Katarina Grolinger
Contact
Department of Electrical & Computer Engineering
Thompson Engineering Building,
Room TEB 259
Western University
Tel: 519-661-2111 ext. 81407
kgroling@uwo.ca
Publications
Journal papers (refereed):
- M.U. Danish*, K. Grolinger, Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types, IEEE Transactions on Power Delivery, accepted.
- K. Dunphy, M. Buwaneswaran*, K. Grolinger, A. Sadhu, Few-shot Learning augmented with Image Transformation for Multiclass Structural Damage Classification, Journal of Computing in Civil Engineering., accepted, 2024.
- K. Lacroix*; D. Gholamiangonabadi*; A.L. Trejos; K. Grolinger, Deep Transfer Learning for Detection of Upper and Lower Body Movements: Transformer with Convolutional Neural Network, IEEE Sensors, Early Access, 2024.
- D. Gholamiangonabadi*, K. Grolinger, Federated Learning for Sentiment Analysis in Presence of Non-IID Data: Sensitivity of Deep Learning Models, IEEE Access, Early Access, 2024.
- O. Awadallah*, K. Grolinger, and A. Sadhu, Remote Collaborative Framework for Real-time Structural Condition Assessment Using Augmented Reality, Advanced Engineering Informatics, Vol. 62, part A, 2024.
- F. AlMahamid*, K Grolinger, VizNav; A Modular Off-Policy Deep Reinforcement Learning Framework for Vision-Based Autonomous UAV Navigation in 3D Dynamic Environments, Drones, Vol.8, No 173, 2024.
- M.N. Fekri*, K. Grolinger, S. Mir, Asynchronous Adaptive Federated Learning for Distributed Load
Forecasting with Smart Meter Data, International Journal of Electrical Power and Energy Systems, 2023. - R. Skala*, M.A.T.A. Elgalhud*, K. Grolinger, S. Mir, Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging, Energies, Vol. 16, No. 10, 2023.
- D. Gholamiangonabadi*, K. Grolinger, Personalized models for human activity recognition with wearable sensors: Deep neural networks and signal processing, Applied Intelligence, 2023.
- K. Dunphy, M.N. Fekri*, K. Grolinger, A. Sadhu, Data Augmentation for Deep Learning-based Multiclass Structural Damage Detection using Limited Information, Sensors, Vol. 22, No. 16, 2022.
- F. AlMahamid*, K. Grolinger, Autonomous Unmanned Aerial Vehicle Navigation using reinforcement Learning: A Systematic Review, Engineering Applications of Artificial Intelligence, 2022.
- L’Heureux*, K. Grolinger, M.A.M. Capretz, Transformer-Based Model for Electrical Load Forecasting, Energies, 2022.
- K. Rai*, F. Hojatpanah, F. Badrkhani Ajaei, J.M. Guerrero, K. Grolinger, Deep Learning for High-Impedance Fault Detection and Classification: Transformer-CNN, Neural Computing and Applications, 2022.
- M.N. Fekri*, K. Grolinger, Syed Mir, Distributed Load Forecasting using Smart Meter Data: Federated Learning with Recurrent Neural Networks, International Journal of Electrical Power and Energy Systems, Vol. 137, 2022.
- R.K. Jagait*, M.N. Fekri*, K. Grolinger, Syed Mir, Load Forecasting Under Concept Drift: Online Ensemble Learning with Recurrent Neural Network and ARIMA, IEEE Access, 2021.
- K. Rai*, F. Hojatpanah, F. Badrkhani Ajaei, K. Grolinger, Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders, Energies, Vol. 14, No. 12, 2021.
- M.N. Fekri, H. Patel, K.Grolinger, V. Sharma, Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network, Applied Energy, Vol. 282, 2021.
- A.M. Ghosh*, K. Grolinger, Edge-Cloud Computing for IoT Data Analytics: Embedding Intelligence in the Edge with Deep Learning, IEEE Transactions on Industrial Informatics, 2020.
- D. Gholamiangonabadi*, N. Kiselov*, K. Grolinger, Deep Neural Networks for Human Activity Recognition with Wearable Sensors: Leave-one-subject-out Cross-validation for Model Selection, IEEE Access, 2020.
- L. Sehovac*, K. Grolinger, Deep Learning for Load Forecasting: Sequence to Sequence Recurrent Neural Networks with Attention, IEEE Access, doi:10.1109/ACCESS.2020.2975738, 2020.
- M.N. Fekri*, A.M. Ghosh*, K. Grolinger, Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks, Energies, Vol.13, No. 1, 2019.
