decision variables to realize these optimal points
should be devised. This might dramatically change the
acceptability of suggestions regarding optimal design
and operating conditions by offering more feasible and
achievable choices to the designers and plant operators.
In a recent work, Deb30 demonstrated the importance
of such studies with decision variables for innovative
designs.

During the simultaneous maximization of ethane
conversion and ethylene selectivity, it was noticed that
the highest ethylene flow rate obtained by the study was
generated by an ethane flow rate far lower than its
highest possible value. On the other hand, high ethane
flow rates close to the upper limit were chosen to

maximize selectivity, but they also resulted in lower
ethylene flow rate values. It was concluded from these
two observations that an exclusive criterion should be
included in the optimization process that will ensure
the production of the highest possible ethylene flow rate.
To this end, two more two-objective optimization stud-
ies, of maximizing (1) the ethylene flow rate and
selectivity and (2) the ethylene flow rate and the ethane
conversion, were performed. These studies generated
many possible design options, offering a higher number
of choices for the best-suited combination. In addition,
the prospect of a higher ethylene flow rate is attractive
because it influences the profitability significantly.

Maximizing Ethylene Flow Rate and Selectivity.
The results of maximizing ethylene flow rate and
selectivity simultaneously are presented in Figures 10-
12. In the initial population, there were 24 infeasible
solutions, and as in the previous study, all the solutions
were brought into feasible region by the fourth genera-
tion. By the 175th generation, the final Pareto was
reached, after which the solutions varied insignificantly
until the last generation. The Pareto was obtained with
set 1 parameters (Table 1) of NSGA-II. Figure 10 shows
only the feasible points of the initial population.

It can be seen from the Pareto (Figure 10) that the
highest ethylene flow rate achieved was 20% greater
than that obtained by maximizing ethane conversion
and ethylene selectivity (Figure 5). When selectivity
versus conversion values obtained from (i) maximizing
the ethane conversion and ethylene selectivity and (ii)
maximizing the ethylene flow rate and selectivity were
compared (Figure 11), it was observed that the two sets
of results coincided except that the ranges were differ-
ent. At first glance, the Pareto in Figure 10 seems to
offer better operating points with higher ethylene
selectivities and flow rates than the industrial data.
This picture, however, is not completely true. Figure 11
shows that the industrial point is very close to the
selectivity versus conversion Pareto. In the Pareto of
Figure 10, a higher ethylene flow rate is achieved at a
selectivity equal to the industrial point, because of the
use of about 20% higher ethane flow rate (Figure 12g).

Some trends in the plots of decision variables against
ethylene flow rate (Figure 12) corresponding to the
Pareto in Figure 10 are similar to those in Figure 7.
The inlet temperature of the ethane-steam mixture

Figure 8. Pareto-optimal fronts formed by (b) nine decision variables, (+) one decision variable (Tin), (9) two decision variables (Tin and
Pin), (2) two decision variables (Tin and ntubes), (]) three decision variables (Tin, Pin, and R), (4) four decision variables (Tin, Pin, R, and din),
(s) four decision variables (Tin, Pin, R, and ntubes), and (*) five decision variables (Tin, Pin, R, din, and ntubes).
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rose first moderately (Figure 12a) and then abruptly at
ethylene flow rates above 0.3 kg/s. On the other hand,
R exhibited a reverse trend (Figure 12c): it steadily

increased to its upper limit and stayed almost invariant
there. This shows that the optimizer initially increased
the heat flux to its upper limit and then increased the

Figure 9. (a) Decision variables (Tin) of 1-variable study, (b & c) decision variables (Tin and Pin) of 2-variable study, (d, e & f) decision
variables (Tin, Pin, & R) of 3-variable study, (g, h & i) three of the decision variables (Tin, Pin, din, and R) of 4-variable study, (j, k & l) three
of the decision variables (Tin, Pin, ntubes, and R) of another 4-variable study, (m, n & o) Pareto and decision variables (Tin & ntubes) of
another 2-variable study.

Figure 10. Pareto-optimal set obtained from the simultaneous
maximization of ethylene flow rate and selectivity. Only the
feasible points of the initial population are plotted. Industrial data
point is shown by 2.

Figure 11. Comparison of the conversion versus selectivity
obtained by (a, O) maximizing ethane conversion and ethylene
selectivity, (b, s) maximizing ethylene flow rate and selectivity,
and (c, ×) maximizing ethylene flow rate and ethane conversion.
Industrial data point is shown by 2.
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inlet temperature to steadily increase the reaction
temperature. The steady increase of the average reac-
tion temperature supports this analysis (Figure 12j).
Values of â and γ (Figure 12d and e), however, stayed
almost invariant throughout the Pareto range. The inlet
pressure of the ethane-steam mixture was mostly
chosen near the lower bound to keep the selectivity high;
however, toward higher ethylene flow rates, the inlet
pressure increased to boost the conversion by increasing
the residence time (Figure 12b and k). The occurrence
of a few high-inlet-pressure points at the lower ethylene
flow rates is probably because of the smaller tube
diameter chosen (Figure 12h). The SR value, on the
other hand, was selected toward the upper bound to
enhance selectivity (Figure 12f); the slight scatter in its
values is due to its marginal effect on the objectives.
The ethane flow rate was chosen throughout very close
to the upper bound (Figure 12g), probably to maximize
the ethylene flow rate, which is one of the objectives.

Optimal reactor dimensions were also consistently
chosen: reactor diameter is generally the largest avail-
able value, and number of tubes is the lowest (Figure
12h and i). The latter takes slightly higher values at
higher ethylene flow rates, probably to increase the
residence time and conversion. The pressure rise toward
higher ethylene flow in Figure 12b might be due to the
increasing reactor length. A close comparison of resi-
dence time (Figure 12k), reactor length (Figure 12i), and
inlet pressure (Figure 12b) reveals their interdepen-
dence. Whereas the pressure and residence time values
did not vary significantly throughout most of the eth-
ylene flow rate range, the Pareto between ethylene
selectivity and flow rate was mainly influenced by the
monotonically rising average reaction temperature (Fig-
ure 12j). Although industrial data are similar to the

optimal values obtained for inlet pressure, R, number
of tubes, residence time, and average reaction pressure,
they differ in the other decision variables found by
multiobjective optimization (Figure 12). Average reac-
tion temperature is slightly higher for the industrial
data (Figure 12j) because of the higher values of inlet
temperature, â, and γ (Figures 12a, d, and e). SR, ethane
flow rate, and tube diameter in the industrial data are
much lower than those found by optimization (Figure
12f-h).

Maximizing Ethylene Flow Rate and Ethane
Conversion. The Pareto-optimal set obtained by maxi-
mizing the ethylene flow rate and ethane conversion is
presented in Figure 13. The initial population had 32
infeasible solutions, all of which were guided to the
feasible zone by the fourth generation. The final Pareto
was reached by 110th generation, after which insignifi-

Figure 12. Decision variables and other calculated variables corresponding to the Pareto in Figure 10. Industrial data point is shown
by 2.

Figure 13. Pareto-optimal set obtained from the simultaneous
maximization of ethylene flow rate and ethane conversion. Only
the feasible points of the initial population are plotted. Industrial
data point is shown by 2.
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cant variations were noted. Set 1 parameters (Table 1)
of NSGA-II were used for generating this Pareto.

It can be observed that the ethylene flow rate-ethane
conversion optimization process generated high conver-
sions, varying from 92 to 100% (Figure 13), where the
ethylene flow rate varied from 0.47 to 0.3 kg/s. The
latter is less than that (varied from 0.05 to 0.47 kg/s in
Figure 10) found by maximizing the ethylene flow rate
and selectivity. Interestingly, the selectivity and conver-
sion values corresponding to the Pareto in Figure 13
complement those obtained by maximizing the ethylene
flow rate and selectivity (Figure 11), and the two sets,
together, coincide with the selectivity-conversion Pare-
to in Figure 3. This shows that two separate two-
objective optimization studies, involving optimization of
the pairs flow rate-selectivity and flow rate-conver-
sion, together, can generate a selectivity-conversion
plot very similar to the Pareto found by maximizing
selectivity-conversion. The range of the combined
curve, however, is greater than that of the latter, and
even the population is better distributed. None of the
optimal solutions from the maximization of the ethylene
flow rate and ethane conversion (Figure 13), however,
would be attractive because of their low selectivity
values.