- Y. Tian*, L. Sehovac*, K. Grolinger, Similarity-Based Chained Transfer Learning for Energy Forecasting with Big Data, IEEE Access, doi:10.1109/ACCESS.2019.2943752, 2019.
- M.M. ElGayyar, H.F. ElYamany, K. Grolinger, M.A.M. Capretz, Blockchain-Based Federated Identity and Auditing, International Journal of Blockchains and Cryptocurrencies, Accepted, 2019.
- D. Bachmann, K. Grolinger, H. ElYamany, W.Higashino, M.A.M. Capretz, M. Fekri, B. Gopalakrishnan, (CF)2 Architecture: Contextual Collaborative Filtering, Information Retrieval Journal, Springer, pp. 1-24, doi: 10.1007/s10791-018-9332-3, 2018.
- M. Ribeiro, K. Grolinger, H.F. ElYamany, W.A. Higashino, M.A.M. Capretz, Transfer Learning with Seasonal and Trend Adjustment for Cross-Building Energy Forecasting, Energy and Buildings, Elsevier, Vol. 165, pp. 352-363, doi: 10.1016/j.enbuild.2018.01, 2018.
- K. Grolinger, H.F. ElYamany, W.A. Higashino, M.A.M. Capretz, L. Seewald, Energy Slices: Benchmarking with Time Slicing, Energy Efficiency, Springer, Vol. 11, No. 2, pp. pp 521–538, doi: 10.1007/s12053-017-9582-8, 2018.
- A. L’Heureux, K. Grolinger, H.F. ElYamany, M.M.A. Capretz, Machine Learning with Big Data: Challenges and Approaches, IEEE Access, Vol. 5, pp. 7776 - 7797, doi: 10.1109/ACCESS.2017.2696365, 2017.
- D.B. Araya, K. Grolinger, H.F. ElYamany, M.A.M. Capretz, G.T. Bitsuamlak, An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption, Energy and Buildings, Elsevier, Vol. 144, pp. 191–206, doi:10.1016/j.enbuild.2017.02.058, 2017.
- K. Grolinger, A. L’Heureux, M.A.M. Capretz, L. Seewald, Energy Forecasting for Event Venues: Big Data and Prediction Accuracy, Energy and Buildings, Elsevier, Vol. 112, pp. 222–233, doi:10.1016/j.enbuild.2015.12.010, 2016.
- K. Grolinger, E. Mezghani, M.A.M. Capretz, E.Exposito, Collaborative Knowledge as a Service Applied to the Disaster Management Domain, International Journal of Cloud Computing, Inderscience, Vol. 4, No. 1, pp. 5-27, doi:10.1504/IJCC.2015.067706 2015
- K. Grolinger, W.A. Higashino, A. Tiwari, M.A.M. Capretz, Data Management in Cloud Environments: NoSQL and NewSQL Data Stores, Journal of Cloud Computing: Advances,Systemsand Application, Springer, Vol. 2, No. 22, doi:10.1186/2192-113X-2-22, 2013.
- K. Grolinger, M.A.M. Capretz, A. Cunha, S. Tazi, Integration of Business Process Modeling and Web Services: A Survey, Service OrientedComputingand Applications, Springer, Vol. 8, No. 2, pp. 105–128, doi:10.1007/s11761-013-0138-2, 2013.
- B.Muslimi, K. Grolinger, M.A.M. Capretz, M. Benko, EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection, International Journal of Advancements in Computing Technology, Vol., 5. No. 13, 2013.
- K. Grolinger, M.A.M Capretz, A Unit Test Approach for Database Schema Evolution, Information and Software Technology, Elsevier, Vol. 53, No. 2, pp. 159-170, doi:10.1016/j.infsof.2010.10.002, 2011.
- B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Agent Based on Reinforcement Learning and Adaptive Shadowed Network. Artificial Intelligence in Engineering. Vol. 13, No. 2, pp. 141-157, 1999.
- B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in Unpredictable Assembly Conditions, Automatika, Vol. 37 (1-2), Zagreb, Croatia, pp. 37-45. 1996.
Conference papers (refereed):
- D. Gholamiangonabadi*, K. Grolinger, Clustered Federated Learning with Non-IID Data: Mitigating Accuracy Overestimates through Hold-out Model Selection and Evaluation, International Conference on Machine Learning and Applications, accepted, 2024.
- M. Buwaneswaran*, K. Grolinger, Temporally Chained Equations: An Interpretable Missing Data Imputation Approach for Smart Meters with Low Data Requirements, The 50th Annual Conference of the IEEE Industrial Electronics Society, accepted, 2024.