The values of the decision variables, when plotted
against the ethylene flow rate (Figure 14a-i), varied
quite differently as compared to their variations in the
previous two studies. The inlet temperature gradually
rose from 1000 K to the maximum value and then
decreased toward higher ethylene flow rates (Figure
14a). Although R was at its upper bound and γ was
closer to its lower bound for the entire Pareto (Figure
14c and e), the variation of â was similar to that of the
inlet temperature (Figures 14a and d). The variation of

the average reaction temperature (Figure 14j) is similar
to that of the inlet temperature and â. The inlet
pressure was very high at lower ethylene flow rates to
provide larger residence times to maximize the ethane
conversion (Figure 14b). SR (Figure 14f) is generally
high with some scatter. Low values of the ethane flow
rate were chosen initially (Figure 14g) to increase the
residence time and conversion (Figure 14k), but the
ethane flow rate was increased toward higher ethylene
flow rates. The reactor dimensions chosen in this study
were invariant (Figures 14h and i) and the highest
possible values satisfying the constraints and bounds.
This was to create the maximum possible residence time
to ensure maximum possible conversion. The residence
time (Figure 14k) was initially high at about 1.2 s
because of the high inlet pressure coupled with the low
ethane flow rate; it gradually decreased with increasing
ethylene flow rate and then became flat at ethylene flow
rates above 0.45 kg/s.

A comparison between the results of maximizing the
ethylene flow rate and ethane conversion and the
industrial data reveals interesting differences. The
average reaction temperature, residence time, and inlet
pressure (Figure 14j-l) from the optimization are much
higher than those in the industrial data. As can be seen
in Figure 14a-i, many decision variables, including inlet
temperature, inlet pressure, heat-flux function coef-
ficients, SR, and reactor dimensions, have higher values
than the industrial data. Although the ethane flow rate
is close for the two cases (Figure 14g), the conversion is
much higher (Figure 13). The operating conditions
suggested by optimization can be useful if high conver-
sion is desired.

Maximizing Ethylene Flow Rate, Ethylene Se-
lectivity, and Ethane Conversion. Optimization

Figure 14. Decision variables and other calculated variables corresponding to the Pareto in Figure 13. Industrial data point is shown
by 2.
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studies with ethylene flow rate as one of the objectives
show the clear difference in the nature of the variations
of both decision variables and objectives, as compared
to the results generated by selectivity-conversion op-
timization study. This shows that the ethylene flow rate
as an objective is not redundant in a multiobjective
optimization study even though its value depends on
the other two objectives. Hence, a three-objective opti-
mization study taking all three objectives was carried
out for complete analysis. Figure 15 presents the Pareto
generated by maximizing ethane conversion, ethylene
selectivity, and flow rate simultaneously. In this figure,
selectivity and conversion are plotted against ethylene
flow rate. The curves thus generated show that, even
though ethylene flow rate continually increased with
increasing conversion and decreasing selectivity, there
was a maximum value beyond which the ethylene flow
rate decreased against increasing conversion and se-
lectivity values. The results obtained from the three-
objective optimization when compared with the results
from the two-objective optimization of conversion and
selectivity (Figure 16) showed a high increment of
ethylene flow rate for the former case, although the
tradeoff between selectivity and conversion remained
the same.

When the flow rate vs selectivity and flow rate vs
conversion values from the latter two optimization
studies were plotted in a single graph (Figure 17) with
the three-objective optimization Pareto, the combined
results of the two-objective optimizations were found to
be very close to the three-objective optimization results.
It can be noted in the overall figure, which involved
plotting any combination of the three objectives used
in this study, that, in some plots, the y-axis variable
either increased or decreased monotonically with in-
creasing x-axis variable, whereas in others, the y-axis
variable showed both increasing and decreasing trends
with increasing x-axis variable. For example, in Figure
3, which shows a plot of the tradeoff between the
selectivity and conversion, conversion monotonically
decreases with increasing selectivity. When the same
Pareto is plotted (Figure 5) against the ethylene flow
rate values, however, the changes in selectivity and
conversion with respect to the flow rate are found to be
nonmonotonic. This is because multiobjective optimiza-
tion works only on conflicting objectives to generate
nondominated points. Conversion of ethane and selec-
tivity of ethylene are truly conflicting in nature (which

was also evident from the sensitivity analysis), so they
formed a perfect Pareto of nondominated points (Figure
3) covering almost the entire range of conversion values.
In Figure 5, on the other hand, the ethylene flow rate
values are only plotted against the two objectives, it does
not represent the Pareto. Thus, the plot displays both
conflicting and nonconflicting relationships of ethylene
flow rate with the two objectives. Similarly, Paretos
generated by maximizing the ethylene flow rate with
selectivity and conversion were formed just up to the
end of the conflicting region. The points beyond were
discarded by the optimizer because they all would have
been dominated by the present Pareto points. This
nature can be clearly viewed in Figure 17, where the
nonconflicting portions of flow rate vs selectivity and
flow rate vs conversion were obtained from the results
of each other. For example, the nonconflicting points of
the flow rate vs conversion plot in Figure 17 (9) were
actually obtained during the flow rate vs selectivity
optimization. The three-objective optimization, on the
other hand, could generate both conflicting and non-
conflicting points because the criterion of domination
was sufficiently fulfilled by a point if any of the three
objectives had a sufficiently high value, despite simul-
taneous devaluation of the other two objectives.

To understand the full gamut of the respective varia-
tions, decision variables from the three-objective opti-
mization are presented in Figure 18 along with those
from the flow rate-selectivity and flow rate-conversion
optimizations. The figure exhibits a very interesting
interrelationship of individual decision variables from
different optimization studies. It can be seen that the
results of two two-objective optimizations complement
each other, whereas the three-objective optimization
results follow partly the wider range of results obtained
from maximizing flow rate-selectivity and flow rate-
conversion. A discussion of the variations of decision
variables in the three-objective optimization is not
needed because it is similar to the previous analyses.

Figure 15. Pareto-optimal set obtained from the simultaneous
maximization of ethylene flow rate, ethylene selectivity, and
ethane conversion. (a) Ethylene flow rate vs selectivity values (O)
and corresponding industrial data point (2). (b) Ethylene flow rate
vs ethane conversion values (0) and corresponding industrial data
point (b).

Figure 16. Comparison between the Pareto-optimal set obtained
from the three-objective optimization (b) and the selectivity-
conversion two-objective optimization (O) studies. For the former
case, the values of ethylene flow rate, ethylene selectivity, and
ethane conversion were obtained from the optimization, whereas
for the latter, the ethylene flow rate was calculated from the
optimal selectivity and conversion values.
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5. Conclusions

Optimization of an industrial ethylene reactor using
an ethane feed for two and three objectives was suc-
cessfully performed using a GA-based optimizer, NSGA-
II. The reactor was modeled following a more accurate
but complex free-radical scheme8 for accurate predic-
tions. The optimization problem involved seven continu-
ous variables and two discrete variables as well as
realistic constraints. Trends of optimal values of objec-
tives and decision variables could be explained quali-
tatively, which shows the reliability of the results. In
the first part of the study, ethane conversion and
ethylene selectivity were chosen as objectives because
they are exactly contradictory. The generated results
indicated that inclusion of the ethylene flow rate as
another objective was required to develop further in-
sight into the process. Two more two-objective optimiza-

tions and a three-objective optimization study were
carried out using objective combinations of flow rate-
conversion, flow rate-selectivity, and flow rate-conver-
sion-selectivity, respectively. The results showed that
the two two-objective optimization studies are comple-
mentary and the combined results follow those from the
three-objective optimization study. However, the com-
bined results have a wider range, better results, and
smoother variations of conversion and selectivity values
against flow rate.