- M. U. Danish*, M. Noorchenarboo*, A. Narayan, K. Grolinger, ChebyRegNet: An Unsupervised Deep Learning Technique for Deformable Medical Image Registration, The 50th Annual Conference of the IEEE Industrial Electronics Society, accepted, 2024.
- M. U. Danish*, M. Buwaneswaran*, T. Fonseka*, K. Grolinger, Graph Attention Convolutional U-NET: A Semantic Segmentation Model for Identifying Flooded Areas, The 50th Annual Conference of the IEEE Industrial Electronics Society, accepted, 2024.
- S. A. Salinas*, K. Grolinger, M-E LeBel, A.L. Trejos, Evaluating Mixed Reality Technology for Tracking Hand Motion for Shoulder Rehabilitation Assessment, IEEE RAS EMBS 10th International Conference on Biomedical Robotics and Biomechatronics, 2024.
- K. Dunphy, M. Buwaneswaran*, K. Grolinger, and A. Sadhu, Investigation of Few-shot Learning for Multiclass Structural Damage Identification, Proc. of the Canadian Society for Civil Engineering Annual Conference, 2024.
- J.M. Hunde, M. Piragash*, D. Senevirathne*, T.S. Ochono*, D.D. Eneyew, G.T. Bitsuamlak, M.A.M. Capretz, and K. Grolinger, Predicting Building Energy Demand Using Federated Learning with Attribute-Based Clustering, The Ninth International Association of Building Physics Conference (IBPC), 2024, accepted.
- M. Buwaneswaran*, T. Fonseka*, A. Narayan, and K. Grolinger, Improving Adversarial Robustness of Few-shot Learning with Contrastive Learning and Hypersphere Embedding, Proc. of the IEEE International Conference on Machine Learning and Applications, 2023.
- Z. Han*, K. Grolinger, M. Capretz, S. Mir, Scheduling Electric Vehicle Charging for Grid Load Balancing, Proc. of the 49th Annual Conference of the IEEE Industrial Electronics Society, 2023.
- F. AlMahamid*, K.Grolinger, Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve Clustering, Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, 2022.
- F. AlMahamid*, H. Lutfiyya, K.Grolinger, Virtual Sensor Middleware: Managing IoT Data for the Fog-Cloud Platform, Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, 2022, Accepted.
- S. Vecile, K. Lacroix*, K. Grolinger, J. Samarabandu, Malicious and Benign URL Dataset Generation Using Character-Level LSTM Models, Proc. of the IEEE Conference on Dependable and Secure Computing, Edinburgh, England, 2022.
- S.A. Salinas*, M. Elgalhud*, L. Tambakis, S. Salunke, K. Patel, H. Ghenniwa, A. Ouda, K. McIsaac, K. Grolinger, A.L. Trejos, Comparison of Machine Learning Techniques for Activities of Daily Living Classification with Electromyographic Data, Proc. of the IEEE International Conference on Rehabilitation Robotics, Rotterdam, Netherlands, 2022.
- F. AlMahamid, K.Grolinger, Reinforcement Learning Algorithms: An Overview and Classification, Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, 2021. Accepted.
- Y. Yang, N. Qamar, P. Liu, K. Grolinger, W. Wang, Z. Li, Z. Liao, ServeNet: A Deep Neural Network for Web Services Classification, Proc. of the IEEE International Conference on Web Services, 2020.
- L. Sehovac, C. Nesen, K. Grolinger, Forecasting Building Energy Consumption with Deep Learning: A Sequence to Sequence Approach, Proc. of the IEEE International Congress on Internet of Things, Milano, Italy, 2019.
- A. M. Ghosh, K. Grolinger, Deep Learning: Edge-Cloud Data Analytics for IoT, Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Canada, 2019.
- X. M. Zhang, K. Grolinger, M. A. M. Capretz, Forecasting Residential Energy Consumption: Single Household Perspective, Proc. of the IEEE International Conference on Machine Learning and Applications, 2018.
- A. L’Heureux, K. Grolinger, W.A. Higashino, M. A. M. Capretz, A Gamification Framework for Sensor Data Analytics, Proc. of the IEEE International Congress on Internet of Thing, Honolulu, Hawaii, USA, 2017.
- N. L. Tasfi, W.A. Higashino, K. Grolinger, M. A. M. Capretz, Deep Neural Networks With Confidence Sampling for Electrical Anomaly Detection, Proc. of the IEEE International Conference on Smart Data, Exeter, England, 2017, accepted.
- K. Grolinger, M.A.M. Capretz, L. Seewald, Energy Consumption Prediction with Big Data: Balancing Prediction Accuracy and Computational Resources, Proc. of the IEEE BigData Congress, San Francisco, California, 27 Jun-2 Jul, 2016.