The study produced a wide gamut of optimal design
and operational options for the ethylene reactor, reveal-
ing a qualitative as well as quantitative relation of the
reaction process with the design and operation vari-
ables. It demonstrated both the individual and combined
roles played by reactor temperature, reactor pressure,
and residence time in achieving the objectives. It was

Figure 17. Comparison of (a) ethylene selectivity versus ethylene flow rate and (b) ethane conversion vs ethylene flow rate obtained
from (1) ethylene flow rate-selectivity maximization (b, a; 9, b); (2) ethylene flow rate-ethane conversion maximization (O, a; 0, b); and
(3) three-objective optimization of ethylene flow rate, ethylene selectivity, and ethane conversion (+, a; s, b).

Figure 18. Combined plot of decision variables from (a, +) maximizing ethylene flow rate and selectivity; (b, s) maximizing ethylene
flow rate and ethane conversion; and (c, O) three-objective optimization of ethylene flow rate, ethylene selectivity and ethane conversion.
Industrial data point is shown by 2.
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found that a larger reactor volume is necessary for
higher conversion, whereas the reverse is true for higher
selectivity. To vary the reactor volume, the optimizer
almost always varied the number of reactor tubes while
keeping the reactor inside diameter constant at the
upper limit. The reasons for this result are that (a) the
highest reactor diameter was selected throughout to
reduce the reactor pressure drop and thus avoid any
rejection of a good solution because of a violation of the
outlet pressure constraint (eq 18) and (b) the optimizer
had the maximum flexibility of changing the reactor
volume, and thereby the residence time, by changing
the reactor length. High inlet temperatures were chosen
to achieve high conversions, whereas lower tempera-
tures were chosen for high selectivity. The study showed
that, although lower inlet pressure is beneficial for all
of the tradeoffs, higher pressures should be chosen
toward very high conversions. This is mainly to accom-
modate the pressure drop caused by the choice of a
higher number of tubes to boost conversion.

It was observed that the most important decision
variables used in this study were the reactor inlet
temperature and the length of the reactor (represented
by the number of reactor tubes). This is because, by
manipulating the values of these two variables only, a
Pareto ranging from ∼100% conversion to over 85%
selectivity could be produced. However, it was also
observed that, unless the values of the other decision
variables are properly controlled, the reactor perfor-
mance cannot achieve the best conversion-selectivity
tradeoffs. In other words, to achieve a particular conver-
sion with the best compromise in selectivity (or vice
versa), one has to manipulate mainly the reactor inlet
temperature and the number of reactor tubes. Values
of other variables can be micromanaged to reach the
desired tradeoff point.

In general, a multiobjective optimization study is
beneficial for understanding the performance tradeoff
of conflicting objectives and decision variables and for
producing a wide range of optimal solutions.

Appendix A

Molecular and free-radical species in the free-radical
mechanism of ref 8 for ethane cracking are listed in
Table A1. Governing equations for the steam cracker
are as follows:

A.1. Material Balance. For the case of the free-
radical scheme for ethane cracking, there are 20 species
in total: 11 molecular species and 9 free radicals. The
mass balance equation is given by

with the rate of reaction, ri, expressed as

where

for i ) 1, 2, 3, ..., number of reactions, and j ) 1, 2, 3,
..., total number of species (excluding steam).

A.2. Energy Balance. The energy balance equation
was written in terms of the heat of formation for each
molecular species. Free radicals, being of much smaller
concentrations than molecular species, are ignored in
the following differential equations

with

for j ) 1, 2, 3, ..., total number of molecular species.
A.3. Momentum Balance. The momentum balance

equation was formulated to accommodate the calcula-
tion of the additional pressure drop in the bends by
using a friction factor, Fr

7

The friction factor for straight tubes given by31

The friction factor for bends is given by32

Table A1. Molecular Species and Free Radicals for
Ethane Cracking

j molecular species j free radical

1 methane, CH4 12 H•
2 acetylene, C2H2 13 CH3•
3 ethylene, C2H4 14 C2H3•
4 ethane, C2H6 15 C2H5•
5 propylene, C3H6 16 C3H5•
6 propane, C3H8 17 1-C3H7•
7 butadiene, C4H6 18 C4H7•
8 1-butene, 1-C4H8 19 1-C4H9•
9 n-butane, n-C4H10 20 C5H11•
10 C5+

a

11 hydrogen, H2

a Taken to be 1-pentene, C5H10.
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where

and

The heat-flux profile in the radiation section of the
reaction system was represented by a quadratic expres-
sion that is a function of a fraction of the total length of
the reactor, L

where R, â, and γ are suitable coefficients. Design and
operating conditions of the industrial ethylene reactor
taken from ref 5 are listed in Table A2. The coefficients
in eq A13 are R ) 96, â ) -85.91, and γ ) 42.955, all
in kW/m2, which provide a heat-flux profile matching
the per-tube heat-flux values given in ref 5. Predictions
of the reactor exit conditions by the model are compared
with the industrial data in Table A3, which shows that
the model based on the free-radical mechanism is quite
accurate.

Nomenclature

A ) frequency factor, s-1 or m3 kmol-1 s-1

At ) tube cross-sectional area, m2

Cj ) concentration of species j in gas mixture, kmol/m3

Cp,j ) specific heat capacity of species j, kJ kmol-1 K-1

din ) tube internal diameter, m
E ) activation energy, kcal/kmol
F ) total molar flow rate of all species other than steam,

kmol/s
Fsteam ) molar flow rate of steam, kmol/s
FT ) total molar flow rate of gas mixture including steam,

kmol/s
Fr ) friction factor, m-1

f ) mass flow rate, kg/s
gc ) Newton’s conversion factor, 1000 kg m kN-1 s-2

Gm ) mass flux of the gas mixture, kg m-2 s-1

I ) minimization function
J ) maximization function
ki ) kinetic parameter for reaction i, s-1 or m3 kmol-1 s-1

L ) reactor length
Mj ) molecular weight of species j, kg/kmol
Mm ) molecular weight of gas mixture, kg/kmol
ntubes ) number of tubes in a radiant coil
P ) pressure, kPa
pm ) probability of mutation for real-coded variables
pm,b ) probability of mutation for binary-coded variables
pc ) probability of crossover
q(x) ) heat flux at length x of the reactor, kW/m2

R ) ideal gas constant, 8.314 51 J mol-1 K-1

Rb ) bend radius, m
Rs ) seed for random number generator
Re ) Reynolds number
ri ) rate of reaction i, kmol m-3 s-1

S ) selectivity
SR ) steam-to-ethane mass ratio
T ) temperature, K
tr ) residence time, s
X ) conversion of ethane
xi ) mole fraction of species i

Greek Symbols

∆Hf,j ) heat of formation of species j, kJ/kmol
∆H°f,j ) heat of formation of species j at the reference

temperature, 298 K, kJ/kmol
Λ ) angle described by the bend, taken to be 180° here
R ) heat-flux parameter, kW/m2

Rij ) stoichiometric coefficient of species j in reaction i
â ) heat-flux parameter, kW/m2

γ ) heat-flux parameter, kW/m2

ηc ) distribution index for the simulated crossover opera-
tion

ηm ) distribution index for the simulated mutation opera-
tion

µ ) viscosity of gas, kg m-1 s-1

µm ) viscosity of gas mixture, kg m-1 s-1

Subscripts

avg ) average
C2H4 ) ethylene
i ) reaction i
in ) inlet
j ) species j
kg ) mass
ref ) reference
x ) distance from reactor entrance, m
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