- D.B. Araya, K. Grolinger, H.F. El Yamany, M.A.M. Capretz, G.T. Bitsuamlak, Collective Contextual Anomaly Detection Framework for Smart Buildings , Proc. of the IEEE World Congress in Computational Intellegence, Vancouver, Canada, 24-29 Jul, 2016.
- M. Ribeiro, K. Grolinger, M.A.M. Capretz, MLaaS: Machine Learning as a Service , Proc. of the IEEE International Conference on Machine Learning and Applications, Miami, Florida, USA, 9-11 Dec, 2015
- S.S. Abdelkader, K. Grolinger, M.A.M. Capretz, Predicting energy demand peak using M5 model trees, Proc. of the IEEE International Conference on Machine Learning and Applications, Miami, Florida, USA, 9-11 Dec, 2015.
- A. Zagar, K. Grolinger, M.A.M Capretz, L. Seewald, Energy Cost Forecasting for Event Venues, Proc. of the IEEE Electrical Power & Energy Conference, London, Ontario, Canada, 26-28 Oct, 2015.
- H. F. ElYamany, M. F. Mohamed, K. Grolinger, M. M. A. Capretz, A Generalized Service Replication Process in Distributed Environments, Proc. of the 5th International Conference on Cloud Computing and Services Science, Lisbon, Portugal, 20-22 May, 2015.
- K. Grolinger, M. Hayes, W. Higashino, A. L'Heureux, D. S. Allison, M. A. M. Capretz, Challenges for MapReduce in Big Data, Proc. of the IEEE 10th 2014 World Congress on Services (SERVICES 2014), Alaska, USA, June 27-July 2, 1014
- K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a Service Framework for Disaster Data Management, The 22nd IEEE WETICE conference, Hammamet, Tunisia, pp. 313-318, 2013.
- K. Grolinger, M.A.M. Capretz, J.R. Marti, K.D. Srivastava, Ontology–based Representation of Simulation Models, The 24th International Conference on Software Engineering and Knowledge Engineering, San Francisco Bay, California, USA, pp. 432-437, 2012.
- K. Grolinger, M.A.M. Capretz, Autonomic Database Management: State of the Art and Future Trends, The 27th International Conference on Computers and Their Applications (CATA), Las Vegas, Nevada, USA, pp.276-281, 2012.
- K. Grolinger, K.P. Brown, M.A.M. Capretz, From Glossaries to Ontologies: Disaster Management Domain, The 23rd International Conference on Software Engineering and Knowledge Engineering, Miami Beach, Florida, USA, pp. 402-407, 2011.
- K. Grolinger, A. Shypanski, G.S. Gill, M.A.M. Capretz, Federated Critical Infrastructure Simulators: Towards Ontologies for Support Of Collaboration, The 24th IEEE Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Ontario, Canada, pp. 1503-1506, 2011.
- K.P. Brown, K. Grolinger, M.A.M. Capretz, Data Providing Web Service-Based Integration Framework for use in a Health Care Context, The 24th IEEE Canadian Conference on Electrical and Computer Engineering 2011, Niagara Falls, Ontario, Canada, pp. 1069–1072, 2011.
- K. Grolinger, B Jerbic, B. Vranjes, Autonomous Robot Behavior Based on Neural Networks, Applications and Science of Artificial Neural Networks III, Orlando, Florida, USA, SPIE Press, pp. 2038-2046, 1997.
- B. Jerbic, K Grolinger, B. Vranjes, Simulation of Intelligent Robot Behavior Based on Reinforcement Learning and Neural Network Approach, The 11th International Conference on Artificial Intelligence in Engineering, Southampton, NY, USA, pp. 450-465, 1996.
- B. Jerbic, K. Grolinger, B. Vranjes, Simulation of Robotic Learning in Assembly Process, The 7th International DAAAM Symposium, Vienna, Austria, pp. 185-187, 1996
- B. Vranjes, K. Grolinger, B. Jerbic, Modified Fuzzy ART Neural Network in Group Technologies, The 7th International DAAAM Symposium, Vienna, Austria, pp. 185-187, 1996.
- B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in Unpredictable Assembly Conditions, The 13th Conference BIAM 96, Zagreb, Croatia, pp. B1-B6, 1996.
- B. Vranjes, K. Grolinger, B. Jerbic, Cellular Manufacturing Formation with Modified Fuzzy ART Neural Network, The 13th Conference BIAM 96, Zagreb, Croatia, pp. J5-J8, 1996.
Book chapters:
- K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a Service Framework for Collaborative Data Management in Cloud Environments - Disaster Domain, in Book: Managing Big Data in Cloud Computing Environments, IGI Global, in press.